CN103496848A - 一种镨掺杂磷酸盐玻璃及制备波导的方法 - Google Patents

一种镨掺杂磷酸盐玻璃及制备波导的方法 Download PDF

Info

Publication number
CN103496848A
CN103496848A CN201310422875.6A CN201310422875A CN103496848A CN 103496848 A CN103496848 A CN 103496848A CN 201310422875 A CN201310422875 A CN 201310422875A CN 103496848 A CN103496848 A CN 103496848A
Authority
CN
China
Prior art keywords
glass
glass substrate
praseodymium
doping phosphorus
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310422875.6A
Other languages
English (en)
Other versions
CN103496848B (zh
Inventor
林海
赵昕
韩晓哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Polytechnic University
Original Assignee
Dalian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Polytechnic University filed Critical Dalian Polytechnic University
Priority to CN201310422875.6A priority Critical patent/CN103496848B/zh
Publication of CN103496848A publication Critical patent/CN103496848A/zh
Application granted granted Critical
Publication of CN103496848B publication Critical patent/CN103496848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

本发明公开了一种镨掺杂磷酸盐玻璃及镨掺杂磷酸盐玻璃波导的制备方法,属于稀土掺杂光学玻璃技术领域。首先将基质原料和氧化镨混合均匀后熔制镨掺杂磷酸盐玻璃;然后通过离子交换法制备镨掺杂磷酸盐玻璃波导。本发明通过优化磷酸盐玻璃组分配比,改善玻璃熔制过程的温度制度,可以获得理化性能俱佳的磷酸盐玻璃,从而满足离子交换的需要。然后通过控制离子交换时间和温度等工艺参数,制备可与可见单模和红外单模光纤高效耦合的镨掺杂磷酸盐玻璃波导,并制备了支持多模信号传输的平面波导,其折射率的最大改变量高达0.0083。

Description

一种镨掺杂磷酸盐玻璃及制备波导的方法
技术领域
本发明属于稀土掺杂光学玻璃技术领域,具体涉及一种镨掺杂磷酸盐玻璃及制备波导的方法。
背景技术
提高光学器件的集成性始终是光通信领域研究的热点之一。光波导器件作为光通信器件的重要基本元件,其放大机理是在波导中引入稀土元素,利用稀土元素的能级跃迁,对光信号进行放大。因此寻找合适的玻璃基质材料,获得高增益、宽带宽、紧凑型的光学放大器,使其工作波长向C波段以外区域扩展是非常必要的。
此外,光波导器件产生的超荧光具有很强的方向性,钐、铕、镨等稀土离子均在可见区域具有有效荧光发射,且可实现与光纤的高效耦合,因此,在波导型可见光源方面具有广阔的应用前景。
一直以来,磷酸盐玻璃因具有较高的稀土离子溶解度而不易发生荧光猝灭现象,被认为是良好的光通讯器件的基质材料。经过K+-Na+离子交换磷酸盐玻璃波导表现出较低的表面散射损耗,对称的折射率分布以及与单模光纤良好的兼容性,因此镨掺杂磷酸盐波导在通讯、照明和波导型可见光源等领域的应用亟待研究。
发明内容
本发明的目的在于提供一种镨掺杂磷酸盐玻璃及制备波导的方法。首先通过调整玻璃组分配比,改善玻璃熔制过程的温度制度,获得均一性和透过性良好的镨掺杂磷酸盐玻璃,然后以性能优良的镨掺杂磷酸盐玻璃为基底,通过离子交换技术,获得可与可见单模和红外单模光纤高效耦合的镨掺杂磷酸盐玻璃波导。
为实现上述目的,本发明技术方案如下:
一种镨掺杂磷酸盐玻璃,该镨掺杂磷酸盐玻璃按如下步骤制备:
(1)将基质原料和氧化镨(Pr6O11)混合得到混合料;其中:所述氧化镨(Pr6O11)的量为基质原料总量的0.1~0.5wt%,所述基质原料为偏磷酸钠、偏磷酸镁、偏磷酸铝和氧化铝,其摩尔比例为:偏磷酸钠:偏磷酸镁:偏磷酸铝:氧化铝=50~67:3~4:25~44:3~4;
(2)将步骤(1)所得混合料在200~250℃条件下保温4~6小时,自然冷却至室温,然后升温至1350℃保温0.5~1小时得到熔融的玻璃液;再将熔融的玻璃液在经过预热的模具中成型,成型后的玻璃在470~510℃条件下退火0.5~3小时,自然冷却至室温后制得镨掺杂磷酸盐玻璃。
上述步骤(2)中升温速率优选为1~4℃/min;模具的预热温度优选为470~510℃;预热时间优选为5~30分钟。
利用上述镨掺杂磷酸盐玻璃制备波导的方法,具体步骤如下:
Ⅰ所述镨掺杂磷酸盐玻璃进行预处理后,加工成所需尺寸的镨掺杂磷酸盐玻璃基片;
Ⅱ玻璃基片经清洗后,采用热蒸镀法在玻璃基片表面蒸镀厚度150~200nm的铝膜,然后在玻璃基片表面打开4~50μm宽的离子交换窗口;
Ⅲ将具有离子交换窗口的玻璃基片浸没在360~390℃硝酸钾中进行离子交换0.5~2小时,离子交换后取出玻璃基片,自然冷却至室温,用去离子水洗去玻璃基片表面残留的硝酸钾,再洗净玻璃基片表面的铝膜,抛光后获得镨掺杂磷酸盐玻璃波导。
步骤Ⅰ中所述预处理过程为:首先采用金刚砂对制备的镨掺杂磷酸盐玻璃进行粗磨加工,并使其相对两面平行;然后采用氧化铝对玻璃进行细磨,使其表面光滑;再用抛光液在抛光机上对玻璃进行精密抛光;最后以无水乙醇清洗,使其表面清洁。
步骤Ⅱ中清洗玻璃基片的方法为:将玻璃基片依次置于三氯乙烷、丙酮和异丙醇中各清洗5~10min,最后以去离子水冲洗残余污渍,并用氮气将玻璃基片表面吹干。
步骤Ⅱ中在玻璃基片表面打开离子交换窗口的步骤如下:
(a)利用甩胶机在镀有铝膜的玻璃基片表面甩一层厚度50~150nm的SPR6112正光刻胶,然后将覆有正光刻胶的玻璃基片90℃下烘烤10分钟;
(b)烘烤后的玻璃基片上覆盖正光刻胶石英掩膜板,条纹宽4~50μm,采用光刻机在紫外灯下曝光6~10秒,然后将曝光后的玻璃基片浸没于AZ300MIF显影液中20~40秒,再用蒸馏水将显影液冲洗干净,以此在玻璃基片表面打开4~50μm宽的离子交换窗口;
(c)将打开离子交换窗口的玻璃基片置于磷酸、醋酸和硝酸的混合液中4~20分钟,除去离子交换窗口上的铝膜,然后用有机溶剂洗去玻璃基片表面的光刻胶。
本发明有益效果如下:
1、本发明研发了宽带信号放大用波导型镨掺杂磷酸盐玻璃1#,并选用独特的原料组分配比,以化学和热学性质稳定并具有较高稀土离子溶解度的磷酸盐为主要成分。Pr3+具有独特的能级结构,Pr3+掺杂磷酸盐玻璃的~1.46μm近红外发射归属于1D21G4辐射跃迁,因其大的发射截面和荧光半高宽,能够实现E+S波段光学信号放大。
2、本发明镨掺杂磷酸盐玻璃1#波导可高效匹配红外单模光纤,实现E+S波段光学信号放大。
3、离子交换技术是最具有前途的波导制作技术,但是离子交换通常是在较高的温度下进行的,本发明通过优化磷酸盐玻璃组分配比,改善玻璃熔制过程的温度制度,可以获得理化性能俱佳的磷酸盐玻璃,从而满足离子交换的需要。然后通过控制离子交换时间和温度等工艺参数,制备了支持多模信号传输的镨掺杂磷酸盐玻璃1#平面波导,其折射率的最大改变量高达0.0083。
4、本发明镨掺杂磷酸盐玻璃2#在可见区域具有有效荧光发射,镨掺杂磷酸盐玻璃2#波导可高效匹配可见单模光纤,作为波导型可见光源使用。
5、本发明通过将Al2O3引入玻璃组分,增强玻璃机械强度的同时,增强了玻璃基质的耐酸性,解决离子交换过程中玻璃基质易受酸腐蚀的问题;通过引入少量MgO,使玻璃的硬化速度变慢,改善其成型性能。
6、本发明原料价格低廉,普遍易得,适宜大规模生产。
附图说明
本发明附图12幅。
图1是0.2wt%Pr6O11掺杂磷酸盐玻璃1#在442nm激发下的红外荧光光谱。
图2是监测0.2wt%Pr6O11掺杂磷酸盐玻璃1#的1462nm发射峰的激发光谱。
图3是0.2wt%Pr6O11掺杂磷酸盐玻璃1#归属于1D21G4能级跃迁的受激发射截面。
图4是0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导在入射光波长为632.8nm时的模式分布。
图5是0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导在入射光波长为1536nm时的模式分布。
图6是0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导在入射光波长为632.8nm时随扩散深度不同的折射率分布情况。
图7是0.2wt%Pr6O11掺杂磷酸盐玻璃1#单模条形波导的近场模式图。
图8是0.2wt%Pr6O11掺杂磷酸盐玻璃1#波导在入射光波长为1550nm的近场模式3D图。
图9是0.2wt%Pr6O11掺杂磷酸盐玻璃2#在443nm激发下的可见荧光光谱。
图10是监测0.2wt%Pr6O11掺杂磷酸盐玻璃2#的598nm发射主峰的激发光谱。
图11是0.2wt%Pr6O11掺杂磷酸盐玻璃2#的1D2能级的荧光寿命曲线。
图12是0.2wt%Pr6O11掺杂磷酸盐玻璃2#平面光波导在入射光波长为632.8nm时的模式分布。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所用试剂,如无特殊说明,均由商业途径获得;所使用的溶液配置等试验方法,如无特殊说明,均为常规操作。
下面结合附图及实施例详述本发明。
实施例1
(1)采用如下的摩尔配比:偏磷酸钠(NaPO3):偏磷酸镁(Mg(PO3)2):偏磷酸铝(Al(PO3)3):氧化铝(Al2O3)=67:4:25:4,称量上述基质原料,另称取占基质原料总量0.2wt%的氧化镨(Pr6O11)作为掺杂剂,所有原料的纯度均为99.99%,具体配料见表一。
表一
原料 NaPO3 Mg(PO3)2 Al(PO3)3 Al2O3 Pr6O11
重量(g) 10.787 1.151 10.418 0.644 0.046
(2)将按步骤(1)所述方法称量的原料置于玛瑙研钵中充分混合,待其混合均匀后倒入铂金坩埚,置于230℃的箱式电阻炉中保温6个小时,随炉升温至1350℃条件下保温半个小时。
(3)将步骤(2)中熔制的玻璃液倒入已在470℃下预热5分钟的长方形铝制模具中成型,将成型后的0.2wt%Pr6O11掺杂磷酸盐玻璃1#放入470℃电阻炉中退火3个小时,随炉冷却至室温,以消除玻璃的内应力。
(4)将步骤(3)制备的玻璃从电阻炉中取出后,首先采用金刚砂将其双面粗磨加工,使相对表面平行,随后采用氧化铝对玻璃进行细磨,使其表面光滑,最后用抛光液在抛光机上对玻璃进行精密抛光,并用无水乙醇清洗,使其表面清洁。
(5)利用Jobin Yvon Fluorolog-3分光光度计,配以近红外R928光电倍增管为探测器、商用连续波长氙灯为泵浦源,记录经步骤(4)处理的玻璃样品在442.0nm激发下的近红外荧光光谱,结果如图1。由图1可以看出,该玻璃样品位于1462.0nm的发射峰源于镨离子的1D21G4辐射跃迁,荧光半高宽(FWHM)为113nm,使其可实现E+S波段光学信号放大。
(6)采用和步骤(5)相同的测试手段,配以R928光电倍增管,记录本实施例制备的玻璃样品的激发光谱,监测波长为1462.0nm,结果如图2。图2的光谱覆盖了410-620nm的连续波长范围,分别位于442.0nm、472.0nm和589.0nm的三个激发峰是由于镨离子由3H4基态能级向(3P21I6),(3P13P0)和1D2能级的跃迁引起的。激发光谱说明,该玻璃样品可被410-620nm波长范围的多种激发光源有效激发。
(7)0.2wt%Pr6O11掺杂磷酸盐玻璃1#在442.0nm激发下归属于1D21G4能级跃迁的受激发射截面,结果如图3。图3中1468.0nm处最大受激发射截面为1.1×10-20cm2,表明在适当的激发条件下,如商用蓝色激光二极管、蓝色或蓝绿色发光二极管以及氩离子激光器的激发下可以实现镨离子掺杂磷酸盐玻璃1#的有效发射。
实施例2
(1)取0.2wt%Pr6O11掺杂磷酸盐玻璃1#,将其加工成尺寸为3.0cm×1.8cm×0.3cm(长×宽×厚)且双面平行表面光滑的玻璃基片,依次采用三氯乙烷、丙酮、异丙醇、去离子水各清洗5分钟,然后用氮气将基片表面吹干,备用。
(2)玻璃基片经清洗后,采用热蒸镀法在玻璃基片表面蒸镀厚度150~200nm的铝膜,然后在玻璃基片表面打开4~50μm宽的离子交换窗口;
所述在玻璃基片表面打开离子交换窗口的步骤如下:
(a)利用甩胶机在镀有铝膜的玻璃基片表面甩一层厚度50~150nm的SPR6112正光刻胶(甩胶机旋转套膜的转速2000rpm,甩胶时间60秒),然后将覆有正光刻胶的玻璃基片90℃下烘烤10分钟;
(b)烘烤后的玻璃基片上覆盖正光刻胶石英掩膜板,条纹宽4~50μm,采用光刻机在紫外灯下曝光6~10秒,然后将曝光后的玻璃基片浸没于AZ300MIF显影液中20~40秒,再用蒸馏水将显影液冲洗干净,以此在玻璃基片表面打开4~50μm宽的离子交换窗口;
(c)将打开离子交换窗口的玻璃基片置于磷酸、醋酸和硝酸的混合液中4~20分钟(至铝膜脱落),除去离子交换窗口上的铝膜,然后用有机溶剂(如:异丙醇)洗去玻璃基片表面的光刻胶。
(3)将盛有纯度为99.99%的硝酸钾(KNO3)的石英坩埚置于离子交换炉内,待温度升至390℃并稳定后,将经步骤(1)处理的玻璃基片浸没在硝酸钾中进行离子交换制备平面光波导,离子交换时间为0.5小时。离子交换后取出玻璃基片,自然冷却至室温,用去离子水洗去玻璃基片表面残留的硝酸钾,再洗净玻璃基片表面的铝膜,抛光后获得0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导。
(4)利用Metricon2010棱镜耦合仪测试步骤(3)制备的0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导在入射光波长为632.8nm(图4)和1536nm(图5)时的模式分布。该平面光波导在入射光波长为632.8nm时有两个完整模式和一个不完整模式;在入射光波长为1536nm时表面有一个完整模式。该结果说明在步骤(3)采用的离子交换条件下制备的光波导支持可见多模和红外单模光信号传输,如果欲制备支持单模信号传输的离子交换波导,则可适当缩短离子交换时间。
(5)采用IWKB(inverse Wentzel-Kramer-Brillouin)方法拟合步骤(3)制备的0.2wt%Pr6O11掺杂磷酸盐玻璃1#平面光波导在入射光波长为632.8nm时不同扩散深度的折射率分布情况(展示于图6),可以得出以下结论:经过离子交换后,在玻璃基片表面形成了厚度约为8.8μm的波导层,波导表面折射率(n0)为1.5223,基质折射率(nsub)为1.5140,因此,折射率的最大改变量Δn=n0-nsub=0.0083,此值可与传统单模光纤的折射率相匹配,证明按本实施例离子交换条件制备的光波导和与光纤高效耦合。
(6)将1.55μm的入射光通过V型槽光纤固定器耦合进波导的一端侧面,在波导的另一侧端面采用一个显微物镜将波导中导出的光图像传给电荷耦合器件(CCD)照相机,从而由计算机上导出条形波导的近场模式图(图7)和3D图(图8)。由近场模式图可以看出,玻璃波导在1.5μm工作频段支持单模传输,其模场直径横向测量为8.8μm,纵向测量为6.7μm,该单模光波导与标准单模光纤有良好的交迭度和重合性。
实施例3
(1)采用如下的摩尔配比:偏磷酸钠(NaPO3):偏磷酸镁(Mg(PO3)2):偏磷酸铝(Al(PO3)3):氧化铝(Al2O3)=50:3:44:3,称量上述基质原料,另称取占基质原料总量0.2wt%的氧化镨(Pr6O11)作为掺杂剂,所有原料的纯度均为99.99%,具体配料如表二。
表二
原料 NaPO3 Mg(PO3)2 Al(PO3)3 Al2O3 Pr6O11
重量(g) 6.677 0.716 15.207 0.401 0.046
(2)将按步骤(1)所述方法称量的原料置于玛瑙研钵中充分混合,待其混合均匀后倒入铂金坩埚,置于230℃的箱式电阻炉中保温6个小时,随炉升温至1350℃条件下保温半个小时。
(3)将步骤(2)中熔制的玻璃液倒入已在470℃下预热5分钟的长方形铝制模具中成型,将成型后的0.2wt%Pr6O11掺杂磷酸盐玻璃2#放入510℃电阻炉中退火3个小时,随炉冷却至室温,以消除玻璃的内应力。
(4)将步骤(3)制备的玻璃从电阻炉中取出后,首先采用金刚砂将其双面粗磨加工,使相对的表面平行,随后采用氧化铝对玻璃进行细磨,使其表面光滑,最后用抛光液在抛光机上对玻璃进行精密抛光,并用无水乙醇清洗,使其表面清洁。
(5)利用Jobin Yvon Fluorolog-3分光光度计,配以R928光电倍增管为探测器、商用连续波长氙灯为泵浦源,记录经步骤(4)处理后的玻璃样品在443.0nm激发下的可见荧光光谱,结果展示于图9。由图9可以看出为,该玻璃样品的可见荧光发射峰值分别位于480.0nm、597.0nm和690.0nm。
(6)采用和步骤(5)相同的测试手段,记录本实施例制备玻璃样品的激发光谱,监测波长为598.0nm,结果如图10。其三个激发峰顶点分别位于443.0nm,468.0nm和480.0nm,这表明该样品可被410-620nm波长范围的多种激发光源有效激发,如氩离子激光器,蓝色或蓝绿色的发光二极管等。
(7)采用和步骤(5)相同的测试手段,配以脉冲氙灯为泵浦源,记录本实施例制备玻璃样品中镨离子1D2能级的荧光寿命曲线,结果如图11。获得镨离子1D2能级的量子效率为87.7%,揭示了始于1D2能级的有效发射是有希望获得的。
实施例4
(1)选取实施例3制备的0.2wt%Pr6O11掺杂磷酸盐玻璃2#,将其加工将其加工成尺寸为3.0cm×1.8cm×0.3cm(长×宽×厚)且双面平行表面光滑的玻璃基片,依次采用三氯乙烷、丙酮和异丙醇各清洗10分钟,然后以去离子水清洗,再用氮气将基片表面吹干,备用。
(2)玻璃基片经清洗后,采用热蒸镀法在玻璃基片表面蒸镀厚度150~200nm的铝膜,然后在玻璃基片表面打开4~50μm宽的离子交换窗口(方法同实施例2);
(3)将盛有纯度为99.99%的硝酸钾(KNO3)的石英坩埚置于离子交换炉内,待温度升至390℃并稳定后,将经步骤(2)处理的玻璃基片浸没在硝酸钾中进行离子交换制备平面光波导,离子交换时间为2小时。离子交换后取出玻璃基片,自然冷却至室温,用去离子水洗去玻璃基片表面残留的硝酸钾,再洗净玻璃基片表面的铝膜,抛光后获得0.2wt%Pr6O11掺杂磷酸盐玻璃2#平面光波导。
(4)利用Metricon2010棱镜耦合仪测试步骤(3)制备的平面光波导在入射光波长为632.8nm(图12)时的模式分布。该平面光波导在入射光波长为632.8nm时有一个完整模式和一个不完整模式。该结果说明在步骤(3)采用的离子交换条件下制备的光波导支持可见单模光信号传输。
上述实施例为本发明在制备波导型镨掺杂磷酸盐玻璃较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种镨掺杂磷酸盐玻璃,其特征在于:所述镨掺杂磷酸盐玻璃的制备方法包括如下步骤:
(1)将基质原料和氧化镨混合得到混合料;其中:所述氧化镨的量为基质原料量的0.1~0.5wt%,所述基质原料为偏磷酸钠、偏磷酸镁、偏磷酸铝和氧化铝,其摩尔比例为:偏磷酸钠:偏磷酸镁:偏磷酸铝:氧化铝=50~67:3~4:25~44:3~4;
(2)将步骤(1)所得混合料在200~250℃条件下保温4~6小时,自然冷却至室温,然后升温至1350℃保温0.5~1小时得到熔融的玻璃液;再将熔融的玻璃液在经过预热的模具中成型,成型后的玻璃在470~510℃条件下退火0.5~3小时,自然冷却至室温后制得镨掺杂磷酸盐玻璃。
2.根据权利要求1所述的镨掺杂磷酸盐玻璃,其特征在于:所述步骤(2)中升温速率为1~4℃/min。
3.根据权利要求1所述的镨掺杂磷酸盐玻璃,其特征在于:所述步骤(2)中所述模具为铝制模具。
4.根据权利要求1所述的镨掺杂磷酸盐玻璃,其特征在于:所述步骤(2)中所述模具的预热温度470~510℃。
5.根据权利要求1所述的镨掺杂磷酸盐玻璃,其特征在于:所述预热时间5~30分钟。
6.利用权利要求1所述的镨掺杂磷酸盐玻璃制备波导的方法,其特征在于:具体步骤如下:
Ⅰ所述镨掺杂磷酸盐玻璃进行预处理后,加工成所需尺寸的镨掺杂磷酸盐玻璃基片;
Ⅱ玻璃基片经清洗后,采用热蒸镀法在玻璃基片表面蒸镀厚度150~200nm的铝膜,然后在玻璃基片表面打开4~50μm宽的离子交换窗口;
Ⅲ将具有离子交换窗口的玻璃基片浸没在360~390℃硝酸钾中进行离子交换0.5~2小时,离子交换后取出玻璃基片,自然冷却至室温,用去离子水洗去玻璃基片表面残留的硝酸钾,再洗净玻璃基片表面的铝膜,抛光后获得镨掺杂磷酸盐玻璃波导。
7.根据权利要求6所述的制备波导的方法,其特征在于:步骤Ⅰ中所述预处理过程为:首先采用金刚砂对制备的镨掺杂磷酸盐玻璃进行粗磨加工,并使其相对两面平行;然后采用氧化铝对玻璃进行细磨,使其表面光滑;再用抛光液在抛光机上对玻璃进行精密抛光;最后以无水乙醇清洗,使其表面清洁。
8.根据权利要求6所述的制备波导的方法,其特征在于:步骤Ⅱ中清洗玻璃基片的方法为:将玻璃基片依次置于三氯乙烷、丙酮和异丙醇中各清洗5~10min,最后以去离子水冲洗残余污渍,并用氮气将玻璃基片表面吹干。
9.根据权利要求6所述的制备波导的方法,其特征在于:所述步骤Ⅱ中在玻璃基片表面打开离子交换窗口的过程步骤如下:
(a)利用甩胶机在镀有铝膜的玻璃基片表面甩一层厚度50~150nm的SPR6112正光刻胶,然后将覆有正光刻胶的玻璃基片90℃下烘烤10分钟;
(b)烘烤后的玻璃基片上覆盖正光刻胶石英掩膜板,条纹宽4~50μm,采用光刻机在紫外灯下曝光6~10秒,然后将曝光后的玻璃基片浸没于AZ300MIF显影液中20~40秒,再用蒸馏水将显影液冲洗干净,以此在玻璃基片表面打开4~50μm宽的离子交换窗口;
(c)将打开离子交换窗口的玻璃基片置于磷酸、醋酸和硝酸的混合液中4~20分钟,除去离子交换窗口上的铝膜,然后用有机溶剂洗去玻璃基片表面的光刻胶。
CN201310422875.6A 2013-09-16 2013-09-16 一种镨掺杂磷酸盐玻璃及制备波导的方法 Expired - Fee Related CN103496848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310422875.6A CN103496848B (zh) 2013-09-16 2013-09-16 一种镨掺杂磷酸盐玻璃及制备波导的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310422875.6A CN103496848B (zh) 2013-09-16 2013-09-16 一种镨掺杂磷酸盐玻璃及制备波导的方法

Publications (2)

Publication Number Publication Date
CN103496848A true CN103496848A (zh) 2014-01-08
CN103496848B CN103496848B (zh) 2016-01-06

Family

ID=49862139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310422875.6A Expired - Fee Related CN103496848B (zh) 2013-09-16 2013-09-16 一种镨掺杂磷酸盐玻璃及制备波导的方法

Country Status (1)

Country Link
CN (1) CN103496848B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133798A (zh) * 2019-07-02 2019-08-16 山东大学 采用金刚石划片机制备脊形光波导的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322820A (en) * 1992-12-08 1994-06-21 Kigre, Inc. Athermal laser glass compositions with high thermal loading capacity
US5364819A (en) * 1993-04-28 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Ultraviolet Faraday rotator glass
CN1844964A (zh) * 2006-05-08 2006-10-11 浙江南方通信集团股份有限公司 一种离子掩膜制作玻璃光波导的方法
CN1844963A (zh) * 2006-05-08 2006-10-11 浙江南方通信集团股份有限公司 单侧熔盐电场辅助离子交换制备掩埋式玻璃光波导的方法
CN102736178A (zh) * 2011-04-14 2012-10-17 上海光芯集成光学股份有限公司 一种制备掩埋式光波导的方法
CN102809779A (zh) * 2012-08-06 2012-12-05 大连工业大学 一种镨掺杂离子交换铝锗酸盐玻璃波导的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322820A (en) * 1992-12-08 1994-06-21 Kigre, Inc. Athermal laser glass compositions with high thermal loading capacity
US5322820C1 (en) * 1992-12-08 2001-04-24 Kigre Inc Athermal laser glass compositions with high thermal loading capacity
US5364819A (en) * 1993-04-28 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Ultraviolet Faraday rotator glass
CN1844964A (zh) * 2006-05-08 2006-10-11 浙江南方通信集团股份有限公司 一种离子掩膜制作玻璃光波导的方法
CN1844963A (zh) * 2006-05-08 2006-10-11 浙江南方通信集团股份有限公司 单侧熔盐电场辅助离子交换制备掩埋式玻璃光波导的方法
CN102736178A (zh) * 2011-04-14 2012-10-17 上海光芯集成光学股份有限公司 一种制备掩埋式光波导的方法
CN102809779A (zh) * 2012-08-06 2012-12-05 大连工业大学 一种镨掺杂离子交换铝锗酸盐玻璃波导的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林峰: "稀土掺杂磷酸盐玻璃有源光纤的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, no. 8, 15 August 2010 (2010-08-15), pages 21 - 22 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133798A (zh) * 2019-07-02 2019-08-16 山东大学 采用金刚石划片机制备脊形光波导的方法

Also Published As

Publication number Publication date
CN103496848B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
Vázquez et al. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission
Gonçalves et al. Erbium-activated HfO2-based waveguides for photonics
Nazabal et al. Fluoride and oxyfluoride glasses for optical applications
CN101117271B (zh) 镱铋共掺的磷酸盐基光学玻璃及其制备方法
CN102809779B (zh) 一种镨掺杂离子交换铝锗酸盐玻璃波导的制备方法
CN110407462B (zh) 一种稀土掺杂硅酸盐玻璃及其制备方法和应用
CN101492248A (zh) 2μm激光输出掺铥碲酸盐玻璃与光纤及其制备方法
Yeatman et al. Sol-gel fabrication of rare-earth doped photonic components
Lakshminarayana et al. NIR luminescence from Er–Yb, Bi–Yb and Bi–Nd codoped germanate glasses for optical amplification
Carreira et al. Structural and luminescence characterization of a Dy/Tb co-doped borophosphate glass
CN103496848B (zh) 一种镨掺杂磷酸盐玻璃及制备波导的方法
Righini et al. Er3+-doped silica–hafnia films for optical waveguides and spherical resonators
Martucci et al. Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides
CN116119925A (zh) 一种掺铥氟碲酸盐玻璃、制备方法及其应用
CN102674688B (zh) 掺镨硼磷酸盐基近红外超宽带发光玻璃及其制备方法
Zhao et al. Up-conversion luminescence and C-band laser in Er 3+-doped fluorozirconate glass microsphere resonator
Maia et al. Er: YAl3 (BO3) 4 glassy thin films from polymeric precursor and sol-gel methods: Waveguides for integrated optics
CN112897878B (zh) 一种近红外波段超宽带发射Bi-Er-Tm共掺碲酸盐光纤玻璃及其制备方法
CN108168726B (zh) 一种测量固体激光器中增益介质内部温度的方法
CN112851129B (zh) 一种近红外波段宽带发射稀土掺杂铋酸盐光纤玻璃及其制备方法
Jestin et al. Er 3+ activated silica-hafnia glass-ceramics planar waveguides
Chen et al. Tunable ultra-broadband multi-band NIR emission in Bi-doped aluminogermanate glasses and fibers via controllable Al 2 O 3 content for broadband amplifiers
CN102603190A (zh) 稀土掺杂硫系(卤)薄膜材料、制备方法及应用
CN102515513A (zh) 一种Er3+/Ce3+共掺的碲铋钛玻璃及其制备方法
Du et al. Spectral properties of inorganic CsPbBr3 quantum dots embedded in phosphate fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106

Termination date: 20180916

CF01 Termination of patent right due to non-payment of annual fee