CN103316987A - 激光间接冲击下金属薄板的微拉深自动化装置及其方法 - Google Patents

激光间接冲击下金属薄板的微拉深自动化装置及其方法 Download PDF

Info

Publication number
CN103316987A
CN103316987A CN2013102032958A CN201310203295A CN103316987A CN 103316987 A CN103316987 A CN 103316987A CN 2013102032958 A CN2013102032958 A CN 2013102032958A CN 201310203295 A CN201310203295 A CN 201310203295A CN 103316987 A CN103316987 A CN 103316987A
Authority
CN
China
Prior art keywords
laser
restraint layer
film flying
little
integration slice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102032958A
Other languages
English (en)
Other versions
CN103316987B (zh
Inventor
刘会霞
陆萌萌
沈宗宝
王霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201310203295.8A priority Critical patent/CN103316987B/zh
Publication of CN103316987A publication Critical patent/CN103316987A/zh
Application granted granted Critical
Publication of CN103316987B publication Critical patent/CN103316987B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

本发明公开了一种激光间接冲击下金属薄板的微拉深自动化装置及其方法,该装置包括激光发生***、自动成形***和控制***,激光发生装置由激光控制器、激光发射器和光纤组成;自动成形装置由端盖、调焦镜筒、机体、微拉深工作台、三坐标移动夹头、底座、变磁场装置、转盘多工位装置、约束层-飞片集成片、约束层-飞片集成片储仓、回收装置组成。本发明采用脉冲激光作为成形动力源,由约束层-飞片集成片装置进行光能与机械能的能量转化,实现了脉冲激光驱动飞片加载薄板的微拉深工艺的自动化;自动成形***相对独立,加工精度不受外部干扰,避免了人为误差;激光光路与微拉深工作台都收纳于机体之内,提升了实验操作的安全性。

Description

激光间接冲击下金属薄板的微拉深自动化装置及其方法
技术领域
本发明涉及一种激光间接冲击下金属薄板的微拉深自动化装置及其方法,属于机械制造先进成形领域和自动化加工领域,尤指微机电***(MEMS)零件加工技术领域。 
背景技术
随着现代科学技术的日新月异,亦随着市场对科技产品要求的精益求精,在诸如航空航天、精密仪器、生物医疗等领域,微器件的应用愈趋广泛,对各种材料的微型零件的需求量都在增加,因而又推动了对微器件的加工工艺新的探索。 
现如今面向MEMS的微机械加工技术和工艺是在集成电路的基础上发展起来的,主要依赖于LIGA、蚀刻、微铣削、微细电火花等微细加工技术,受到加工效率低、成本高以及污染环境等问题的限制,不能形成大批量的自动化生产。因此,以微模具成形技术为重点的新的微成形工艺得到了重点关注。 
正如公开号为CN 101583559A的专利所提供的利用硅基衬底制造微机械结构的方法,能够加工出应用于半导体技术中的MEMS微器件,但是这种加工方法还是集成电路技术的应用,零件材料上局限于了硅,不能多样性选择加工材料,尤其不能加工金属的微器件;公开号为CN 2589139Y的专利提出一种微细电火花机床,可以用来加工微器件,但是这种加工方法中所使用的电极形状需要根据所加工零件形状确定,需专门加工且加工过程中消耗磨损严重,加工误差逐渐加大;在公开号CN 101108433A的专利中也可以发现,电火花加工对于不同的零件一般需要配备各自专门的电极。另外,此专利中主要提出的是微铣削刀具的制备,也从一个角度反映出微铣削加工刀具制造的不易以及成本较高。与以上种种加工工艺和方法相比,一种全新的工艺——激光驱动飞片微成形技术则有很大的优势,精度较高、成本低廉、易于实现批量化和自动化生产。激光驱动飞片微成形技术的优势在本发明专利中完全可以体现出来。 
激光驱动飞片微成形是一种新型的MEMS微金属零部件成形技术,即通过激光驱动飞片加载的方式代替激光直接冲击,利用激光驱动飞片高速运动,将激光能量转化为飞片的动能,高速运动的飞片作为激光能量的载体,飞行一段距离后与工件材料发生碰撞,在碰撞界面上产生高压冲击波,高压冲击波向材料内部传播, 使得材料在微型模具内产生超快塑性变形,从而实现工件在微模具中的精确成形。申请号201010505869.3的中国专利介绍了应用激光驱动飞片微成形技术进行微金属器件冲裁的工艺过程,利用此专利的方法可以在一次脉冲激光中进行批量化冲裁,方便有效。但是目前应用激光驱动飞片微成形技术的装置不能连续的脉冲激光驱动飞片微成形,其批量生产只是在一次脉冲冲击下多个凹模的成形,并不是真正意义上快速、连续的批量化生产,又因为在此装置与方法中经一次激光冲击成形之后,工件和夹具等需要重新装夹,由此势必会由于人工操作而带来人为误差影响加工精度。并且,开放性的激光光路也存在一定的安全隐患。 
发明内容
针对现有技术中微拉深工艺中存在的上述缺陷,即目前应用于微拉深工艺的加工设备相对简陋、制作方法也相对简单的现状,本发明提供一种自动化生产装置与方法,实现了一种激光间接冲击下金属薄板的微拉深工艺的自动化,提高了加工能力和产品质量。 
本发明的技术方案是: 
激光间接冲击下金属薄板的微拉深自动化装置,包括激光发生***、自动成形***和控制***;所述激光发生装置由激光控制器、激光发射器和光纤组成;所述自动成形装置由端盖、调焦镜筒、机体、微拉深工作台、三坐标移动夹头、底座、变磁场装置、转盘多工位装置、约束层-飞片集成片、约束层-飞片集成片储仓、回收装置组成;所述控制装置由计算机、激光控制器、三坐标移动平台控制器和步进电机驱动器组成。
所述控制***协调控制激光发生***和自动成形***各个模块;所述激光控制器分别与计算机和纳米激光器相连接;所述光纤分别连接激光发生***的激光发射器和自动成形***的端盖;在自动成形***内部,端盖固定连接调焦镜筒;调焦镜筒固定连接机体;机体固定连接底座;所述底座之上承接微拉深工作台,底座下面还连接变磁场装置;所述三坐标移动夹头通过光轴固联于三坐标移动平台,三坐标移动平台与三坐标移动平台控制器相连接;所述转盘多工位装置由转盘在约束层-飞片集成片储仓、回收装置和微拉深工作台之间传输约束层-飞片集成片,并且转盘多工位装置的传动轴由步进电机驱动,连接步进电机驱动器;所述计算机分别与激光控制器、步进电机驱动器、三坐标移动平台控制器以及变磁场装置相连接。 
进一步,所述约束层-飞片集成片由铁框、约束层以及飞片三部分组成;飞片贴合在约束层的中间位置,约束层嵌入铁框之中,约束层未贴合飞片的一面面向铁框,约束层嵌入铁框的深度小于约束层的厚度。 
进一步,所述变磁场装置由线圈、支撑架、电流控制器以及电源接口组成;计算机连接电流控制器,控制电流的通断和强弱,使线圈产生可控磁场;磁场作用于约束层-飞片集成片的铁框产生方向向下的磁力,所述磁力充当激光间接冲击下金属薄板的微拉深工艺中的压边力。 
进一步,所述微拉深工作台由模具垫块、微拉深模具、飞型腔、弹性体以及飞型腔导轨组成;模具垫块安装在底座中央,利用螺栓连接、圆锥销定位;微拉深模具安装在模具垫块中央,以定位螺钉紧固相对位置;飞型腔导轨固定于模具垫块一侧,其上装有弹性体以及飞型腔;飞型腔带卡槽的一端,安装在导轨之中;弹性体安装在飞型腔导轨中飞型腔卡槽的下部。 
进一步,所述模具垫块的厚度为1㎜—10㎜,单个使用或多个叠加一起使用;所述飞型腔厚度根据所需工艺参数确定,飞型腔具有刚度;所述飞型腔的腔孔是矩形或者圆形。 
进一步,所述微拉深模具尺寸为20㎜×30㎜×10㎜长方体结构,其上表面中央位置有用于成形的微特征结构,即利用微电铸加工出微拉深凹模;微模具中央凹模两侧依中心对称分布两个长方形槽,截面尺寸2㎜×6㎜,槽深3㎜,用以安装退模弹性体,凹模深度根据零件特征确定,凹模上下边缘均有圆角过渡,过渡半径根据工艺参数确定,退模弹性体用于压边力卸载后,弹出工件金属板材以达到退模的作用,其长度方向与工件移动方向一致。 
激光间接冲击下金属薄板的自动化微拉深方法,具体包括如下的步骤: 
A、用光纤将激光从激光发射器中导入自动成形***;
B、利用调焦镜筒调节工艺参数离焦量;
C、约束层-飞片集成片储仓装置储装有数十块约束层-飞片集成片;每个工步中,转盘多工位装置在第一工位从约束层-飞片集成片储仓装置中取出一块约束层-飞片集成片,第二工位为约束层-飞片集成片储备工位,同时第三工位也将一块约束层-飞片集成片输送至微拉深工作台的上部位置;当完成一次激光间接冲击下金属薄板的微拉深过程之后,转盘在步进电机的驱动下旋转,换上新的一块约束层-飞片集成片,同时第四工位将已经用过的约束层-飞片集成片送入约束层-飞片集成片回收装置中,如此完成约束层-飞片集成片的四工位传输;
D、当更新的约束层-飞片集成片位于转盘多工位装置的第三工位时,计算机控制变磁场装置产生磁场,对约束层-飞片集成片的铁框部分产生磁场吸力,从而使得约束层-飞片集成片向下压紧,即提供激光间接冲击下金属薄板微拉深工艺中的压边力;
E、激光通过调焦镜筒投射到约束层-飞片集成片的中间位置,继而完成激光间接冲击下金属薄板的微拉深工艺过程;
F、完成一次冲裁之后,计算机控制变磁场装置关闭磁场作用,从而卸载压边力;转盘多工位装置转动至下个工位;三坐标移动夹头夹持着板料工件实现进给;整个自动化过程由计算机协调控制,由此进入下一个微拉深周期。
本发明的有益效果是: 
本发明采用脉冲激光作为成形动力源,由约束层-飞片集成片装置进行光能与机械能的能量转化,并采用一系列可靠方法实现了脉冲激光驱动飞片加载薄板的微拉深工艺的自动化,由此可以进行金属微拉深件的高效率、大批量生产;自动成形***相对独立,加工精度不受外部干扰,全过程由控制***协调避免了人为误差;激光光路与微拉深工作台都收纳于机体之内,提升了实验操作的安全性。
附图说明
图1是本发明激光间接冲击下金属薄板的微拉深自动化装置的结构示意图; 
图2是约束层-飞片集成片的结构示意图;
图3是约束层-飞片集成片沿图2中A-A线的剖面结构示意图;
图4是转盘多工位装置的结构示意图;
图5是变磁场装置的结构示意图;
图6是微拉深工作台的结构示意图;
图7是微拉深模具的剖面结构示意图;
图8是微拉深模具的立体结构图;
图9是微拉深件示意图。
图中:1、变磁场装置;2、底座;3、三坐标移动夹头;4、微拉深工作台;5、机体;6、调焦镜筒;7、端盖;8、光纤;9、激光发射器;10、激光控制器;11、计算机;12、步进电机驱动器;13、三坐标移动平台控制器;14、约束层-飞片集成片储仓装置;15、约束层-飞片集成片;16、约束层-飞片集成片回收装置;17、转盘多工位装置;18、光轴;19、铁框;20、约束层;21、飞片;22、线圈;23、支撑架;24、电流控制器;25、电源接口;26、模具垫块;27、微拉深模具;28、飞型腔;29、弹性体;30、飞型腔导轨;31、退模弹性体;32、第一工位;33、第二工位;34、第三工位;35、第四工位。 
具体实施方式
下面结合附图对本发明作进一步详细说明。 
本发明激光间接冲击下金属薄板的微拉深自动化装置的结构如图1所示,包括激光发生***、自动成形***和控制***。 
激光发生装置由激光控制器10、激光发射器9和光纤8组成;自动成形装置由端盖7、调焦镜筒6、机体5、微拉深工作台4、三坐标移动夹头3、底座2、变磁场装置1、转盘多工位装置17、约束层-飞片集成片15、约束层-飞片集成片储仓14、回收装置16组成;控制装置由计算机11、激光控制器10、三坐标移动平台控制器13和步进电机驱动器12组成。 
控制***协调控制激光发生***和自动成形***各个模块;激光控制器10分别与计算机11和纳米激光器9相连接;光纤8分别连接激光发生***的激光发射器9和自动成形***的端盖7;在自动成形***内部,端盖7连接调焦镜筒6(内置透镜),端面之间使用圆柱销定位;调焦镜筒6再连接机体5,调焦镜筒与箱体间利用导套定位;机体5连接底座2,接触面利用圆柱销定位;底座2之上承接微拉深工作台,底座2下面还连接变磁场装置1;所述三坐标移动夹头3通过光轴18固联三坐标移动平台,平台与三坐标移动平台控制器13相连接,从而实现工件的进给;转盘多工位装置17的结构如图4所示,由转盘在约束层-飞片集成片储仓14、回收装置16和微拉深工作台4之间传输约束层-飞片集成片15,并且转盘多工位装置17的传动轴由步进电机驱动,连接步进电机驱动器12。计算机11分别与激光控制器10、步进电机驱动器12、三坐标移动平台控制器13以及变磁场装置1相连接,从而实现了激光发射、约束层-飞片集成片传输、工件进给和磁力压边力的自动化协调控制。 
用于产生压边力(配合变磁场装置)的约束层-飞片集成片装置的结构如图2和图3所示,由铁框19、K9玻璃约束层21以及飞片20三部分组成。飞片20贴合在K9玻璃约束层21的中间位置,K9玻璃约束层21嵌入铁框19之中,K9玻璃约束层21未贴合飞片20的一面面向铁框,K9玻璃约束层21嵌入铁框19的深度为1毫米左右,小于K9玻璃约束层21的厚度。 
用于产生可控磁场实现压边力控制(配合约束层-飞片集成片)的变磁场装置1的结构如图5所示,由线圈22、支撑架23、电流控制器24以及电源接口25组成。计算机11连接电流控制器21,控制电流的通断和强弱,从而使线圈产生可控磁场。磁场作用于约束层-飞片集成片15的铁框19产生方向向下的磁力,此磁力充当激光间接冲击下金属薄板的微拉深工艺中的压边力,最终实现了对压边力的自动化控制。 
用于加工金属薄板的微拉深工作台4的结构如图6所示,由模具垫块26、微拉深模具27、飞型腔28、弹性体29以及飞型腔导轨30组成。模具垫块26安装在底座2中央,利用螺栓连接、圆锥销定位;微拉深模具27安装在模具垫块26中央,以定位螺钉紧固相对位置;飞型腔导轨30利用螺钉安装于模具垫块26一侧,其上装有弹性体29以及飞型腔28;飞型腔28带卡槽的一端,安装在导轨之中;弹性体29安装在飞型腔导轨30中飞型腔28卡槽的下部。在整个装置中,连接表面都具有很高的平面度,其中模具垫块26规格上可以有不同的厚度,具体为1㎜—10㎜之间,可以多个叠加一起使用,研磨、抛光模具垫块的下表面可以微调工作台的水平度。 微拉深模具27的尺寸规格为:20㎜×30㎜×10㎜,上表面中央加工有微米级特征,用于成形。飞型腔28厚度根据所需工艺参数确定,一般0.1㎜左右,飞型腔需具有一定刚度。飞型腔腔孔可以是矩形或者圆形,尺寸为直径3.5㎜左右。在磁力加载压边力的过程中,约束层_飞片集成片15受磁力牵引向下,依次将飞型腔28、工件压紧在微拉深模具27上。一次激光脉冲之后,磁力卸载,弹性体29促使飞型腔28以及约束层-飞片集成片15向上回复,工件在三坐标移动夹头3推进下再次进给,准备下一个成形周期。 
用于金属薄板微成形的微拉深模具27的结构如图7和图8所示,尺寸为20㎜×30㎜×10㎜长方体结构,上表面中央位置有用于成形的微特征(微米级):利用微电铸加工出微拉深凹模;上表面对角线上加工有两个螺纹孔,通过定位螺钉将微冲裁模具27紧固在模具垫块26上;微模具中央凹模两侧依中心对称分布两个长方形槽,截面尺寸2㎜×6㎜,槽深3㎜,用以安装退模弹性体31。凹模深度约0.1㎜左右,根据零件特征确定;凹模上下边缘均有圆角过渡,过渡半径根据工艺参数确定。退模弹性体31用于压边力(磁力)卸载后,弹出工件金属板材以达到退模的作用,其长度方向与工件移动方向一致,以不会阻碍到成形特征移动。加工成的微拉伸件的结构如图9所示。 
激光间接冲击下金属薄板的自动化微拉深方法,具体包括如下的步骤: 
A.用光纤8将激光从激光发射器9中导入所述自动成形***。
B.利用调焦镜筒6(内置透镜)调节工艺参数离焦量。 
C.约束层-飞片集成片储仓装置14储装有数十块约束层-飞片集成片15;每个工步中,转盘多工位装置17在第一工位32从约束层-飞片集成片储仓装置14中取出一块约束层-飞片集成片15,同时第三工位34也将一块约束层-飞片集成片15输送至微拉深工作台4的上部位置。当完成一次激光间接冲击下金属薄板的微拉深过程之后,转盘在步进电机的驱动下17旋转,换上新的一块约束层-飞片集成片15,同时第四工位35将已经用过的约束层-飞片集成片15送入约束层-飞片集成片回收装置16中,如此完成约束层-飞片集成片15的四工位传输。其中,第一工位32、第二工位33、第三工位34、第四工位35分别为该装置的四个工位,分别对应约束层-飞片集成片储仓装置、储备工位、微拉深工作台、约束层-飞片集成片回收装置的工作位置。 
D.当更新的约束层-飞片集成片15位于转盘多工位装置17的C工位时(微拉深工作台之上),计算机11控制变磁场装置1产生磁场,对约束层-飞片集成片15的铁框部分产生磁场吸力,从而使得约束层-飞片集成片15向下压紧,即提供激光间接冲击下金属薄板微拉深工艺中的压边力。 
E.激光通过调焦镜筒6(内置透镜)投射到约束层-飞片集成片15的中间位置,继而完成激光间接冲击下金属薄板的微拉深工艺过程。完成一次冲裁之后,计算机11控制变磁场装置1关闭磁场作用,从而卸载压边力;转盘多工位装置17转动至下个工位;三坐标移动夹头3夹持着板料工件实现进给。整个自动化过程由计算机11协调控制,由此进入下一个微拉深周期。 
在该装置中,计算机11属于人机交互窗口,整个生产加工全部控制要求由操作者输入计算机当中并保存,计算机11又分别连接了激光控制器10、三坐标移动平台控制器13、步进电机驱动器12以及变磁场装置1,形成了此装置的控制***。其中激光控制器10控制激光发射器9对激光参数进行调整;三坐标移动平台控制器13控制工件夹头3的移动,从而实现板料工件的进给;步进电机驱动器12分别连接约束层-飞片集成片储仓装置14、约束层-飞片集成片回收装置16以及转盘多工位装置17中的步进电机,驱动相应部件实现自动化;变磁场装置1直接与计算机11相连接,由计算机11控制电磁铁线圈电流的通断,从而实现对产生磁场与解除磁场的控制。 
首先,根据生产要求安装微拉深工作台,微拉深工作台根据所选择的微拉深工艺的不同使用不同的模具,并在模具之上架装飞行腔。固联在三坐标移动平台上的板料工件夹头3夹装工件,并在每一次激光冲击之前完成板料进给。 
然后,约束层_飞片集成片15由转盘多工位装置17在约束层_飞片集成片储仓装置14、微拉深工作台4以及约束层_飞片集成片回收装置16三个部分之间传输,转盘多工位装置具有四个工位,约束层_飞片集成片储仓装置、微拉深工作台和约束层_飞片集成片回收装置在脉冲激光冲击时刻分别处于一个工位的位置,且其上的约束层_飞片集成片分别完成取片、转换激光能量和回收的过程,另外一个工位处于约束层_飞片集成片储仓装置和微拉深工作台工位之间,其上约束层_飞片集成片将在下一个加工周期中转入微拉深工作台位置。 
同时,由变磁场装置1控制产生磁场,磁场对约束层_飞片集成铁框19产生向下的引力作用,从而依次压紧约束层_飞片集成片、飞行腔、板料工件以及微拉深模具,也即加载压边力。 
再后,激光从激光发生器9中由光纤引入自动化成形***。在自动化成形***中激光由顶端端盖7射入,经过调焦镜筒6的透镜聚焦之后投射到微拉深工作台上的约束层_飞片集成片15的中央位置,也就是K9玻璃约束层21未贴合飞片那一面的中间位置。 
最后,脉冲激光冲击飞片,能量转化,飞片撞击金属薄板与微拉深模具一起完成一次成形过程。 
在一次脉冲激光冲击过后,变磁场装置解除磁场作用,也就将压边力卸载;然后转盘多工位装置转动替换约束层_飞片集成片,联接三坐标移动平台的板料夹头移动完成板料进给,***进入待命下一个脉冲激光冲击周期的状态。 
本发明的方法首次实现了激光间接冲击下金属薄板微拉深工艺的自动化,提出了利用磁力作为激光间接冲击下金属薄板微拉深工艺中约束层的压边力,通过对电磁铁的控制来实现压边力自动化加载和卸载;另外,激光光路与微拉深工作台都收纳于机体之内,既提升了实验操作的安全性又使得工艺中光路的对正性由成形***本身的装配精度决定,避免了受外部因素的干扰,同时使得重复操作快捷精准。本装置由激光发生***、自动成形***和控制***三部分组成。激光发生***输出脉冲激光,并经光纤耦合输入自动成形***,继而通过透镜聚焦微拉深工作台;由调焦镜筒精确调节透镜竖直方向的位置从而实现对离焦量的控制;由固联在三坐标移动平台上的夹持装置夹装工件带材实现工件进给;由转盘多工位装置和约束层-飞片集成片储仓、回收装置实现约束层-飞片集成片的替换;由变磁场装置控制磁场的发生与否,磁场对约束层-飞片集成片铁框的吸引作用产生压边力。整个过程中由计算机协调控制脉冲激光的发射、三坐标移动平台的驱动、转盘多工位装置的转动、磁场的变化以及约束层-飞片集成片储仓、回收装置的动作。本装置可用于微拉深件的快速、批量化生产。 
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 

Claims (7)

1.激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:包括激光发生***、自动成形***和控制***;所述激光发生装置由激光控制器(10)、激光发射器(9)和光纤(8)组成;所述自动成形装置由端盖(7)、调焦镜筒(6)、机体(5)、微拉深工作台(4)、三坐标移动夹头(3)、底座(2)、变磁场装置(1)、转盘多工位装置(17)、约束层-飞片集成片(15)、约束层-飞片集成片储仓(14)、回收装置(16)组成;所述控制装置由计算机(11)、激光控制器(10)、三坐标移动平台控制器(13)和步进电机驱动器(12)组成;
所述控制***协调控制激光发生***和自动成形***各个模块;所述激光控制器(10)分别与计算机(11)和纳米激光器(9)相连接;所述光纤(8)分别连接激光发生***的激光发射器(9)和自动成形***的端盖(7);在自动成形***内部,端盖(7)固定连接调焦镜筒(6);调焦镜筒(6)固定连接机体(5);机体(5)固定连接底座(2);所述底座(2)之上承接微拉深工作台,底座(2)下面还连接变磁场装置(1);所述三坐标移动夹头(3)通过光轴(18)固联于三坐标移动平台,三坐标移动平台与三坐标移动平台控制器(13)相连接;所述转盘多工位装置(17)由转盘在约束层-飞片集成片储仓(14)、回收装置(16)和微拉深工作台(4)之间传输约束层-飞片集成片(15),并且转盘多工位装置(17)的传动轴由步进电机驱动,连接步进电机驱动器(12);所述计算机(11)分别与激光控制器(10)、步进电机驱动器(12)、三坐标移动平台控制器(13)以及变磁场装置(1)相连接。
2.根据权利要求1所述的激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:所述约束层-飞片集成片(15)由铁框(19)、约束层(21)以及飞片(20)三部分组成;飞片(20)贴合在约束层(21)的中间位置,约束层(21)嵌入铁框(19)之中,约束层(21)未贴合飞片(20)的一面面向铁框,约束层(21)嵌入铁框(19)的深度小于约束层(21)的厚度。
3.根据权利要求1所述的激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:所述变磁场装置(1)由线圈(22)、支撑架(23)、电流控制器(24)以及电源接口(25)组成;计算机(11)连接电流控制器(21),控制电流的通断和强弱,使线圈产生可控磁场;磁场作用于约束层-飞片集成片(15)的铁框(19)产生方向向下的磁力,所述磁力充当激光间接冲击下金属薄板的微拉深工艺中的压边力。
4.根据权利要求1所述的激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:所述微拉深工作台(4)由模具垫块(26)、微拉深模具(27)、飞型腔(28)、弹性体(29)以及飞型腔导轨(30)组成;模具垫块(26)安装在底座(2)中央,利用螺栓连接、圆锥销定位;微拉深模具(27)安装在模具垫块(26)中央,以定位螺钉紧固相对位置;飞型腔导轨(30)固定于模具垫块(26)一侧,其上装有弹性体(29)以及飞型腔(28);飞型腔(28)带卡槽的一端,安装在导轨之中;弹性体(29)安装在飞型腔导轨(30)中飞型腔(28)卡槽的下部。
5.根据权利要求4所述的激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:所述模具垫块(26)的厚度为1㎜—10㎜,单个使用或多个叠加一起使用;所述飞型腔(28)厚度根据所需工艺参数确定,飞型腔具有刚度;所述飞型腔(26)的腔孔是矩形或者圆形。
6.根据权利要求4或5所述的激光间接冲击下金属薄板的微拉深自动化装置,其特征在于:所述微拉深模具(27)尺寸为20㎜×30㎜×10㎜长方体结构,其上表面中央位置有用于成形的微特征结构,即利用微电铸加工出微拉深凹模;微模具中央凹模两侧依中心对称分布两个长方形槽,截面尺寸2㎜×6㎜,槽深3㎜,用以安装退模弹性体(31),凹模深度根据零件特征确定,凹模上下边缘均有圆角过渡,过渡半径根据工艺参数确定,退模弹性体(31)用于压边力卸载后,弹出工件金属板材以达到退模的作用,其长度方向与工件移动方向一致。
7.激光间接冲击下金属薄板的自动化微拉深方法,具体包括如下的步骤:
A、用光纤(8)将激光从激光发射器(9)中导入自动成形***;
B、利用调焦镜筒(6)调节工艺参数离焦量;
C、约束层-飞片集成片储仓装置(14)储装有数十块约束层-飞片集成片(15);每个工步中,转盘多工位装置(17)在第一工位(32)从约束层-飞片集成片储仓装置(14)中取出一块约束层-飞片集成片(15),第二工位(33)为约束层-飞片集成片储备工位,同时第三工位(34)也将一块约束层-飞片集成片(15)输送至微拉深工作台(4)的上部位置;当完成一次激光间接冲击下金属薄板的微拉深过程之后,转盘在步进电机的驱动下(17)旋转,换上新的一块约束层-飞片集成片(15),同时第四工位(35)将已经用过的约束层-飞片集成片(15)送入约束层-飞片集成片回收装置(16)中,如此完成约束层-飞片集成片(15)的四工位传输;
D、当更新的约束层-飞片集成片(15)位于转盘多工位装置(17)的第三工位(34)时,计算机(11)控制变磁场装置(1)产生磁场,对约束层-飞片集成片(15)的铁框部分产生磁场吸力,从而使得约束层-飞片集成片(15)向下压紧,即提供激光间接冲击下金属薄板微拉深工艺中的压边力;
E、激光通过调焦镜筒(6)投射到约束层-飞片集成片(15)的中间位置,继而完成激光间接冲击下金属薄板的微拉深工艺过程;
F、完成一次冲裁之后,计算机(11)控制变磁场装置(1)关闭磁场作用,从而卸载压边力;转盘多工位装置(17)转动至下个工位;三坐标移动夹头(3)夹持着板料工件实现进给;整个自动化过程由计算机(11)协调控制,由此进入下一个微拉深周期。
CN201310203295.8A 2013-05-28 2013-05-28 激光间接冲击下金属薄板的微拉深自动化装置及其方法 Expired - Fee Related CN103316987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310203295.8A CN103316987B (zh) 2013-05-28 2013-05-28 激光间接冲击下金属薄板的微拉深自动化装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310203295.8A CN103316987B (zh) 2013-05-28 2013-05-28 激光间接冲击下金属薄板的微拉深自动化装置及其方法

Publications (2)

Publication Number Publication Date
CN103316987A true CN103316987A (zh) 2013-09-25
CN103316987B CN103316987B (zh) 2015-03-04

Family

ID=49186197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310203295.8A Expired - Fee Related CN103316987B (zh) 2013-05-28 2013-05-28 激光间接冲击下金属薄板的微拉深自动化装置及其方法

Country Status (1)

Country Link
CN (1) CN103316987B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020173A (zh) * 2014-06-16 2014-09-03 北京卫星环境工程研究所 用于激光驱动微小碎片试验的靶架装置
CN110497074A (zh) * 2019-07-03 2019-11-26 江苏大学 一种磁场处理与激光冲击微成形复合的转盘式装置及方法
CN111822578A (zh) * 2020-06-18 2020-10-27 江苏大学 电致塑性辅助激光冲击拉深成形装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481230A (ja) * 1990-07-20 1992-03-13 Mitsubishi Heavy Ind Ltd 多段絞り成形機
CN101239418A (zh) * 2008-02-19 2008-08-13 江苏大学 一种飞片驱动式激光微焊接方法及装置
CN101298115A (zh) * 2008-02-19 2008-11-05 江苏大学 基于激光动态压力的一种微器件焊接方法及装置
US20100102043A1 (en) * 2008-10-29 2010-04-29 Coherent, Inc. Laser engraving apparatus
CN102513696A (zh) * 2011-12-06 2012-06-27 江苏大学 一种激光间接冲击软模微成形方法及其专用装置
CN102581483A (zh) * 2012-03-01 2012-07-18 天津大学 一种激光驱动非金属飞片的方法及实现装置
CN102653031A (zh) * 2012-05-08 2012-09-05 江苏大学 一种激光驱动组合飞片成形方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481230A (ja) * 1990-07-20 1992-03-13 Mitsubishi Heavy Ind Ltd 多段絞り成形機
CN101239418A (zh) * 2008-02-19 2008-08-13 江苏大学 一种飞片驱动式激光微焊接方法及装置
CN101298115A (zh) * 2008-02-19 2008-11-05 江苏大学 基于激光动态压力的一种微器件焊接方法及装置
US20100102043A1 (en) * 2008-10-29 2010-04-29 Coherent, Inc. Laser engraving apparatus
CN102513696A (zh) * 2011-12-06 2012-06-27 江苏大学 一种激光间接冲击软模微成形方法及其专用装置
CN102581483A (zh) * 2012-03-01 2012-07-18 天津大学 一种激光驱动非金属飞片的方法及实现装置
CN102653031A (zh) * 2012-05-08 2012-09-05 江苏大学 一种激光驱动组合飞片成形方法及其装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020173A (zh) * 2014-06-16 2014-09-03 北京卫星环境工程研究所 用于激光驱动微小碎片试验的靶架装置
CN110497074A (zh) * 2019-07-03 2019-11-26 江苏大学 一种磁场处理与激光冲击微成形复合的转盘式装置及方法
CN111822578A (zh) * 2020-06-18 2020-10-27 江苏大学 电致塑性辅助激光冲击拉深成形装置及方法

Also Published As

Publication number Publication date
CN103316987B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN103273195B (zh) 激光间接冲击下金属薄板的微冲裁自动化装置及其方法
CN103316990A (zh) 脉冲激光驱动飞片加载薄板的微冲裁自动化装置及其方法
CN103273194B (zh) 激光间接冲击下金属薄板微弯曲-压印自动化装置及方法
CN100447690C (zh) 板材动圈电磁渐进成形方法及其装置
CN205166364U (zh) 自动锁附螺丝机
CN203281698U (zh) 数控冲床
CN102489802B (zh) 一种微冲压模具原位制造装置
CN103316987A (zh) 激光间接冲击下金属薄板的微拉深自动化装置及其方法
CN105269310A (zh) 龙门式智能自动锁附螺丝机及其智能锁附方法
US9044912B2 (en) Operation method of electric press working machine
CN102500792A (zh) 带有定位功能的定位孔加工装置
CN203437455U (zh) 一种自动定位打点机
CN203292924U (zh) 一种精雕机的自动上下料结构
CN103272907A (zh) 脉冲激光驱动飞片加载薄板的微拉深自动化装置及其方法
CN213895936U (zh) 一种感应加热设备中的自动上料机床
CN110076399A (zh) 一种旋铣加工方法
CN103317004A (zh) 激光驱动飞片加载薄板微弯曲-压印自动化装置及方法
CN102430635A (zh) 板材高压水射流柔性渐进成形方法及装置
CN201783655U (zh) 双轴斜床身数控车床
CN107442637A (zh) 一种多工位激光加载成形微体积零件的自动化装置及其方法
CN204843769U (zh) 一种凸轮磨床
CN100551614C (zh) 一种法兰轴承外圆及端面的磨削加工方法
CN203092127U (zh) 一种车磨复合加工机床
CN202479340U (zh) 一种数控冲床
CN215942117U (zh) 一种移动式镗孔装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20170528