CN103474312A - 一种行波管夹持杆及其制备方法 - Google Patents

一种行波管夹持杆及其制备方法 Download PDF

Info

Publication number
CN103474312A
CN103474312A CN2013104082241A CN201310408224A CN103474312A CN 103474312 A CN103474312 A CN 103474312A CN 2013104082241 A CN2013104082241 A CN 2013104082241A CN 201310408224 A CN201310408224 A CN 201310408224A CN 103474312 A CN103474312 A CN 103474312A
Authority
CN
China
Prior art keywords
supporting rod
wave tube
ceramic
metal
travelling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104082241A
Other languages
English (en)
Other versions
CN103474312B (zh
Inventor
魏彦玉
刘鲁伟
岳玲娜
徐进
路志刚
赵国庆
王战亮
黄民智
宫玉彬
王文祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310408224.1A priority Critical patent/CN103474312B/zh
Publication of CN103474312A publication Critical patent/CN103474312A/zh
Application granted granted Critical
Publication of CN103474312B publication Critical patent/CN103474312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种行波管陶瓷夹持杆及其制备方法,包括金属内芯和位于金属内芯外的陶瓷材料层,所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近,所述金属内芯的外表面上分别设有一层金属层或合金层如镍、铜、银-铜合金、金-铜合金,锗-铜合金等中的一种和活性金属层如钛、锆、钽、铌中的一种。本发明所提供的一种带金属内芯的陶瓷夹持杆与常规陶瓷夹持杆相比,具有更好的强度和柔韧性,因此用于慢波结构的装配时,不容易断裂。

Description

一种行波管夹持杆及其制备方法
技术领域
本发明属于微波真空电子技术领域,具体涉及与行波管中的慢波电路配套使用的陶瓷夹持杆。 
背景技术
行波管是真空电子学领域内最为重要的一类微波、毫米波源,具有大功率、高效率、高增益、宽频带的特点,广泛应用于微波毫米波雷达、电子对抗、制导、通信、微波遥感、微博测量等领域。慢波电路作为行波管中进行注-波互作用以激励放大微波毫米波能量的电路,是行波管的核心,其性能直接决定着行波管的技术水平。 
在行波管的慢波电路中,比如螺旋线慢波***,双绕螺旋线慢波***以及环-杆慢波***等,大量使用了陶瓷夹持杆,其形状如图1到图3所示。这些陶瓷夹持杆除起到介质绝缘,还有改善慢波电路色散特性的作用。由于陶瓷夹持杆都比较脆弱,慢波结构在装配的时候很容易因为受力不均匀而发生断裂,造成大量材料的浪费。若使用的是氧化铍陶瓷材料,在发生断裂时产生的氧化铍粉末为剧毒材料,很容易引起环境污染。另外,行波管在高温、剧烈振动的环境下工作时,陶瓷夹持杆很可能会断裂成几部分,从而使行波管的性能下降,寿命减少。因此,非常有必要寻找一种既具有高的机械强度,又具有一定柔韧性能的陶瓷夹持杆。 
发明内容
本发明提出一种行波管陶瓷夹持杆及其制备方法,该陶瓷夹持杆不仅具有较高的机械强度,而且还有一定的柔韧性能,克服了背景技术中陶瓷夹持杆装配时易断裂的缺点。 
本发明为实现上述目的采用以下技术方案: 
本发明提供了一种行波管陶瓷夹持杆的制备方法,其特征在于,包括以下步骤: 
首先在金属内芯的外表面镀一层金属或合金层,如镍、铜、银-铜合金、金-铜合金,锗-铜合金等中的一种,然后再在金属或合金层的外表面镀一层活性金属如钛、锆、钽、铌中的一种。第一层的金属或合金层很容易在低于活性金属熔点的温度下与活性金属形成液相合金,这时已处于液相状态下的钛很容易与陶瓷表面发生反应,从而可以完成金属与陶瓷的封接。 
将外表面镀有金属层的金属内芯固定在压制陶瓷夹持杆的模具的内部; 
在压制陶瓷夹持杆的模具中填满陶瓷材料,并开始陶瓷夹持杆的压制,压制压力在20-30MPa左右,压制时间为15-25分钟; 
将压制好的陶瓷夹持杆放在1500℃-1700℃的高温中烧结2-4个小时,得到陶瓷夹持杆成品。 
上述技术方案中,所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近。 
上述技术方案中,所述金属内芯的材料为低膨胀金属,如铁镍钴磁封合金4J33或4J34。 
上述技术方案中,所述陶瓷材料为氧化铍陶瓷、氮化硼陶瓷、氧化铝陶瓷中的一种。 
上述技术方案中,所述陶瓷夹持杆的横截面形状为矩形、圆形、扇形、梯形、品字形中的一种;所述金属内芯的横截面形状为与陶瓷夹持杆横截面形状相同的矩形、圆形、扇形、梯形、品字形中的一种。 
本发明还提供了一种行波管陶瓷夹持杆,其特征在于:包括金属内芯和位于 金属内芯外的陶瓷材料层,所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近,所述金属内芯的外表面上设有至少一层活性金属层。 
上述一种行波管陶瓷夹持杆的技术方案中,所述金属内芯的材料为低膨胀金属,如铁镍钴磁封合金4J33或4J34。 
上述一种行波管陶瓷夹持杆的技术方案中,所述陶瓷材料为氧化铍陶瓷、氮化硼陶瓷、氧化铝陶瓷中的一种。 
上述一种行波管陶瓷夹持杆的技术方案中,所述陶瓷夹持杆的横截面形状为矩形、圆形、扇形、梯形、品字形中的一种;所述金属内芯的横截面形状为与陶瓷夹持杆横截面形状相同的矩形、圆形、扇形、梯形、品字形中的一种。 
本发明的有益效果如下: 
(1)本发明所提供的一种带金属内芯的陶瓷夹持杆与常规陶瓷夹持杆相比,具有更好的强度和柔韧性,因此用于慢波结构的装配时,不容易断裂。 
(2)本发明的一种带金属内芯的陶瓷夹持杆在慢波结构中不仅起到介质绝缘的作用,还起到翼片加载的作用,故可以改善慢波结构的色散特性,增加行波管的带宽。另外,由于毫米波慢波结构的横截面尺寸很小,在很小尺寸的慢波结构中加工翼片相当困难,难以保证加工的精度,因此本发明提高了慢波结构的加工精度,同时还降低了制造成本。 
附图说明
图1是传统的矩形陶瓷夹持杆; 
图2是传统的圆形陶瓷夹持杆; 
图3是传统的扇形陶瓷持杆; 
图4是本发明的一种带矩形金属内芯的矩形陶瓷夹持杆; 
图5是本发明的一种带圆形金属内芯的圆形陶瓷夹持杆; 
图6是本发明的一种带梯形金属内芯的扇形陶瓷夹持杆。 
图中,1为陶瓷材料层,2为金属内芯。 
具体实施方式
下面结合附图和实施例对本发明进一步说明,但本发明的实施方式不限于此。为了全面理解本发明,在以下详细描述中提到了众多具体细节。但是本领域技术人员应该理解,本发明可以无需这些具体细节而实现。在其它实例中,不详细描述公知的方法、过程、组件和电路,以免不必要地使实施例模糊。 
根据本发明的一个方面,公开了一种行波管陶瓷夹持杆的制备方法,包括以下步骤: 
选用金属内芯和陶瓷材料,所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近; 
首先在金属内芯的外表面镀一层金属或合金层,如镍、铜、银-铜合金、金-铜合金,锗-铜合金等中的一种,然后再在金属或合金层的外表面镀一层活性金属如钛、锆、钽、铌中的一种。 
将外表面镀有金属层的金属内芯固定在压制陶瓷夹持杆的模具的内部; 
在压制陶瓷夹持杆的模具中填满陶瓷材料,并开始陶瓷夹持杆的压制,压制压力在20-30MPa,压制时间为15-25分钟; 
将压制好的陶瓷夹持杆放在1500℃-1700℃的高温中烧结2-4个小时,得到陶瓷夹持杆成品。 
根据本发明的另一方面,还公开了一种行波管陶瓷夹持杆,包括金属内芯2和位于金属内芯外的陶瓷材料层1,其金属内芯2的线膨胀系数与陶瓷材料层1的陶瓷材料的线膨胀系数相同或者相近,所述金属内芯的外表面上设有至少一层活性金属层。其中,陶瓷材料为氧化铍陶瓷、氮化硼陶瓷、氧化铝陶瓷中的 一种,陶瓷夹持杆的横截面形状为如图4至图6所示的矩形、圆形、扇形或者梯形、品字形中的一种,或者其它形状,金属内芯的横截面形状为如图4至图6所示的与陶瓷夹持杆横截面形状相同的矩形、圆形、扇形或者梯形、品字形中的一种,或者其它形状。 
实施例一 
本实施方式以陶瓷夹持杆和金属内芯的横截面都为矩形结构,且金属内芯位于陶瓷夹持杆的中央为例,其中陶瓷夹持杆的材料为氧化铍,金属内芯的材料为铁镍钴磁封合金4J34。矩形槽的长边×短边×长度为4×5×130mm;矩形陶瓷夹持杆的长边×短边×长度为4×5×130mm;矩形金属内芯横截面的长边×短边×长度为2×2.5×130mm。在金属内芯的表面分别镀一层10μm厚的镍层和钛层,然后把金属条固定在槽的中央,并在槽中填充氧化铍陶瓷粉末,经压力机压实后按正常的氧化铍陶瓷烧结规范进行烧结,烧结后便形成了本发明所设计的一种行波管用的带金属内芯的陶瓷夹持杆。 
本实施方案中氧化铍陶瓷的线膨胀系数在20-400℃范围内约为7.5×10-6/℃,杨氏模量为3×1011N/m^2,泊松比为0.3,抗折强度为137N/mm^2;铁镍钴磁封合金4J34的线膨胀系数在20-400℃范围内约为6.29×10-6/℃,杨氏模量为1.568×1011N/m^2,泊松比为0.3,抗折强度为539N/mm^2。可知,氧化铍陶瓷材料的线膨胀系数与铁镍钴磁封合金4J34的近似,但是铁镍钴磁封合金4J34的抗折强度为氧化铍陶瓷材料的3.93倍,因此本发明的一种行波管用的带金属内芯的陶瓷夹持杆与比传统氧化铍夹持杆的相比,具有更大的抗折强度,因此在慢波结构的装配时不容易断裂。 
实施例二 
本实施方式以陶瓷夹持杆和金属内芯的横截面都为圆形结构,且金属内芯 位于陶瓷夹持杆的中央为例,其中陶瓷夹持杆的材料为氧化铝,金属内芯的材料为铁镍钴磁封合金4J33。圆形槽的半径×长度为4×100mm;圆形陶瓷夹持杆的半径×长度为4×100mm;圆形金属内芯横截面的半径×长度为2×100mm。在金属内芯的表面分别镀一层10μm厚的铜层和钛层,然后把金属条固定在槽的中央,并在槽中填充氧化铝陶瓷粉末,经压力机压实后按正常的氧化铝陶瓷烧结规范进行烧结,烧结后便形成了本发明所设计的一种行波管用的带金属内芯的陶瓷夹持杆。 
本实施方案中氧化铝陶瓷的线膨胀系数在20-400℃范围内约为7.01×10-6/℃,杨氏模量为3.6×1011N/m^2,泊松比为0.3,抗折强度为323N/mm^2;铁镍钴磁封合金4J33的线膨胀系数在20-400℃范围内约为6.06×10-6/℃,杨氏模量为1.764×1011N/m^2,泊松比为0.3,抗折强度为539N/mm^2。可知,氧化铝陶瓷材料的线膨胀系数与铁镍钴磁封合金4J33的近似,但是铁镍钴磁封合金4J33的抗折强度为氧化铍陶瓷材料的1.67倍,因此本发明的一种行波管用的带金属内芯的陶瓷夹持杆与比传统氧化铝夹持杆的相比,具有更大的抗折强度,因此在慢波结构的装配时不容易断裂。 
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点,包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点的也落在本发明的范围内。 
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解为本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和 实施方式将落在本申请公开的原则范围和精神之内。更具体的说,在本申请公开的说明书、附图和权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。 

Claims (9)

1.一种行波管陶瓷夹持杆的制备方法,其特征在于,包括以下步骤:
首先在金属内芯的外表面镀一层金属或合金层,如镍、铜、银-铜合金、金-铜合金或锗-铜合金中的任一种,
然后再在金属或合金层的外表面镀一层活性金属,如钛、锆、钽或铌中的任一种;
将外表面镀有金属层的金属内芯固定在压制陶瓷夹持杆的模具的内部;
在压制陶瓷夹持杆的模具中填满陶瓷材料,并开始陶瓷夹持杆的压制,压制压力在20-30MPa,压制时间为15-25分钟;
将压制好的陶瓷夹持杆放在1500℃-1700℃的高温中烧结2-4个小时,得到陶瓷夹持杆成品。
2.根据权利要求1所述一种行波管陶瓷夹持杆的制备方法,其特征在于:所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近。
3.根据权利要求1所述一种行波管陶瓷夹持杆的制备方法,其特征在于:所述金属内芯的材料为低膨胀金属,如铁镍钴磁封合金4J33或4J34。
4.根据权利要求1所述一种行波管陶瓷夹持杆的制备方法,其特征在于:所述陶瓷材料为氧化铍陶瓷、氮化硼陶瓷、氧化铝陶瓷中的一种。
5.根据权利要求1所述一种行波管陶瓷夹持杆的制备方法,所述陶瓷夹持杆的横截面形状为矩形、圆形、扇形、梯形、品字形中的一种;所述金属内芯的横截面形状为与陶瓷夹持杆横截面形状相同的矩形、圆形、扇形、梯形、品字形中的一种。
6.一种行波管陶瓷夹持杆,其特征在于:包括金属内芯和位于金属内芯外的陶瓷材料层,所述金属内芯的线膨胀系数与所述陶瓷材料的线膨胀系数相同或者相近,所述金属内芯的外表面上设有至少一层活性金属层。
7.根据权利要求6所述的行波管陶瓷夹持杆,其特征在于:所述金属内芯的材料为低膨胀金属,如铁镍钴磁封合金4J33或4J34。
8.根据权利要求6所述的行波管陶瓷夹持杆,其特征在于:所述陶瓷材料为氧化铍陶瓷、氮化硼陶瓷、氧化铝陶瓷中的一种。
9.根据权利要求6所述的行波管陶瓷夹持杆,其特征在于:所述陶瓷夹持杆的横截面形状为矩形、圆形、扇形、梯形、品字形中的一种;所述金属内芯的横截面形状为与陶瓷夹持杆横截面形状相同的矩形、圆形、扇形、梯形、品字形中的一种。
CN201310408224.1A 2013-09-09 2013-09-09 一种行波管夹持杆及其制备方法 Expired - Fee Related CN103474312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310408224.1A CN103474312B (zh) 2013-09-09 2013-09-09 一种行波管夹持杆及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310408224.1A CN103474312B (zh) 2013-09-09 2013-09-09 一种行波管夹持杆及其制备方法

Publications (2)

Publication Number Publication Date
CN103474312A true CN103474312A (zh) 2013-12-25
CN103474312B CN103474312B (zh) 2016-08-10

Family

ID=49799116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310408224.1A Expired - Fee Related CN103474312B (zh) 2013-09-09 2013-09-09 一种行波管夹持杆及其制备方法

Country Status (1)

Country Link
CN (1) CN103474312B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538933A (zh) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 一种行波管夹持杆的制备方法
CN114864360A (zh) * 2022-05-17 2022-08-05 电子科技大学 一种超宽带螺旋线行波管及其螺旋线慢波结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264842A (en) * 1977-10-28 1981-04-28 Elettronica S.P.A. Helix type traveling-wave tubes with auxiliary selective shielding provided by conductive elements applied upon dielectric supports
CN1088898A (zh) * 1992-12-28 1994-07-06 有限会社亚道陶瓷研究所 以金属作骨架的陶瓷质烧结制品
EP0702388A1 (en) * 1994-08-17 1996-03-20 Kabushiki Kaisha Toshiba Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly
JP2000215819A (ja) * 1999-01-22 2000-08-04 Nec Corp 進行波管
CN1281235A (zh) * 1999-07-12 2001-01-24 三菱电机株式会社 绝缘操作杆及其制造方法
US20060097669A1 (en) * 2004-11-08 2006-05-11 Nec Microwave Tube, Ltd. Electron tube
CN101533750A (zh) * 2009-04-27 2009-09-16 安徽华东光电技术研究所 一种宽频带毫米波行波管慢波***的有效散热结构及其实现方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264842A (en) * 1977-10-28 1981-04-28 Elettronica S.P.A. Helix type traveling-wave tubes with auxiliary selective shielding provided by conductive elements applied upon dielectric supports
CN1088898A (zh) * 1992-12-28 1994-07-06 有限会社亚道陶瓷研究所 以金属作骨架的陶瓷质烧结制品
EP0702388A1 (en) * 1994-08-17 1996-03-20 Kabushiki Kaisha Toshiba Slow-wave circuit assembly for traveling-wave tube and method of manufacturing a slow-wave circuit assembly
JP2000215819A (ja) * 1999-01-22 2000-08-04 Nec Corp 進行波管
CN1281235A (zh) * 1999-07-12 2001-01-24 三菱电机株式会社 绝缘操作杆及其制造方法
US20060097669A1 (en) * 2004-11-08 2006-05-11 Nec Microwave Tube, Ltd. Electron tube
CN101533750A (zh) * 2009-04-27 2009-09-16 安徽华东光电技术研究所 一种宽频带毫米波行波管慢波***的有效散热结构及其实现方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王洪潇: "氧化铝陶瓷与金属活性封接技术研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
肖清等: "V波段宽带螺旋线行波管的模拟研究", 《中国电子学会真空电子学分会第十九届学术年会论文集(上册)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538933A (zh) * 2020-11-24 2022-05-27 娄底市安地亚斯电子陶瓷有限公司 一种行波管夹持杆的制备方法
CN114538933B (zh) * 2020-11-24 2022-11-22 娄底市安地亚斯电子陶瓷有限公司 一种行波管夹持杆的制备方法
CN114864360A (zh) * 2022-05-17 2022-08-05 电子科技大学 一种超宽带螺旋线行波管及其螺旋线慢波结构

Also Published As

Publication number Publication date
CN103474312B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN103094646B (zh) 基片集成波导加载介质谐振器滤波器
CN104752820A (zh) 一种背腔缝隙天线阵列
CN103474312A (zh) 一种行波管夹持杆及其制备方法
CN103759864A (zh) 一种陶瓷封装结构及采用该陶瓷封装结构的压力敏感器件管壳
CN112259939A (zh) 一种可抑制鬼模振荡的波导输能窗及其制作方法
JP2011061290A (ja) マイクロストリップ線路−導波管変換器
CN103354199B (zh) 一种加脊微带线平面慢波结构
JP4628116B2 (ja) 導電率測定方法
EP3606295B1 (en) Electromagnetic field control member
CN203573934U (zh) 一种行波管陶瓷夹持杆
CN201838555U (zh) 一种应用钼铜镍合金的高频窗
CN102306599A (zh) 曲折加脊矩形槽波导慢波线
CN103474806B (zh) 采用低损耗陶瓷的毫米波信号传输端子的制备方法
Tan et al. Measurement of relative permittivity of LTCC ceramic at different temperatures
CN102509820A (zh) Tem模同轴介质陶瓷滤波器及其制作方法
EP3555952B1 (en) Method for making a composite substrate circulator component
JP4035024B2 (ja) 誘電定数測定法
CN102543632A (zh) 一种用于x波段空间行波管的输能窗
Strycharz et al. 3D printed circular and rectangular waveguide mode converters
CN103414006A (zh) 超薄型无源无线声表面波传感器
Yang et al. Passive wireless sensors fabricated by spark plasma sintering for ultra-high temperature measurements
CN103985941A (zh) 基于石墨烯的磁可调法拉第式隔离器
Kory et al. Microfabricated 94 GHz TWT
CN108461451B (zh) 封接结构及其制备方法
CN207265226U (zh) 高辐射效率的基片集成介质谐振器天线阵列

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810

Termination date: 20210909