CN103433060B - Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application - Google Patents

Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application Download PDF

Info

Publication number
CN103433060B
CN103433060B CN201310371019.2A CN201310371019A CN103433060B CN 103433060 B CN103433060 B CN 103433060B CN 201310371019 A CN201310371019 A CN 201310371019A CN 103433060 B CN103433060 B CN 103433060B
Authority
CN
China
Prior art keywords
core
composite photocatalyst
znin
shell type
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310371019.2A
Other languages
Chinese (zh)
Other versions
CN103433060A (en
Inventor
袁文辉
夏自龙
李莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201310371019.2A priority Critical patent/CN103433060B/en
Publication of CN103433060A publication Critical patent/CN103433060A/en
Application granted granted Critical
Publication of CN103433060B publication Critical patent/CN103433060B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)

Abstract

The invention discloses a preparation method and an application of a core-shell TiO2/ZnIn2S4 composite photocatalyst. The preparation method comprises the following steps: performing ultrasonic dispersion on TiO2 in an ethanol solvent; adding zinc chloride and indium nitrate into the ethanol solvent, and stirring to dissolve; mixing the two systems, and adding thioacetamide; transferring the mixed system into a high pressure kettle to react; performing vacuum filtration, washing, drying and grinding on a product after the reaction is finished to obtain the core-shell TiO2/ZnIn2S4 composite photocatalyst. According to the method, the core-shell TiO2/ZnIn2S4 composite photocatalyst is prepared in one step by adopting a solvothermal synthesis method, the catalyst is wide in visible light response range and high in photocatalysis activity, is applicable to organic dye wastewater degradation, and can be used for degrading methylene blue-containing wastewater in the field of solar energy transformation and utilization and environment management.

Description

核-壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application

技术领域 technical field

本发明涉及一种光催化剂,特别是涉及一种核‐壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用;属于新型结构光催化材料技术领域,用于降解有机染料废水。  The invention relates to a photocatalyst, in particular to a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst and its preparation method and application; it belongs to the technical field of new structured photocatalytic materials and is used for degrading organic dye wastewater.

背景技术 Background technique

随着全球能源紧缺和环境污染等问题的出现,新型能源的开发和利用成为当今时代倍受关注的主题。太阳能由于其取之不尽、洁净无污染、可再生等优点,所以利用半导体光催化剂将光能转化为电能和化学能已成为广大学者研究的热点。  With the emergence of problems such as global energy shortage and environmental pollution, the development and utilization of new energy sources has become a topic of great concern in today's era. Due to its inexhaustible, clean, non-polluting, and renewable advantages, solar energy has become a hot topic for scholars to use semiconductor photocatalysts to convert light energy into electrical energy and chemical energy. the

ZnIn2S4是一种十分重要的具有可见光响应性能的半导体材料,其禁带宽度只有约2.3eV,这也使得它能够高效的吸收利用太阳能。在过去的十几年中,ZnIn2S4己被广泛用于可见光下光催化分解水制氢以及光催化降解水或空气中有机、无机污染物的研究中。然而,作为一种光催化剂ZnIn2S4在应用中也存在光催化量子效率较低的问题。为了提高ZnIn2S4的光催化量子效率,科研作者做出了许多探索,如通过控制形貌来达到改变ZnIn2S4纳米颗粒的表面结构;将ZnIn2S4颗粒负载于石墨烯或多层碳纳米管上达到均匀分散的ZnIn2S4颗粒;掺杂过渡金属离子以及将两种半导体复合以期达到光生电荷的有效分离,从而提高ZnIn2S4的量子效率。  ZnIn 2 S 4 is a very important semiconductor material with visible light response performance, and its forbidden band width is only about 2.3eV, which also enables it to absorb and utilize solar energy efficiently. In the past ten years, ZnIn 2 S 4 has been widely used in the research of photocatalytic water splitting to produce hydrogen and photocatalytic degradation of organic and inorganic pollutants in water or air under visible light. However, as a photocatalyst, ZnIn 2 S 4 also has the problem of low photocatalytic quantum efficiency in its application. In order to improve the photocatalytic quantum efficiency of ZnIn 2 S 4 , researchers have made many explorations, such as changing the surface structure of ZnIn 2 S 4 nanoparticles by controlling the morphology; loading ZnIn 2 S 4 particles on graphene or poly The uniform dispersion of ZnIn 2 S 4 particles on the layer of carbon nanotubes; the doping of transition metal ions and the compounding of the two semiconductors in order to achieve the effective separation of photogenerated charges, thereby improving the quantum efficiency of ZnIn 2 S 4 .

发明内容 Contents of the invention

本发明的目的在于提供一种宽可见光响应范围、高光催化活性的核‐壳型TiO2/ZnIn2S4复合光催化剂。  The purpose of the present invention is to provide a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst with wide visible light response range and high photocatalytic activity.

本发明另一目的在于提供上述可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法。  Another object of the present invention is to provide a method for preparing the above-mentioned visible light responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst.

本发明还有一目的在于提供核‐壳型TiO2/ZnIn2S4复合光催化剂在降解有机染料废水中的应用。  Another object of the present invention is to provide the application of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in degrading organic dye wastewater.

本发明通过溶剂热法将ZnIn2S4生长在TiO2表面上,形成特殊的核‐壳结构复合光催化剂,两者界面之间的异质结有利于光生电子对的传递,降低其光生电子与空穴的复合率,从而提高催化剂的光催化效率。  In the present invention, ZnIn 2 S 4 is grown on the surface of TiO 2 by solvothermal method to form a special core-shell structure composite photocatalyst. The recombination rate with holes, thereby improving the photocatalytic efficiency of the catalyst.

本发明的目的通过如下技术方案实现:  The purpose of the present invention is achieved through the following technical solutions:

一种核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:  A preparation method of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:

(1)将TiO2在乙醇溶剂中超声分散,制得悬浮液;每3mL乙醇溶剂加入1mg~4mg的TiO2;  (1) ultrasonically disperse TiO 2 in ethanol solvent to obtain a suspension; add 1 mg to 4 mg of TiO 2 for every 3 mL of ethanol solvent;

(2)将氯化锌和硝酸铟在乙醇溶剂中搅拌溶解;  (2) zinc chloride and indium nitrate are stirred and dissolved in ethanol solvent;

(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入硫代乙酰胺并搅拌均匀;控制氯化锌、氯化铟与硫代乙酰胺的摩尔比为1:2:6;  (3) the suspension that step (1) is made is mixed with the solution that step (2) makes, add thioacetamide and stir evenly; Control the mol ratio of zinc chloride, indium chloride and thioacetamide to be 1:2:6;

(4)将步骤(3)的反应体系转移至高压釜中进行溶剂热反应;控制反应温度为160‐200℃,反应时间为6‐12小时;  (4) Transfer the reaction system of step (3) to an autoclave for solvothermal reaction; control the reaction temperature to be 160-200°C, and the reaction time to be 6-12 hours;

(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,干燥,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。  (5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry, and grind to obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst.

优选地,步骤(1)中超声处理的频率为40‐45KHz,功率为50‐75W,时间为10‐15分钟。步骤(3)中,搅拌的时间为20‐40分钟。所述干燥温度为60‐80℃,干燥时间为4‐6小时。  Preferably, the frequency of the ultrasonic treatment in step (1) is 40-45KHz, the power is 50-75W, and the time is 10-15 minutes. In step (3), the time of stirring is 20-40 minutes. The drying temperature is 60-80°C, and the drying time is 4-6 hours. the

一种核‐壳型TiO2/ZnIn2S4复合光催化剂,由上述制备方法制得。  A core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst is prepared by the above preparation method.

所述的核‐壳型TiO2/ZnIn2S4复合光催化剂在有机染料废水降解中的应用。  Application of the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in the degradation of organic dye wastewater.

相对于现有技术,本发明具有如下优点和有益效果:  Compared with prior art, the present invention has following advantage and beneficial effect:

(1)本发明通过溶剂热法将ZnIn2S4生长在TiO2表面上,形成特殊的核‐壳结构复合光催化剂,两者界面之间的异质结有利于光生电子对的传递,降低其光生电子与空穴的复合率,从而提高催化剂的光催化效率。  (1) The present invention grows ZnIn 2 S 4 on the surface of TiO 2 by solvothermal method to form a special core-shell structure composite photocatalyst, and the heterojunction between the two interfaces is conducive to the transfer of photogenerated electron pairs, reducing The recombination rate of photogenerated electrons and holes can improve the photocatalytic efficiency of the catalyst.

(2)通过溶剂热反应,核‐壳型TiO2/ZnIn2S4复合光催化剂的形成一步完成,制备工艺简单、成本低廉,有利于大规模制备。  (2) Through solvothermal reaction, the formation of core-shell TiO 2 /ZnIn 2 S 4 composite photocatalyst is completed in one step. The preparation process is simple and the cost is low, which is conducive to large-scale preparation.

(3)本发明复合光催化剂具有宽可见光响应范围、高光催化活性,适用于太阳能转化利用和环境治理等领域,如含有亚甲基蓝有机染料工业废水的降解。  (3) The composite photocatalyst of the present invention has a wide visible light response range and high photocatalytic activity, and is suitable for the fields of solar energy conversion and utilization and environmental treatment, such as the degradation of industrial wastewater containing methylene blue organic dyes. the

附图说明 Description of drawings

图1是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的X射线衍射图;  Fig. 1 is the X-ray diffraction figure of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1;

图2是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的紫外‐可见吸收光谱图;  Fig. 2 is the ultraviolet-visible absorption spectrogram of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in embodiment 1;

图3是实施例1中制备的核‐壳型TiO2/ZnIn2S4复合光催化剂透射电镜图;  Fig. 3 is the transmission electron micrograph of the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst prepared in embodiment 1;

图4是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率随降解时间的变化曲线。  Fig. 4 is the variation curve of the degradation rate of methylene blue with the degradation time of TiO 2 and prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1.

具体实施方式 Detailed ways

为更好地理解本发明,下面结合附图和实施例对本发明作进一步的描述,但是本发明的实施方式不限于此。  In order to better understand the present invention, the present invention will be further described below in conjunction with the accompanying drawings and examples, but the embodiments of the present invention are not limited thereto. the

实施例1  Example 1

一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:  A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:

(1)将20mg TiO2在30ml乙醇溶剂中超声分散10分钟,超声处理的频率为40KHz,功率为50W;  (1) Ultrasonic disperse 20mg TiO2 in 30ml ethanol solvent for 10 minutes, the frequency of ultrasonic treatment is 40KHz, and the power is 50W;

(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;  (2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;

(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌20分钟;  (3) The suspension obtained in step (1) was mixed with the solution obtained in step (2), and 12 mmol thioacetamide was added and stirred at a speed of 500 r/min for 20 minutes;

(4)将步骤(3)的反应体系转移至高压釜中,160℃条件进行反应6小时;  (4) Transfer the reaction system of step (3) to an autoclave, and react at 160°C for 6 hours;

(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,60℃条件下干燥6小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。  (5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 60°C for 6 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .

图1是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的X射线衍射图。由图1可知,TiO2/ZnIn2S4样品的衍射特征峰中可以观察到TiO2和ZnIn2S4两种物质的特征峰,说明成功制备了TiO2/ZnIn2S4复合光催化剂;由图2可知,TiO2/ZnIn2S4在可见光范围内有强烈的吸光度,说明TiO2/ZnIn2S4具有可见光催化活性;从图3透射电镜照片中可以观察到明显的核‐壳结构,证实了成功制得核‐壳型TiO2/ZnIn2S4复合光催化剂。  Fig. 1 is the X-ray diffraction pattern of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1. It can be seen from Figure 1 that the characteristic peaks of TiO 2 and ZnIn 2 S 4 can be observed in the diffraction characteristic peaks of the TiO 2 /ZnIn 2 S 4 sample, indicating that the TiO 2 /ZnIn 2 S 4 composite photocatalyst was successfully prepared; It can be seen from Figure 2 that TiO 2 /ZnIn 2 S 4 has a strong absorbance in the visible light range, indicating that TiO 2 /ZnIn 2 S 4 has visible light catalytic activity; from the transmission electron microscope photos in Figure 3, an obvious core-shell structure can be observed , confirmed the successful preparation of core-shell TiO 2 /ZnIn 2 S 4 composite photocatalysts.

实施例2  Example 2

一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:  A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:

(1)将40mg TiO2在30ml乙醇溶剂中超声分散12分钟;超声处理的频率为40KHz,功率为50W;  (1) Ultrasonic dispersion of 40mg TiO2 in 30ml ethanol solvent for 12 minutes; the frequency of ultrasonic treatment is 40KHz, and the power is 50W;

(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;  (2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;

(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌30分钟;  (3) The suspension prepared in step (1) was mixed with the solution prepared in step (2), and 12 mmol thioacetamide was added and stirred at a speed of 500 r/min for 30 minutes;

(4)将步骤(3)的反应体系转移至高压釜中,180℃条件进行反应8小时;  (4) Transfer the reaction system of step (3) to an autoclave, and react at 180°C for 8 hours;

(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,70℃条件下干燥5小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。  (5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 70°C for 5 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .

本实施例中TiO2/ZnIn2S4复合光催化剂的X射线衍射图、可见光催化活性和核‐壳结构与图1‐3相似。  The X-ray diffraction pattern, visible light catalytic activity and core-shell structure of the TiO 2 /ZnIn 2 S 4 composite photocatalyst in this example are similar to those in Figure 1-3.

实施例3  Example 3

一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:  A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:

(1)将80mg TiO2在30ml乙醇溶剂中超声分散15分钟;超声处理的频率为45KHz,功率为75W;  (1) Ultrasonic disperse 80mg TiO2 in 30ml ethanol solvent for 15 minutes; the frequency of ultrasonic treatment is 45KHz, and the power is 75W;

(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;  (2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;

(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌40分钟;  (3) The suspension obtained in step (1) was mixed with the solution obtained in step (2), and 12 mmol thioacetamide was added and stirred at a speed of 500 r/min for 40 minutes;

(4)将步骤(3)的反应体系转移至高压釜中,200℃条件进行反应12小时;  (4) Transfer the reaction system of step (3) to an autoclave, and react at 200°C for 12 hours;

(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,80℃条件下干燥4小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。  (5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 80°C for 4 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .

本实施例中TiO2/ZnIn2S4复合光催化剂的X射线衍射图、可见光催化活性和核‐壳结构与图1‐3相似。  The X-ray diffraction pattern, visible light catalytic activity and core-shell structure of the TiO 2 /ZnIn 2 S 4 composite photocatalyst in this example are similar to those in Figure 1-3.

应用实施例  Application example

使用制备的核‐壳型TiO2/ZnIn2S4复合光催化剂光降解有机染料:以亚甲基蓝水溶液为模拟污水来评价该催化剂的光催化活性。实验条件设置为:(1)将实施例1中制备的20mg核‐壳型TiO2/ZnIn2S4复合光催化剂分散到120mL浓度为20mg·L‐1的亚甲基蓝水溶液中,光照反应前,先将悬浮液置于黑暗环境中磁力搅拌1h,以使体系达到吸附/解吸平衡;(2)打开模拟太阳光源,每次光照30分钟后取样,离心,检测溶液中亚甲基蓝溶液的紫外‐可见吸光度值的变化。  Photodegradation of organic dyes using the prepared core‐shell TiO 2 /ZnIn 2 S 4 composite photocatalyst: The photocatalytic activity of the catalyst was evaluated by using methylene blue aqueous solution as simulated sewage. The experimental conditions were set as follows: (1) Disperse 20 mg of the core-shell TiO 2 /ZnIn 2 S 4 composite photocatalyst prepared in Example 1 into 120 mL of methylene blue aqueous solution with a concentration of 20 mg·L -1 . Place the suspension in a dark environment and stir magnetically for 1 hour to make the system reach adsorption/desorption equilibrium; (2) Turn on the simulated sunlight light source, take samples after 30 minutes of each illumination, centrifuge, and detect the UV-visible absorbance value of the methylene blue solution in the solution The change.

图4是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率随光照时间的变化曲线。结合图4可知,在可见光照射下,TiO2对亚甲基蓝降解没有催化活性;光照4小时后,ZnIn2S4可降解71%的亚甲基蓝,而核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率可达92%,极大地提高了TiO2和ZnIn2S4的可见光催化活性。  Fig. 4 is the variation curve of the degradation rate of methylene blue by TiO 2 and prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1 as a function of light time. Combined with Figure 4, it can be seen that under visible light irradiation, TiO 2 has no catalytic activity for the degradation of methylene blue; after 4 hours of light, ZnIn 2 S 4 can degrade 71% of methylene blue, and the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst The degradation rate of methylene blue can reach 92%, which greatly improves the visible light catalytic activity of TiO 2 and ZnIn 2 S 4 .

Claims (6)

1.一种核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,其特征在于包括以下步骤:1. A core-shell type TiO 2 /ZnIn 2 S The preparation method of composite photocatalyst is characterized in that comprising the following steps: (1)将TiO2在乙醇溶剂中超声分散,制得悬浮液;每3mL乙醇溶剂加入1mg~4mg的TiO2(1) ultrasonically disperse TiO 2 in ethanol solvent to obtain a suspension; add 1 mg to 4 mg of TiO 2 for every 3 mL of ethanol solvent; (2)将氯化锌和硝酸铟在乙醇溶剂中搅拌溶解;(2) Zinc chloride and indium nitrate are stirred and dissolved in ethanol solvent; (3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入硫代乙酰胺并搅拌均匀;控制氯化锌、氯化铟与硫代乙酰胺的摩尔比为1:2:6;(3) the suspension that step (1) is made is mixed with the solution that step (2) makes, add thioacetamide and stir evenly; Control the mol ratio of zinc chloride, indium chloride and thioacetamide to be 1:2:6; (4)将步骤(3)的反应体系转移至高压釜中进行溶剂热反应;控制反应温度为160‐200℃,反应时间为6‐12小时;(4) Transfer the reaction system of step (3) to an autoclave for solvothermal reaction; control the reaction temperature to be 160-200°C, and the reaction time to be 6-12 hours; (5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,干燥,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。(5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry, and grind to obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst. 2.根据权利要求1所述的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,其特征在于:步骤(1)中超声处理的频率为40‐45KHz,功率为50‐75W,时间为10‐15分钟。2. The preparation method of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst according to claim 1, characterized in that: the frequency of ultrasonic treatment in step (1) is 40-45KHz, and the power is 50-75W , the time is 10‐15 minutes. 3.根据权利要求1所述的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,其特征在于:步骤(3)中,搅拌的时间为20‐40分钟。3. The preparation method of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst according to claim 1, characterized in that: in step (3), the stirring time is 20-40 minutes. 4.根据权利要求1所述的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,其特征在于:所述干燥温度为60‐80℃,干燥时间为4‐6小时。4. The preparation method of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst according to claim 1, characterized in that: the drying temperature is 60-80°C, and the drying time is 4-6 hours. 5.一种核‐壳型TiO2/ZnIn2S4复合光催化剂,其特征在于:其由权利要求1‐4任意一项所述的制备方法制得。5. A core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, characterized in that it is prepared by the preparation method described in any one of claims 1-4. 6.权利要求5所述的核‐壳型TiO2/ZnIn2S4复合光催化剂在降解有机染料废水中的应用。6. Application of the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst according to claim 5 in degrading organic dye wastewater.
CN201310371019.2A 2013-08-22 2013-08-22 Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application Active CN103433060B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310371019.2A CN103433060B (en) 2013-08-22 2013-08-22 Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310371019.2A CN103433060B (en) 2013-08-22 2013-08-22 Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application

Publications (2)

Publication Number Publication Date
CN103433060A CN103433060A (en) 2013-12-11
CN103433060B true CN103433060B (en) 2014-12-03

Family

ID=49686829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310371019.2A Active CN103433060B (en) 2013-08-22 2013-08-22 Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application

Country Status (1)

Country Link
CN (1) CN103433060B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552073A (en) * 2017-09-13 2018-01-09 重庆大学 A kind of MoS2Preparation method of AIZS nano composite materials and products thereof and application

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741141A (en) * 2015-03-23 2015-07-01 湖南理工学院 Preparation method of N-doped graphene-CdIn2S4 nanocomposite material
CN104843769B (en) * 2015-04-09 2016-08-17 首都师范大学 By the controlled method preparing indium sulfide ultra-thin two-dimension nano material of metal ion and the purposes of this material
CN104923259B (en) * 2015-04-29 2017-03-29 大连民族学院 Noble metal/ZnIn2S4/TiO2Nano-heterogeneous structure photochemical catalyst and preparation method
CN105056931B (en) * 2015-08-28 2017-03-08 齐鲁工业大学 A zinc-magnesium-indium composite oxide with near-infrared photocatalytic activity and its preparation method and application
CN106268868B (en) * 2016-08-24 2018-11-06 江苏大学 A kind of TiO2Hollow ball surface grows ZnIn2S4Composite photo-catalyst preparation method and applications
CN107866234B (en) * 2016-09-27 2020-06-23 中国地质大学(北京) High-activity ZnIn2S4/TiO2Preparation method of Z-system catalyst material
CN108525677B (en) * 2018-03-29 2020-12-01 中南民族大学 Cerium dioxide/indium zinc sulfide nanosheet composite catalyst and application thereof in visible light catalysis of CO2Use in transformation
CN108404934A (en) * 2018-04-13 2018-08-17 西北师范大学 A kind of preparation and application of the hydridization titanium dioxide optical catalyst of Z-type structure
CN109621979B (en) * 2018-12-13 2021-09-21 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of ZnO/zinc indium sulfide nano heterojunction
CN109589989B (en) * 2018-12-19 2021-11-23 江苏大学 ZnIn2S4Nanosheet-wrapped beta-Bi2O3Core-shell heterogeneous composite photocatalyst and preparation method and application thereof
CN109847766A (en) * 2019-01-31 2019-06-07 中国地质大学(北京) A coplanar ZnIn2S4/WO3 Z-structure catalyst material
CN110026207B (en) * 2019-05-06 2022-04-29 青岛科技大学 CaTiO3@ZnIn2S4 nanocomposite and its preparation method and application
CN110787812B (en) * 2019-09-29 2023-04-18 武汉理工大学 Hole assistant Ti (IV) and electron assistant Ni (OH) 2 Synergistically modified ZnIn 2 S 4 Method for preparing photocatalyst
CN111111696B (en) * 2019-12-31 2022-07-01 中南民族大学 Solvothermal method for synthesizing sulfide-TiO with regular morphology in one pot2Method for compounding nanostructures and use thereof
CN111729675B (en) * 2020-05-28 2022-12-06 上海大学 ZIF-67-DERIVED Co 3 S 4 And ZnIn 2 S 4 Preparation method and application of formed composite photocatalyst
CN112774695B (en) * 2021-01-28 2021-12-17 南京大学 A direct Z-type heterojunction photocatalyst that can be used for water splitting and preparation method thereof
CN113663693B (en) * 2021-07-20 2023-09-15 苏州科技大学 A preparation method of indium zinc sulfide-titanium dioxide composite material and its application in producing hydrogen peroxide for wastewater treatment
CN114130408B (en) * 2021-12-17 2023-03-24 公元股份有限公司 Z-type alpha-Fe 2 O 3 /ZnIn 2 S 4 Preparation method and application of composite photocatalyst
CN114682272A (en) * 2022-05-05 2022-07-01 东南大学 A kind of TiO2-based composite photocatalyst and preparation method thereof
CN116899589A (en) * 2023-06-09 2023-10-20 常州大学 An egg yolk and egg shell structure composite micro-nano photocatalytic material for degrading antibiotics and its preparation method and application
CN116851007B (en) * 2023-07-11 2024-09-17 山东交通学院 Preparation method and magnetic field assisted photocatalysis application of carbon nanotube-indium zinc sulfide nanosheet composite material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407147B (en) * 2011-09-19 2016-05-11 湖南理工学院 ZnIn2S4The preparation method of-graphene composite photocatalyst and application
CN102795661B (en) * 2012-09-11 2013-12-25 黑龙江大学 A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound
CN102836730A (en) * 2012-09-28 2012-12-26 黑龙江省科学院石油化学研究院 A kind of preparation method of porous ZnIn2S4 photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552073A (en) * 2017-09-13 2018-01-09 重庆大学 A kind of MoS2Preparation method of AIZS nano composite materials and products thereof and application

Also Published As

Publication number Publication date
CN103433060A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103433060B (en) Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application
CN102407147B (en) ZnIn2S4The preparation method of-graphene composite photocatalyst and application
CN105032468B (en) A kind of Cu2O‑TiO2/g‑C3N4Ternary complex and its methods for making and using same
WO2021068570A1 (en) Composite photocatalyst for degrading tetracycline, preparation method therefor and use thereof
CN108525667A (en) Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide
CN103638922B (en) Preparation method of mesoporous tungsten trioxide/reduction-oxidation graphene composite photocatalyst
CN103191725B (en) BiVO4/Bi2WO6 compound semiconductor material and its hydrothermal preparation method and its application
CN110639555A (en) CdS/CdIn with visible light response2S4Preparation method and application of composite nano-structured photocatalyst
CN103551136B (en) Attapulgite loaded quasi-one-dimensional titanium dioxide composite photocatalyst and preparation method thereof
CN103599802A (en) Preparation method of silver phosphate/graphene nanocomposite
CN111203234B (en) CdIn2S4Nanoblock/SnIn4S8Preparation method of difunctional composite photocatalyst with sheet stacking structure
CN104971762A (en) Preparation method and application of a g-C3N4/CaIn2S4 visible light composite photocatalyst
CN103272622B (en) Preparation method of silver phosphate photocatalyst
CN107913675B (en) Metal organic framework modified tin sulfide composite photocatalyst and its preparation method and application
CN106944074A (en) A kind of visible-light response type composite photo-catalyst and its preparation method and application
CN103933967A (en) Biomimetic synthesis method of nanometer bismuth molybdate visible-light-induced photocatalyst
CN115301267A (en) A porous tubular carbon nitride catalyst suitable for visible light catalysis and its preparation method and application
CN103785429A (en) Silver phosphate/graphene/titanium dioxide nano composite and preparation method thereof
CN108940349B (en) Method for removing dye pollutants by silver chromate/sulfur-doped carbon nitride Z-type photocatalyst
CN108102111B (en) Cobalt ion doped metal organic framework material and preparation method thereof
CN110302826A (en) Composite photocatalyst of bismuth subnitrate and bismuth oxyiodide and its preparation method and application
CN106040276A (en) A kind of highly active mpg‑C3N4/BiVO4/TiO2 heterojunction photocatalyst and its preparation method
CN110586149B (en) Bismuth molybdate/titanium carbide heterojunction two-dimensional photocatalytic material and preparation method and application thereof
CN108435250A (en) A kind of recyclable carbon nitride photocatalyst and preparation method for hydrogen manufacturing
CN107983377A (en) Silver/iodate silver composite material of cadmium tungstate modification and its preparation method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant