CN103433060A - Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application - Google Patents
Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application Download PDFInfo
- Publication number
- CN103433060A CN103433060A CN2013103710192A CN201310371019A CN103433060A CN 103433060 A CN103433060 A CN 103433060A CN 2013103710192 A CN2013103710192 A CN 2013103710192A CN 201310371019 A CN201310371019 A CN 201310371019A CN 103433060 A CN103433060 A CN 103433060A
- Authority
- CN
- China
- Prior art keywords
- znin
- tio
- core
- preparation
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 45
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000011258 core-shell material Substances 0.000 title abstract description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title abstract description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 54
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 10
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims abstract description 8
- 235000005074 zinc chloride Nutrition 0.000 claims abstract description 8
- 239000011592 zinc chloride Substances 0.000 claims abstract description 8
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000725 suspension Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000000967 suction filtration Methods 0.000 claims description 5
- 238000003828 vacuum filtration Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 230000000593 degrading effect Effects 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 239000010919 dye waste Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 abstract description 10
- 229960000907 methylthioninium chloride Drugs 0.000 abstract description 10
- 230000001699 photocatalysis Effects 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract description 9
- 238000006731 degradation reaction Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 6
- 238000004729 solvothermal method Methods 0.000 abstract description 5
- 239000002351 wastewater Substances 0.000 abstract description 5
- 239000003054 catalyst Substances 0.000 abstract description 4
- 230000004298 light response Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 230000009466 transformation Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 231100001240 inorganic pollutant Toxicity 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了核-壳型TiO2/ZnIn2S4复合光催化剂的制备方法与应用。该制备方法是将TiO2在乙醇溶剂中超声分散,将氯化锌和硝酸铟加入到乙醇溶剂中搅拌溶解,然后将两种体系混合后加入硫代乙酰胺,之后将混合体系转移至高压釜中进行反应,反应结束后,产物经真空抽滤、洗涤、干燥、研磨,获得核-壳型TiO2/ZnIn2S4复合光催化剂。本发明采用溶剂热合成方法一步制备了核-壳型TiO2/ZnIn2S4复合光催化剂,该催化剂具有宽可见光响应范围、高光催化活性,适用于有机染料废水降解中的应用,可用于太阳能转化利用和环境治理领域中含亚甲基蓝废水的降解。
The invention discloses a preparation method and application of a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst. The preparation method is to ultrasonically disperse TiO2 in an ethanol solvent, add zinc chloride and indium nitrate to the ethanol solvent and stir to dissolve, then mix the two systems and add thioacetamide, and then transfer the mixed system to an autoclave After the reaction, the product was vacuum filtered, washed, dried and ground to obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst. The present invention adopts a solvothermal synthesis method to prepare a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in one step. The catalyst has a wide visible light response range and high photocatalytic activity, and is suitable for the application in the degradation of organic dye wastewater and can be used for solar energy Degradation of methylene blue-containing wastewater in the fields of transformation, utilization and environmental governance.
Description
技术领域technical field
本发明涉及一种光催化剂,特别是涉及一种核‐壳型TiO2/ZnIn2S4复合光催化剂及其制备方法与应用;属于新型结构光催化材料技术领域,用于降解有机染料废水。The invention relates to a photocatalyst, in particular to a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst and its preparation method and application; it belongs to the technical field of new structured photocatalytic materials and is used for degrading organic dye wastewater.
背景技术Background technique
随着全球能源紧缺和环境污染等问题的出现,新型能源的开发和利用成为当今时代倍受关注的主题。太阳能由于其取之不尽、洁净无污染、可再生等优点,所以利用半导体光催化剂将光能转化为电能和化学能已成为广大学者研究的热点。With the emergence of problems such as global energy shortage and environmental pollution, the development and utilization of new energy sources has become a topic of great concern in today's era. Due to its inexhaustible, clean, non-polluting, and renewable advantages, solar energy has become a research hotspot for scholars by using semiconductor photocatalysts to convert light energy into electrical energy and chemical energy.
ZnIn2S4是一种十分重要的具有可见光响应性能的半导体材料,其禁带宽度只有约2.3eV,这也使得它能够高效的吸收利用太阳能。在过去的十几年中,ZnIn2S4己被广泛用于可见光下光催化分解水制氢以及光催化降解水或空气中有机、无机污染物的研究中。然而,作为一种光催化剂ZnIn2S4在应用中也存在光催化量子效率较低的问题。为了提高ZnIn2S4的光催化量子效率,科研作者做出了许多探索,如通过控制形貌来达到改变ZnIn2S4纳米颗粒的表面结构;将ZnIn2S4颗粒负载于石墨烯或多层碳纳米管上达到均匀分散的ZnIn2S4颗粒;掺杂过渡金属离子以及将两种半导体复合以期达到光生电荷的有效分离,从而提高ZnIn2S4的量子效率。ZnIn 2 S 4 is a very important semiconductor material with visible light response performance, and its forbidden band width is only about 2.3eV, which also enables it to absorb and utilize solar energy efficiently. In the past ten years, ZnIn 2 S 4 has been widely used in the research of photocatalytic water splitting to produce hydrogen and photocatalytic degradation of organic and inorganic pollutants in water or air under visible light. However, as a photocatalyst, ZnIn 2 S 4 also has the problem of low photocatalytic quantum efficiency in its application. In order to improve the photocatalytic quantum efficiency of ZnIn 2 S 4 , researchers have made many explorations, such as changing the surface structure of ZnIn 2 S 4 nanoparticles by controlling the morphology; loading ZnIn 2 S 4 particles on graphene or poly The uniform dispersion of ZnIn 2 S 4 particles on the layer of carbon nanotubes; the doping of transition metal ions and the compounding of the two semiconductors in order to achieve the effective separation of photogenerated charges, thereby improving the quantum efficiency of ZnIn 2 S 4 .
发明内容Contents of the invention
本发明的目的在于提供一种宽可见光响应范围、高光催化活性的核‐壳型TiO2/ZnIn2S4复合光催化剂。The purpose of the present invention is to provide a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst with wide visible light response range and high photocatalytic activity.
本发明另一目的在于提供上述可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法。Another object of the present invention is to provide a method for preparing the above-mentioned visible light responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst.
本发明还有一目的在于提供核‐壳型TiO2/ZnIn2S4复合光催化剂在降解有机染料废水中的应用。Another object of the present invention is to provide the application of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in degrading organic dye wastewater.
本发明通过溶剂热法将ZnIn2S4生长在TiO2表面上,形成特殊的核‐壳结构复合光催化剂,两者界面之间的异质结有利于光生电子对的传递,降低其光生电子与空穴的复合率,从而提高催化剂的光催化效率。In the present invention, ZnIn 2 S 4 is grown on the surface of TiO 2 by solvothermal method to form a special core-shell structure composite photocatalyst. The recombination rate with holes, thereby improving the photocatalytic efficiency of the catalyst.
本发明的目的通过如下技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
一种核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:A preparation method of core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:
(1)将TiO2在乙醇溶剂中超声分散,制得悬浮液;每3mL乙醇溶剂加入TiO2(lmg~4mg);(1) Ultrasonic disperse TiO 2 in ethanol solvent to obtain a suspension; add TiO 2 (1 mg to 4 mg) per 3 mL of ethanol solvent;
(2)将氯化锌和硝酸铟在乙醇溶剂中搅拌溶解;(2) Zinc chloride and indium nitrate are stirred and dissolved in ethanol solvent;
(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入硫代乙酰胺并搅拌均匀;控制氯化锌、氯化铟与硫代乙酰胺的摩尔比为1:2:6;(3) the suspension that step (1) is made is mixed with the solution that step (2) makes, add thioacetamide and stir evenly; Control the mol ratio of zinc chloride, indium chloride and thioacetamide to be 1:2:6;
(4)将步骤(3)的反应体系转移至高压釜中进行溶剂热反应;控制反应温度为160‐200℃,反应时间为6‐12小时;(4) Transfer the reaction system of step (3) to an autoclave for solvothermal reaction; control the reaction temperature to be 160-200°C, and the reaction time to be 6-12 hours;
(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,干燥,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。(5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry, and grind to obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst.
优选地,步骤(1)中超声处理的频率为40‐45KHz,功率为50‐75W,时间为10‐15分钟。步骤(3)中,搅拌的时间为20‐40分钟。所述干燥温度为60‐80℃,干燥时间为4‐6小时。Preferably, the frequency of the ultrasonic treatment in step (1) is 40-45KHz, the power is 50-75W, and the time is 10-15 minutes. In step (3), the time of stirring is 20-40 minutes. The drying temperature is 60-80°C, and the drying time is 4-6 hours.
一种核‐壳型TiO2/ZnIn2S4复合光催化剂,由上述制备方法制得。A core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst is prepared by the above preparation method.
所述的核‐壳型TiO2/ZnIn2S4复合光催化剂在有机染料废水降解中的应用。Application of the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in the degradation of organic dye wastewater.
相对于现有技术,本发明具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明通过溶剂热法将ZnIn2S4生长在TiO2表面上,形成特殊的核‐壳结构复合光催化剂,两者界面之间的异质结有利于光生电子对的传递,降低其光生电子与空穴的复合率,从而提高催化剂的光催化效率。(1) The present invention grows ZnIn 2 S 4 on the surface of TiO 2 by solvothermal method to form a special core-shell structure composite photocatalyst, and the heterojunction between the two interfaces is conducive to the transfer of photogenerated electron pairs, reducing The recombination rate of photogenerated electrons and holes can improve the photocatalytic efficiency of the catalyst.
(2)通过溶剂热反应,核‐壳型TiO2/ZnIn2S4复合光催化剂的形成一步完成,制备工艺简单、成本低廉,有利于大规模制备。(2) Through solvothermal reaction, the formation of core-shell TiO 2 /ZnIn 2 S 4 composite photocatalyst is completed in one step. The preparation process is simple and the cost is low, which is conducive to large-scale preparation.
(3)本发明复合光催化剂具有宽可见光响应范围、高光催化活性,适用于太阳能转化利用和环境治理等领域,如含有亚甲基蓝有机染料工业废水的降解。(3) The composite photocatalyst of the present invention has a wide visible light response range and high photocatalytic activity, and is suitable for the fields of solar energy conversion and utilization and environmental treatment, such as the degradation of industrial wastewater containing methylene blue organic dyes.
附图说明Description of drawings
图1是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的X射线衍射图;Fig. 1 is the X-ray diffraction figure of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in
图2是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的紫外‐可见吸收光谱图;Fig. 2 is the ultraviolet-visible absorption spectrogram of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in
图3是实施例1中制备的核‐壳型TiO2/ZnIn2S4复合光催化剂透射电镜图;Fig. 3 is the transmission electron micrograph of the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst prepared in
图4是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率随降解时间的变化曲线。Fig. 4 is the variation curve of the degradation rate of methylene blue with the degradation time of TiO 2 and prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1.
具体实施方式Detailed ways
为更好地理解本发明,下面结合附图和实施例对本发明作进一步的描述,但是本发明的实施方式不限于此。In order to better understand the present invention, the present invention will be further described below in conjunction with the accompanying drawings and examples, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:
(1)将20mg TiO2在30ml乙醇溶剂中超声分散10分钟,超声处理的频率为40KHz,功率为50W;(1) Ultrasonic disperse 20mg TiO2 in 30ml ethanol solvent for 10 minutes, the frequency of ultrasonic treatment is 40KHz, and the power is 50W;
(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;(2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;
(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌20分钟;(3) Mix the suspension prepared in step (1) with the solution prepared in step (2), add 12 mmol thioacetamide and stir at a speed of 500 r/min for 20 minutes;
(4)将步骤(3)的反应体系转移至高压釜中,160℃条件进行反应6小时;(4) Transfer the reaction system of step (3) to an autoclave, and react at 160° C. for 6 hours;
(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,60℃条件下干燥6小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。(5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 60°C for 6 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .
图1是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂的X射线衍射图。由图1可知,TiO2/ZnIn2S4样品的衍射特征峰中可以观察到TiO2和ZnIn2S4两种物质的特征峰,说明成功制备了TiO2/ZnIn2S4复合光催化剂;由图2可知,TiO2/ZnIn2S4在可见光范围内有强烈的吸光度,说明TiO2/ZnIn2S4具有可见光催化活性;从图3透射电镜照片中可以观察到明显的核‐壳结构,证实了成功制得核‐壳型TiO2/ZnIn2S4复合光催化剂。Fig. 1 is the X-ray diffraction pattern of TiO 2 and the prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1. It can be seen from Figure 1 that the characteristic peaks of TiO 2 and ZnIn 2 S 4 can be observed in the diffraction characteristic peaks of the TiO 2 /ZnIn 2 S 4 sample, indicating that the TiO 2 /ZnIn 2 S 4 composite photocatalyst was successfully prepared; It can be seen from Figure 2 that TiO 2 /ZnIn 2 S 4 has a strong absorbance in the visible light range, indicating that TiO 2 /ZnIn 2 S 4 has visible light catalytic activity; from the transmission electron microscope photos in Figure 3, an obvious core-shell structure can be observed , confirmed the successful preparation of core-shell TiO 2 /ZnIn 2 S 4 composite photocatalysts.
实施例2Example 2
一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:
(1)将40mg TiO2在30ml乙醇溶剂中超声分散12分钟;超声处理的频率为40KHz,功率为50W;(1) Ultrasonic dispersion of 40mg TiO2 in 30ml ethanol solvent for 12 minutes; the frequency of ultrasonic treatment is 40KHz, and the power is 50W;
(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;(2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;
(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌30分钟;(3) Mix the suspension prepared in step (1) with the solution prepared in step (2), add 12 mmol thioacetamide and stir at a speed of 500 r/min for 30 minutes;
(4)将步骤(3)的反应体系转移至高压釜中,180℃条件进行反应8小时;(4) Transfer the reaction system of step (3) to an autoclave, and react at 180°C for 8 hours;
(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,70℃条件下干燥5小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。(5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 70°C for 5 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .
本实施例中TiO2/ZnIn2S4复合光催化剂的X射线衍射图、可见光催化活性和核‐壳结构与图1‐3相似。The X-ray diffraction pattern, visible light catalytic activity and core-shell structure of the TiO 2 /ZnIn 2 S 4 composite photocatalyst in this example are similar to those in Figure 1-3.
实施例3Example 3
一种可见光响应的核‐壳型TiO2/ZnIn2S4复合光催化剂的制备方法,包括以下步骤:A method for preparing a visible light-responsive core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst, comprising the following steps:
(1)将80mg TiO2在30ml乙醇溶剂中超声分散15分钟;超声处理的频率为45KHz,功率为75W;(1) Ultrasonic disperse 80mg TiO2 in 30ml ethanol solvent for 15 minutes; the frequency of ultrasonic treatment is 45KHz, and the power is 75W;
(2)将2mmol氯化锌和4mmol硝酸铟在30ml乙醇溶剂中搅拌溶解;(2) 2mmol zinc chloride and 4mmol indium nitrate are stirred and dissolved in 30ml ethanol solvent;
(3)将步骤(1)制得的悬浮液与步骤(2)制得的溶液混合,加入12mmol硫代乙酰胺并以500r/min的转速搅拌40分钟;(3) Mix the suspension prepared in step (1) with the solution prepared in step (2), add 12 mmol thioacetamide and stir for 40 minutes at a speed of 500 r/min;
(4)将步骤(3)的反应体系转移至高压釜中,200℃条件进行反应12小时;(4) Transfer the reaction system of step (3) to an autoclave, and react at 200° C. for 12 hours;
(5)将步骤(4)产物倒入真空抽滤装置中抽滤,用去离子水洗涤,80℃条件下干燥4小时,研磨后获得核‐壳型TiO2/ZnIn2S4复合光催化剂。(5) Pour the product of step (4) into a vacuum filtration device for suction filtration, wash with deionized water, dry at 80°C for 4 hours, and obtain a core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst after grinding .
本实施例中TiO2/ZnIn2S4复合光催化剂的X射线衍射图、可见光催化活性和核‐壳结构与图1‐3相似。The X-ray diffraction pattern, visible light catalytic activity and core-shell structure of the TiO 2 /ZnIn 2 S 4 composite photocatalyst in this example are similar to those in Figure 1-3.
应用实施例Application example
使用制备的核‐壳型TiO2/ZnIn2S4复合光催化剂光降解有机染料:以亚甲基蓝水溶液为模拟污水来评价该催化剂的光催化活性。实验条件设置为:(1)将实施例1中制备的20mg核‐壳型TiO2/ZnIn2S4复合光催化剂分散到120mL浓度为20mg·L‐1的亚甲基蓝水溶液中,光照反应前,先将悬浮液置于黑暗环境中磁力搅拌1h,以使体系达到吸附/解吸平衡;(2)打开模拟太阳光源,每次光照30分钟后取样,离心,检测溶液中亚甲基蓝溶液的紫外‐可见吸光度值的变化。Photodegradation of organic dyes using the prepared core‐shell TiO 2 /ZnIn 2 S 4 composite photocatalyst: The photocatalytic activity of the catalyst was evaluated by using methylene blue aqueous solution as simulated sewage. The experimental conditions were set as follows: (1) Disperse 20 mg of the core-shell TiO 2 /ZnIn 2 S 4 composite photocatalyst prepared in Example 1 into 120 mL of methylene blue aqueous solution with a concentration of 20 mg·L -1 . Place the suspension in a dark environment and stir magnetically for 1 hour to make the system reach adsorption/desorption equilibrium; (2) Turn on the simulated sunlight light source, take samples after 30 minutes of each illumination, centrifuge, and detect the UV-visible absorbance value of the methylene blue solution in the solution The change.
图4是实施例1中TiO2和制备的ZnIn2S4、核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率随光照时间的变化曲线。结合图4可知,在可见光照射下,TiO2对亚甲基蓝降解没有催化活性;光照4小时后,ZnIn2S4可降解71%的亚甲基蓝,而核‐壳型TiO2/ZnIn2S4复合光催化剂对亚甲基蓝的降解率可达92%,极大地提高了TiO2和ZnIn2S4的可见光催化活性。Fig. 4 is the variation curve of the degradation rate of methylene blue by TiO 2 and prepared ZnIn 2 S 4 , core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst in Example 1 as a function of light time. Combined with Figure 4, it can be seen that under visible light irradiation, TiO 2 has no catalytic activity for the degradation of methylene blue; after 4 hours of light, ZnIn 2 S 4 can degrade 71% of methylene blue, and the core-shell type TiO 2 /ZnIn 2 S 4 composite photocatalyst The degradation rate of methylene blue can reach 92%, which greatly improves the visible light catalytic activity of TiO 2 and ZnIn 2 S 4 .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310371019.2A CN103433060B (en) | 2013-08-22 | 2013-08-22 | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310371019.2A CN103433060B (en) | 2013-08-22 | 2013-08-22 | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103433060A true CN103433060A (en) | 2013-12-11 |
CN103433060B CN103433060B (en) | 2014-12-03 |
Family
ID=49686829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310371019.2A Active CN103433060B (en) | 2013-08-22 | 2013-08-22 | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103433060B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104741141A (en) * | 2015-03-23 | 2015-07-01 | 湖南理工学院 | Preparation method of N-doped graphene-CdIn2S4 nanocomposite material |
CN104843769A (en) * | 2015-04-09 | 2015-08-19 | 首都师范大学 | Method for controllable preparation ultrathin two dimensional indium sulfide nano-material through using metal ions, and use of material |
CN104923259A (en) * | 2015-04-29 | 2015-09-23 | 大连民族学院 | Precious metal/zinc indium sulfide/titanium dioxide nano heterostructure photocatalyst and preparation method thereof |
CN105056931A (en) * | 2015-08-28 | 2015-11-18 | 齐鲁工业大学 | Zinc magnesium indium composite oxide with near-infrared light catalytic activity, and preparation method and application thereof |
CN106268868A (en) * | 2016-08-24 | 2017-01-04 | 江苏大学 | Preparation method and application of a composite photocatalyst with ZnIn2S4 grown on the surface of TiO2 hollow spheres |
CN107552073A (en) * | 2017-09-13 | 2018-01-09 | 重庆大学 | A kind of MoS2Preparation method of AIZS nano composite materials and products thereof and application |
CN107866234A (en) * | 2016-09-27 | 2018-04-03 | 中国地质大学(北京) | A kind of high activity ZnIn2S4/TiO2Z System Catalyst materials and preparation method thereof |
CN108404934A (en) * | 2018-04-13 | 2018-08-17 | 西北师范大学 | A kind of preparation and application of the hydridization titanium dioxide optical catalyst of Z-type structure |
CN108525677A (en) * | 2018-03-29 | 2018-09-14 | 中南民族大学 | A kind of ceria/indium sulfide zinc nanometer sheet composite catalyst and its in visible light catalytic CO2Application in conversion |
CN109589989A (en) * | 2018-12-19 | 2019-04-09 | 江苏大学 | ZnIn2S4Nanometer sheet wraps up β-Bi2O3Nucleocapsid Heterogeneous Composite photochemical catalyst and its preparation method and application |
CN109621979A (en) * | 2018-12-13 | 2019-04-16 | 上海纳米技术及应用国家工程研究中心有限公司 | A kind of preparation method of ZnO/ zinc indium sulphur nano heterojunction |
CN109847766A (en) * | 2019-01-31 | 2019-06-07 | 中国地质大学(北京) | A coplanar ZnIn2S4/WO3 Z-structure catalyst material |
CN110026207A (en) * | 2019-05-06 | 2019-07-19 | 青岛科技大学 | CaTiO3@ZnIn2S4Nanocomposite and the preparation method and application thereof |
CN110787812A (en) * | 2019-09-29 | 2020-02-14 | 武汉理工大学 | A method for synergistic modification of ZnIn2S4 photocatalyst with hole promoter Ti(IV) and electron promoter Ni(OH)2 |
CN111111696A (en) * | 2019-12-31 | 2020-05-08 | 中南民族大学 | Solvothermal method for synthesizing sulfide-TiO with regular morphology in one pot2Method for compounding nanostructures and use thereof |
CN111729675A (en) * | 2020-05-28 | 2020-10-02 | 上海大学 | Preparation method and application of composite photocatalyst formed by ZIF-67-derived Co3S4 and ZnIn2S4 |
CN112774695A (en) * | 2021-01-28 | 2021-05-11 | 南京大学 | Direct Z-type heterojunction photocatalyst capable of being used for decomposing water and preparation method thereof |
CN113663693A (en) * | 2021-07-20 | 2021-11-19 | 苏州科技大学 | A preparation method of indium zinc sulfide-titanium dioxide composite material and its application in producing hydrogen peroxide for wastewater treatment |
CN114682272A (en) * | 2022-05-05 | 2022-07-01 | 东南大学 | A kind of TiO2-based composite photocatalyst and preparation method thereof |
WO2023108950A1 (en) * | 2021-12-17 | 2023-06-22 | 公元股份有限公司 | PREPARATION METHOD FOR Z-SCHEME α-FE2O3/ZNIN2S4 COMPOSITE PHOTOCATALYST AND USE THEREOF |
CN116851007A (en) * | 2023-07-11 | 2023-10-10 | 山东交通学院 | Preparation and magnetic field-assisted photocatalytic application of composite materials based on carbon nanotubes-indium zinc sulfide nanosheets |
CN116899589A (en) * | 2023-06-09 | 2023-10-20 | 常州大学 | An egg yolk and egg shell structure composite micro-nano photocatalytic material for degrading antibiotics and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102407147A (en) * | 2011-09-19 | 2012-04-11 | 湖南理工学院 | Preparation method and application of ZnIn2S4-graphene composite photocatalyst |
CN102795661A (en) * | 2012-09-11 | 2012-11-28 | 黑龙江大学 | A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound |
CN102836730A (en) * | 2012-09-28 | 2012-12-26 | 黑龙江省科学院石油化学研究院 | A kind of preparation method of porous ZnIn2S4 photocatalyst |
-
2013
- 2013-08-22 CN CN201310371019.2A patent/CN103433060B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102407147A (en) * | 2011-09-19 | 2012-04-11 | 湖南理工学院 | Preparation method and application of ZnIn2S4-graphene composite photocatalyst |
CN102795661A (en) * | 2012-09-11 | 2012-11-28 | 黑龙江大学 | A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound |
CN102836730A (en) * | 2012-09-28 | 2012-12-26 | 黑龙江省科学院石油化学研究院 | A kind of preparation method of porous ZnIn2S4 photocatalyst |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104741141A (en) * | 2015-03-23 | 2015-07-01 | 湖南理工学院 | Preparation method of N-doped graphene-CdIn2S4 nanocomposite material |
CN104843769A (en) * | 2015-04-09 | 2015-08-19 | 首都师范大学 | Method for controllable preparation ultrathin two dimensional indium sulfide nano-material through using metal ions, and use of material |
CN104923259A (en) * | 2015-04-29 | 2015-09-23 | 大连民族学院 | Precious metal/zinc indium sulfide/titanium dioxide nano heterostructure photocatalyst and preparation method thereof |
CN105056931B (en) * | 2015-08-28 | 2017-03-08 | 齐鲁工业大学 | A zinc-magnesium-indium composite oxide with near-infrared photocatalytic activity and its preparation method and application |
CN105056931A (en) * | 2015-08-28 | 2015-11-18 | 齐鲁工业大学 | Zinc magnesium indium composite oxide with near-infrared light catalytic activity, and preparation method and application thereof |
CN106268868B (en) * | 2016-08-24 | 2018-11-06 | 江苏大学 | A kind of TiO2Hollow ball surface grows ZnIn2S4Composite photo-catalyst preparation method and applications |
CN106268868A (en) * | 2016-08-24 | 2017-01-04 | 江苏大学 | Preparation method and application of a composite photocatalyst with ZnIn2S4 grown on the surface of TiO2 hollow spheres |
CN107866234A (en) * | 2016-09-27 | 2018-04-03 | 中国地质大学(北京) | A kind of high activity ZnIn2S4/TiO2Z System Catalyst materials and preparation method thereof |
CN107866234B (en) * | 2016-09-27 | 2020-06-23 | 中国地质大学(北京) | High-activity ZnIn2S4/TiO2Preparation method of Z-system catalyst material |
CN107552073A (en) * | 2017-09-13 | 2018-01-09 | 重庆大学 | A kind of MoS2Preparation method of AIZS nano composite materials and products thereof and application |
CN108525677A (en) * | 2018-03-29 | 2018-09-14 | 中南民族大学 | A kind of ceria/indium sulfide zinc nanometer sheet composite catalyst and its in visible light catalytic CO2Application in conversion |
CN108525677B (en) * | 2018-03-29 | 2020-12-01 | 中南民族大学 | Cerium dioxide/indium zinc sulfide nanosheet composite catalyst and application thereof in visible light catalysis of CO2Use in transformation |
CN108404934A (en) * | 2018-04-13 | 2018-08-17 | 西北师范大学 | A kind of preparation and application of the hydridization titanium dioxide optical catalyst of Z-type structure |
CN109621979A (en) * | 2018-12-13 | 2019-04-16 | 上海纳米技术及应用国家工程研究中心有限公司 | A kind of preparation method of ZnO/ zinc indium sulphur nano heterojunction |
CN109621979B (en) * | 2018-12-13 | 2021-09-21 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of ZnO/zinc indium sulfide nano heterojunction |
CN109589989A (en) * | 2018-12-19 | 2019-04-09 | 江苏大学 | ZnIn2S4Nanometer sheet wraps up β-Bi2O3Nucleocapsid Heterogeneous Composite photochemical catalyst and its preparation method and application |
CN109589989B (en) * | 2018-12-19 | 2021-11-23 | 江苏大学 | ZnIn2S4Nanosheet-wrapped beta-Bi2O3Core-shell heterogeneous composite photocatalyst and preparation method and application thereof |
CN109847766A (en) * | 2019-01-31 | 2019-06-07 | 中国地质大学(北京) | A coplanar ZnIn2S4/WO3 Z-structure catalyst material |
CN110026207A (en) * | 2019-05-06 | 2019-07-19 | 青岛科技大学 | CaTiO3@ZnIn2S4Nanocomposite and the preparation method and application thereof |
CN110026207B (en) * | 2019-05-06 | 2022-04-29 | 青岛科技大学 | CaTiO3@ZnIn2S4 nanocomposite and its preparation method and application |
CN110787812A (en) * | 2019-09-29 | 2020-02-14 | 武汉理工大学 | A method for synergistic modification of ZnIn2S4 photocatalyst with hole promoter Ti(IV) and electron promoter Ni(OH)2 |
CN111111696A (en) * | 2019-12-31 | 2020-05-08 | 中南民族大学 | Solvothermal method for synthesizing sulfide-TiO with regular morphology in one pot2Method for compounding nanostructures and use thereof |
CN111729675A (en) * | 2020-05-28 | 2020-10-02 | 上海大学 | Preparation method and application of composite photocatalyst formed by ZIF-67-derived Co3S4 and ZnIn2S4 |
CN111729675B (en) * | 2020-05-28 | 2022-12-06 | 上海大学 | ZIF-67-DERIVED Co 3 S 4 And ZnIn 2 S 4 Preparation method and application of formed composite photocatalyst |
CN112774695A (en) * | 2021-01-28 | 2021-05-11 | 南京大学 | Direct Z-type heterojunction photocatalyst capable of being used for decomposing water and preparation method thereof |
CN112774695B (en) * | 2021-01-28 | 2021-12-17 | 南京大学 | A direct Z-type heterojunction photocatalyst that can be used for water splitting and preparation method thereof |
CN113663693A (en) * | 2021-07-20 | 2021-11-19 | 苏州科技大学 | A preparation method of indium zinc sulfide-titanium dioxide composite material and its application in producing hydrogen peroxide for wastewater treatment |
CN113663693B (en) * | 2021-07-20 | 2023-09-15 | 苏州科技大学 | A preparation method of indium zinc sulfide-titanium dioxide composite material and its application in producing hydrogen peroxide for wastewater treatment |
WO2023108950A1 (en) * | 2021-12-17 | 2023-06-22 | 公元股份有限公司 | PREPARATION METHOD FOR Z-SCHEME α-FE2O3/ZNIN2S4 COMPOSITE PHOTOCATALYST AND USE THEREOF |
CN114682272A (en) * | 2022-05-05 | 2022-07-01 | 东南大学 | A kind of TiO2-based composite photocatalyst and preparation method thereof |
CN116899589A (en) * | 2023-06-09 | 2023-10-20 | 常州大学 | An egg yolk and egg shell structure composite micro-nano photocatalytic material for degrading antibiotics and its preparation method and application |
CN116851007A (en) * | 2023-07-11 | 2023-10-10 | 山东交通学院 | Preparation and magnetic field-assisted photocatalytic application of composite materials based on carbon nanotubes-indium zinc sulfide nanosheets |
Also Published As
Publication number | Publication date |
---|---|
CN103433060B (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103433060B (en) | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application | |
CN102407147B (en) | ZnIn2S4The preparation method of-graphene composite photocatalyst and application | |
CN105032468B (en) | A kind of Cu2O‑TiO2/g‑C3N4Ternary complex and its methods for making and using same | |
WO2021068570A1 (en) | Composite photocatalyst for degrading tetracycline, preparation method therefor and use thereof | |
CN103638922B (en) | Preparation method of mesoporous tungsten trioxide/reduction-oxidation graphene composite photocatalyst | |
CN104785280B (en) | A kind of plate-like titanium dioxide/bismuth oxybromide composite photo-catalyst and preparation method thereof | |
CN108525667A (en) | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide | |
CN110639555A (en) | CdS/CdIn with visible light response2S4Preparation method and application of composite nano-structured photocatalyst | |
CN111203234B (en) | CdIn2S4Nanoblock/SnIn4S8Preparation method of difunctional composite photocatalyst with sheet stacking structure | |
CN103272622B (en) | Preparation method of silver phosphate photocatalyst | |
CN108940255A (en) | A kind of zinc oxide catalysis material and the preparation method and application thereof | |
CN107913675B (en) | Metal organic framework modified tin sulfide composite photocatalyst and its preparation method and application | |
CN104971762A (en) | Preparation method and application of a g-C3N4/CaIn2S4 visible light composite photocatalyst | |
CN106944074A (en) | A kind of visible-light response type composite photo-catalyst and its preparation method and application | |
CN110589886A (en) | A kind of preparation method of bismuth oxycarbonate | |
CN107308927A (en) | A kind of preparation method of titanium dioxide homojunction nano-photocatalyst | |
CN103785429A (en) | Silver phosphate/graphene/titanium dioxide nano composite and preparation method thereof | |
CN108940349B (en) | Method for removing dye pollutants by silver chromate/sulfur-doped carbon nitride Z-type photocatalyst | |
CN104857975A (en) | Preparation method and application of CdIn2S4-graphene composite photocatalyst | |
CN108102111B (en) | Cobalt ion doped metal organic framework material and preparation method thereof | |
CN112354559B (en) | Two-dimensional receptor molecule/hierarchical pore TiO 2 Composite photocatalyst, preparation method and photocatalytic application thereof | |
CN110586149B (en) | Bismuth molybdate/titanium carbide heterojunction two-dimensional photocatalytic material and preparation method and application thereof | |
CN107983377A (en) | Silver/iodate silver composite material of cadmium tungstate modification and its preparation method and application | |
CN103566952B (en) | CdS/Cd 2ge 2o 6the preparation method of composite photo-catalyst | |
CN102553591B (en) | Preparation and Application of a CuAl2O4-Graphene Photocatalyst Responsive to Visible Light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |