CN103260525B - 针对背景运动影响调节声辐射力效应的测量结果 - Google Patents

针对背景运动影响调节声辐射力效应的测量结果 Download PDF

Info

Publication number
CN103260525B
CN103260525B CN201180059600.XA CN201180059600A CN103260525B CN 103260525 B CN103260525 B CN 103260525B CN 201180059600 A CN201180059600 A CN 201180059600A CN 103260525 B CN103260525 B CN 103260525B
Authority
CN
China
Prior art keywords
shear wave
background motion
driving pulse
signal
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180059600.XA
Other languages
English (en)
Other versions
CN103260525A (zh
Inventor
J·D·弗雷泽
H·谢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN103260525A publication Critical patent/CN103260525A/zh
Application granted granted Critical
Publication of CN103260525B publication Critical patent/CN103260525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52095Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种用于横波测量的超声诊断成像***,其将推动脉冲发射到组织中,以用于横波的生成。测量所述横波的特性,诸如它们通过所述组织的速度,以评估诸如组织硬度的性质。通过在不同时间对来自所述组织的回波信号采样并比较所述样本来检测超声探头与在那里检测横波的感兴趣的区域之间相对运动的存在,以针对背景运动的影响补偿所述测量结果。感测到的背景运动用于调节所测量的横波特性。

Description

针对背景运动影响调节声辐射力效应的测量结果
技术领域
本发明涉及医学诊断超声***,并且具体涉及使用横波执行组织硬度或弹性的测量的超声***。
背景技术
已开发出用于诊断目的远程询问组织机械性质的多种工具,其利用超声束的辐射力将力远程应用到患者体内的组织区域(声辐射力;也称作“推动”脉冲)。声辐射力能够以可以测量弹性性质的方式应用,或者通过使用另外的超声成像直接跟踪变形而局部地应用在变形的点处,以准静态地跟随变形的模式并且视觉地辨识具有不同硬度的区域。例如,参见Nightingale,K.R.等人,“On the feasibility of remote palpation using acoustic radiationforce”,J.Acoust.Soc.Am.,110卷1号(2001),第625-34页;以及M.L Palmieri等人。由声辐射力造成的变形也能够用作远离变形区域横向传播的横波的源,之后可以对所述变形区域成像,以通过时域横波速度成像询问邻近区域的材料性质。就此而言,参见Sarvazyan,A.等人,“Shear wave elasticityimaging:A new ultrasonic technology of medical diagnostics”,Ultrasound Med.Biol.24,第1419-1435页(1998)以及“Quantifying Hepatic Shear ModulusIn Vivo Using Acoustic Radiation Force”,Ultrasound in Med.Biol.,第34卷,2008年。这种技术也能够用于评估频域横波模量和粘度。参见Fatemi,M.等人,“Ultrasound-stimulated vibro-acoustic spectrography”,Science280,82-85页(1998)。这些技术使用一维阵列换能器来生成横波,并且受有限的穿透有效深度的阻碍,弱耦合和强加于激发束的最大功率上的安全性限制的组合,结合限制有效测量的穿透深度的不利的衍射效应限制所述穿透有效深度。参见Bouchard,R.等人,“Image Quality,Tissue Heating,and FrameRate Trade-offs in Acoustic Radiation Force Impulse Imaging”,IEEE Trans.UFFC56,63-76页(2009)。
此外,现有技术由于推动脉冲激发有限的范围以及二维成像方法学,不能在成像平面内性质变化的区域和可能在平面附近但却在平面之外的那些性质变化的区域之间进行区分。在成像处理过程中,这些平面外性质值与平面内值的混合可能导致在这些技术的输出中准确度和诊断值的不必要的降低。
在如当前实践的常规声辐射力成像和点量化中,推动是通过1D阵列生成的,所述1D阵列产生可以在单一成像平面中得到良好控制的波束,但却被定焦机械透镜限制为在横切面或垂直面中的单一、适度紧凑的焦点。这引起机械推动力,所述机械推动力在所述阵列的平面内和平面外的所有横向方向上创建响应。由该推动激起的组织运动一般在所有横向方向上径向传播,并且除了由组织粘度造成的正常衰减以外,还在径向方向(在线形源的情况中为在所述推动脉冲方向上)遭受因数1/R的下降。在声辐射力定性和定量成像的情况中,这是不利的,因为平面外硬度变化区域将贡献在图像平面中的轴向位移,从而混淆图像平面中的硬度测量的准确度。在点量化的情况中,径向传播将有用的横波能量支配到远离成像平面,从而减小了用于准确性质估计所需的信号幅度。
由诊断发射限度内的声辐射力发射产生的运动非常小,幅度在大约0.1至15微米。这种微小运动的测量通过跟踪来自在正被研究的组织中的局部不均匀的反射得以实现,这意味着横波的所接收的信号效应可能难以分辨。此外,横波运动在组织中被严重阻尼,所述组织具有粘弹性性质。因此,难以获得足够的信噪比,并且穿透范围非常有限。任何干扰信号都将不利地影响结果。干扰的显著来源是正被用于研究的换能器与正被研究的组织区域的相对运动。这种相对运动能够由外部源造成,所述外部源诸如操作者的手的不稳定,或者由内部源造成,所述内部源诸如受试者的呼吸、心跳或其他自主或非自主的运动。现有技术在针对声辐射力技术的信噪比改进上的尝试将带通滤波所述信号,以从数据中消除较低频率。大多数运动伪影都在50Hz以下,因此可以做出一些改进。例如,参见Urban等人,“Errorin Estimates of Tissue Material Properties from Shear Wave DispersionUltrasound Vibrometry”,IEEE Trans.UFFC,56卷,4号,(2009年4月)。然而,这种干扰中的一些幅度相当大,并且带通滤波并不总是足以消除不利影响。具有错误估计位移形式的伪影以及因此而错误计算的横波速度和模量是常有的。
发明内容
因此,本发明的目标是改进诸如横波的声辐射力效应的穿透的有效深度。本发明的另一目标是减少在材料评估过程中的平面外效应。本发明的另一目标是在基于声辐射力的研究中,减少由于换能器的相对运动造成的测量误差。
根据本发明的原理,描述一种诊断超声成像***和方法,所述***和方法使得用户能够采集高分辨图像数据,所述高分辨图像数据足以测量组织运动或传播通过组织的横波的特性。具有换能器元件的二维阵列的超声探头将具有能量片层形式的推动脉冲发射到组织中。所述能量片层能够是平面或非平面的,并且能够由独立发射的超声脉冲的序列产生或者由平面波阵面的发射产生。不同于现有技术的单一向量推动脉冲,所述能量片层的二维推动脉冲产生平面或半平面横波阵面,所述横波阵面不遭受现有技术中能量扩散的1/R下降。根据本发明的另一方面,在推动脉冲的位置附近,以及在待检测横波的感兴趣场附近,发射多个背景跟踪脉冲。使接收自背景跟踪脉冲的回波信号在时间上相关,以估计在所述横波传播过程中所述感兴趣场中的背景运动,所述背景运动用于调节所测量的由所述横波的通过造成的位移。
附图说明
在附图中:
图1以框图形式图示根据本发明的原理构造的超声诊断成像***。
图2a-2c图示推动脉冲的序列发射到不同深度,以产生横波阵面。
图3在空间上图示沿推动脉冲向量的推动脉冲的序列、得到的横波阵面、以及一系列跟踪脉冲向量。
图4图示发源于推动脉冲向量的横波阵面的径向扩散。
图5图示根据本发明的原理产生的二维推动脉冲。
图6图示根据本发明的原理产生的弯曲的二维推动脉冲。
图7-9图示背景跟踪脉冲的使用,以根据本发明的原理估计在横波区域中的背景组织运动。
具体实施方式
首先参考图1,以框图形式示出根据本发明的原理构建的用于横波测量的超声***。超声探头10具有换能器元件的二维阵列12,换能器元件的二维阵列12用于发射和接收超声信号。二维阵列换能器能够通过在人体的单一平面上发射波束并接收返回的回波信号,来扫描二维(2D)平面,并且还能够用于通过在人体的体积(3D)区域的不同方向和/或平面中发射波束,来扫描体积区域。所述阵列元件耦合到位于所述探头中的微型波束成形器38,微型波束成形器38控制所述元件的发射,并将接收自元件的组或子阵列的回波信号处理成部分波束成形信号。通过发射/接收(T/R)开关14,将部分波束成形信号从所述探头耦合到所述超声***中的多线接收波束成形器20。所述波束成形器的发射与接收的协调受波束成形器控制器16的控制,波束成形器控制器16耦合于所述多线接收波束成形器以及耦合于发射控制器18,波束成形器控制器16向所述微型波束成形器提供控制信号。所述波束成形器控制器响应于应答用户控制面板40的用户操纵而产生的信号,以控制所述超生***及其探头的运行。
多线接收波束成形器20在单个发射-接收间隔过程中,产生回波信号的多个空间不同的接收线(A-线)。所述回波信号由信号处理器22通过滤波、降噪等等进行处理,然后将所述回波信号存储在A-线存储器24中。在与图像场中公共点相关的一组回波中,将与相同空间向量位置相关的时不同的A-线样本彼此关联。通过A-线r.f.交叉相关器26,使所述相同空间向量的连续A-线采样的r.f.回波信号交叉相关,以产生针对所述向量上每个采样点的组织位移的样本序列。或者,能够对空间向量的A-线进行多普勒处理,以检测沿所述向量的横波运动,或者能够采用其他相敏技术,诸如时间域中的斑点跟踪。波阵面峰值检测器28响应于沿所述A-线向量检测到所述横波位移,来检测所述A-线上每个采样点的所述横波位移的峰值。在优选实施例中,这是通过曲线拟合完成的,尽管如果期望,还能够采用交叉相关以及其他插值技术。将所述横波位移的峰值发生的时间与其他A线位置处相同事件的时间进行相关记录,均相对于共同时间参考,并且这种信息耦合于波阵面速度检测器30,波阵面速度检测器30从在毗邻A线上的峰值位移时间,区别性地计算所述横波速度。这种速度信息耦合于速度显示图32,速度显示图32在2D或3D图像场中的空间上不同的点处指示所述横波的速度。所述速度显示图耦合于图像处理器34,图像处理器34处理所述速度图,优选地叠加到组织的解剖学超声图像,以用于在图像显示器36上显示。
图2a-2c图示了聚焦高MI(例如1.9或更小的MI,以便在FDA诊断限制以内)推动脉冲的序列沿单一向量方向的发射,以产生横波阵面。使用高MI和长持续时间的脉冲,以便发射足够的能量以使所述组织沿所述发射向量向下位移,并引起横波的形成。在图2a中,在皮肤表面11处的探头10向所述组织将具有波束轮廓41a、41b的第一推动脉冲40发射至由阴影区40指示的给定焦深。这种推动脉冲将使焦点处的组织向下位移,从而得到从位移的组织向外发出的横波阵面42。
图2b图示了由探头10沿相同向量发射,并且在更深深度的阴影区50处聚焦的第二推动脉冲50。这种第二推动脉冲50使所述焦深处的组织位移,从而令横波阵面52从位移的组织向外发出。因此,横波阵面42和52两者均横向传播通过所述组织,其中初始波阵面42根据两个推动脉冲的发射之间的时间间隔和由传播距离的改变造成的传播延迟差异而先于第二波阵面。
图2c图示了探头10发射在更大深度处的第三推动脉冲60,第三推动脉冲60产生向外发出的横波阵面62。图2c中可见,三个推动脉冲的复合波阵面,由42、52和62的复合波阵面轮廓指示,从第一推动脉冲40的浅深度到第三推动脉冲60的最深深度在所述组织中延伸相当可观的深度。这实现了在组织的相当可观深度上的横波测量。在图1的***的实现方式中,诸如这样的推动脉冲序列能够用于在6cm的深度上检测横波传播,所述6cm的深度为针对乳腺肿块成像和诊断的适当深度。
应该认识到,能够沿所述推动脉冲向量发射更多或更少数量的推动脉冲,包括单一推动脉冲。能够以任何顺序发射多个推动脉冲,其中所述顺序确定所述复合横波阵面的形状和方向。例如,如果以从最深(60)到最浅(40)的具有适当的发射间延迟的序列来发射图2a-2c的推动脉冲,那么图2c的复合横波阵面将具有与在图2c中所示的相反的倾斜。通常,每个推动脉冲均为持续时间50至200微秒的长脉冲。例如,通常的持续时间为100微秒。例如,在100微秒脉冲持续时间过程中产生的超声为压缩波脉冲,并且能够具有7或8MHz的频率。所述推动脉冲为良好聚焦的,优选在1至2的f数。在一种典型的实现方式中,每2.5毫秒发射推动脉冲(只要从(40)至(50)和从(50)至(60)的横波源移动速度大于横波传播速度),从而给予所述推动脉冲400Hz的发射频率。在另一实现方式中,将全部三个推动脉冲发射至一个序列中,以在跟踪A线开始之前发射完整横波阵面。
图3是使用三个推动脉冲以创建复合横波阵面的另一图示。沿向量44、54和64发射所述三个推动脉冲,向量44、54和64在图3中示为沿单一向量方向对齐。当首先发射向量64的最深推动脉冲并之后为聚焦在相继更浅深度处的推动脉冲时,各自的推动脉冲的横波阵面将已传播了最后推动脉冲(向量64)发射之后不久的一段时间,如由波46、56和66所指示。推动脉冲的发射时间之间的时间间隔由横向速度和纵向速度确定,因为需要考虑到所述焦点的传播时间。随着横波46、56和66从所述推动脉冲向量向外行进,它们被跟踪脉冲80询问,跟踪脉冲80示为在沿该图顶部的空间连续。跟踪脉冲能够发生在推动脉冲之间以及之后。与图2c中的描绘不同,图3的复合波阵面的横波46、56和66的图示显示所传播的横波在时间和水平传播距离上基本对齐。鉴于组织中纵向推动脉冲与横波之间传播速度的巨大差异,在大约100比1,这是快速连续地发射独立推动脉冲时的代表性描绘。由于推动脉冲的唯一功能是在组织上产生力,并且不需要随后的时间段以用于回波接收,如同脉冲-回波超声成像的情况,因此每个脉冲之后基本上不需要死区时间,并且能够非常快速连续地发射所述推动脉冲。推动脉冲在组织中的经过时间为大约100微秒(超声在组织中以约1560米/秒的速度行进),而组织中的横波时间周期在大约2至10毫秒(横波在组织中以约1-5米/秒的速度行进)。因此,从横波的周期性和速度的角度看,推动脉冲的快速连续是接近瞬时的,从而产生单一波阵面。
在常规的声辐射力成像和点量化中,(一个或多个)推动脉冲是沿单一向量方向发射的。当推动由1D阵列,具有单行换能器元件的换能器,生成时,所述阵列产生可以在所述阵列的单一成像平面中得到良好控制的波束,但所述射束被探头的定焦机械透镜限制于在横切平面或垂直平面中的单一、适度紧凑的焦距。这引发这样的机械推力,所述机械推力创建在所述阵列的单一成像平面以内或以外的所有方向横向辐射的响应。由这种推动能量引起的组织运动粗略地在所有横向方向上径向传播,如图4中由围绕所述推动脉冲向量的环形波阵面72和向外辐射箭头70所图示的,并且由这种推动能量引起的组织运动除了正常组织衰减以外还遭受在径向方向上根据1/R的能量下降。在声辐射力定性和定量成像的情况中,这是不利的,因为平面外的硬度变化区域将贡献在图像平面中的组织轴向位移,从而混淆图像平面中硬度测量的准确性。在声辐射力点量化的情况中,径向传播将有用的横波能量从成像平面去除,从而减小了针对性质估计所需要的信号幅度。
根据本发明的原理,所述推动脉冲形成为二维的能量片层,而非单个一维向量。这种二维推动波束片层在深度维度D上延伸,并且还在高度或方位维度E上延伸,如图5中由推动波束片层80所图示的。推动波束片层80导致具有平面波阵面的横波的生成,如由图5中的平面波阵面90、92所指示的,平面波阵面90、92从推动波束片层80的力场横向行进,如由箭头91、93所指示的。这种横波激发类似平面波源,而非图4的线形源,因此消除了径向能量耗散中1/R的下降。二维阵列12在任意方向上并且在所述阵列表面上的多种位置中从明显中心,形成波束的可编程性和响应性用于通过以下生成具有一般形状、尺寸、和推动方向的被推动的组织区域:焦斑的轴向和/或横向扫掠、从一个焦斑快速跳跃以从一个位置到另一位置或以上两者,利用组织中纵向推动波与横波之间传播速度的显著的比率(大约100比1),以允许形成可以为某种任意尺寸、形状和取向的横波的有效源,从而可以形成期望取向、形状和范围的聚焦且受操纵的二维或三维横波束源。
在图5中所示的本发明的简单实现方式中,激发被推动组织80的平坦、延伸的片层,这在平坦片层90、93中生成横波,所述横波横向而非径向向外传播,并且减少根据所述横波的行进距离的衰退。这提高了多种辐射力模态的穿透距离。这种片层可以通过在所述组织内深度聚焦并启动长爆发(burst)超声的发射而形成。在正发射所述爆发时,将焦点朝着换能器拉得更浅,以形成线形源。在垂直于所述换能器的面的平面内发射推动波束力的多个这样的线,如图5所示。或者,在非垂直于所述换能器阵列的面且在所述阵列的方向性的范围内的其他平面中,发射推动波束力的平面,以生成横波的平面源。这样的发射将有效产生二维中的单一推动力,只要整体激发序列的持续时间略微快于待产生的横波的周期。由于纵向超声传播路径经过时间为大约100微秒,而期望的横波周期为大约2毫秒,因此存在用于许多发射的时间,以产生能量片层90、92。
图5的发射技术的变型是发射片层波束,其通过二维换能器阵列的元件在高度或方位中的同时激发,从所述二维阵列发射片层波束。由于所述2D阵列的延迟轮廓是完全能编程的,因此发射在场中深聚焦的片层,并且之后以与所述横波速度相当的速率将焦点移到更近,将允许简单平面横波源的形成。可以以任何旋转角发射这种平面源,从而可以在任何横向方向上传播横波。同样,可以变化所述平面源的倾斜,从而可以将所述横波源引导至非垂直于所述阵列的平面中。
本发明的第三种实现方式图示在图6中。在这种实现方式中,通过或者在空间中或者在延迟轮廓中,或全部两者中横向弯曲的二维阵列换能器发射片层波束,从而将得到的横波源聚焦于薄波束中,从而进一步增加了用于检测所述横波源的技术的分辨率和敏感度。甚至能够创建沿轴向方向的弯曲,如由图6中的推动波束片层(PBS)所示,从而创建所述横波的二维聚焦。如该图中所图示的,二维换能器阵列12生成弯曲的推动波束片层PBS。PBS的弯曲令横波阵面SWF随着其行进而逐步聚集,如由朝着网格平面98的SWF1、SWF2和SWF3的逐步聚集所指示的。这种聚集也由所述弯曲的横波阵面的轮廓96指示。靠近图中右边的是横波阵面SWF2’,横波阵面SWF2’图示了当所述横波阵面超过在SWF3处的所述横波阵面的最大聚集的线时,所述横波阵面的反向弯曲。这种聚焦所述横波的方法最适合于线形测量技术而非平面测量技术。数据收集速率锐减,换来作为聚焦在SWF3处的横波附近的敏感度大幅增加。这种方法也能够用于将二维弯曲的横波阵面聚焦到衍射有限的点聚焦或有限的轴向深度区域。
通过测量横波执行的组织硬度的诊断高度依赖于随时间对横波阵面的精确跟踪,从而能够准确测量当所述横波阵面通过不同组织时其在传播速度上的改变。在现有技术的***中,在假设超声探头与组织之间没有相对运动的同时,执行这些测量,从而仅有的相对组织运动是由推动脉冲力产生的。这种假设常常是不正确的,因为相对运动也能够由对探头的不稳定把持、患者运动、或因呼吸和心跳运动造成的解剖学运动产生。由辐射力造成的位移非常小,大约为10μm。尽管超声RF跟踪的精确度能够达到1-2μm,然而所述横波运动能够被掩埋在大得多的患者运动中,所述患者运动例如心脏和呼吸运动,以及环境干扰。尽管根据本发明的另一方面,能够使用滤波来尝试消除频率在所述横波谐波频率范围以外的噪声,但采取了额外的步骤以减小噪声。这包括使用所估计的远离激发区域的位移(例如,在深度方向上远离焦点至少半个场深的深度)作为背景噪声,因为能够假设在那个区域中没有应用显著的辐射力。将位移估计形式中的这种噪声“源”从在感兴趣区域处估计的横波位移中减去。
背景运动感测的简单例子图示于图7中。被聚焦的单一向量推动波束沿其波束轴在接近焦深110处具有最显著的效应。图7图示了向量推动波束的轮廓100,在轮廓100中,将推动波束的力集中。一些基于声辐射力的弹性成像技术仅涉及沿与所述推动波束相同的轴跟踪,并且在这种情况中,能够采用来自已经使用的跟踪波束的数据来感测背景运动,但是来自比焦距显著更短和更长的范围,即,聚焦推动波束的场深外部,以做出用于从样本测量结果减去的轴向运动估计。星形102和104图示了两个背景跟踪波束的聚焦区域,一个位于所述推动脉冲的聚焦区域之上,并且一个位于之下。背景跟踪波束的聚焦区域由在所述背景跟踪波束的任一侧上的虚线波束轮廓指示。在(一个或多个)推动脉冲的发射之前、过程中和/或之后的多个时间,对来自这些背景跟踪位置的回波采样。一般通过相关,比较这些时不同的回波,并将(一个或多个)比较结果用于评估轴向背景运动的存在。因背景影响造成的所述组织的任何位移均被从因所述横波造成的运动估计中减去,以针对背景影响校正所估计的横波运动。
图8图示了背景运动感测的另一例子。在这个例子中,在测量间隔过程中可以跟踪横向完全位于横波跟踪的感兴趣区域120以外的额外位置106、107、108和116、117、118,以采集实现在所述感兴趣区域以内或周围的任何位置处计算背景运动估计的数据。能够以此方式感测在所述测量间隔过程中来自探头的倾斜或旋转的运动影响。例如,如果对在点106、107、108处随时间的回波改变的比较指示感兴趣区域120左边的向上运动,并且在点116、117、118处的差异同时指示所述感兴趣区域右边的向下运动,那么能够总结出,存在所述探头相对于所述感兴趣区域的整体旋转或倾斜运动,应在测量中针对该运动做出补偿。
如图9中图示的,也能够在推动事件之前和之后的时间,在2D图像的平面中,沿在毗邻推动区域100的感兴区域120内的若干线跟踪,这在一些例子中是期望的。在这个例子中,在测量间隔过程中周期性地向推动脉冲向量100的左边对背景运动跟踪样本126、127、128和135、137、138的两条线进行采样,并且向所述推动脉冲向量右边对背景运动跟踪样本146、147、148和156、157、158的两条线进行采样。正常地,需要在推动事件前的一个背景运动采样和在推动事件之后的若干背景运动采样,以获得因推动事件造成的运动估计。然而,如果在所述推动之前采集两个或更多个背景运动采样集,也能够获得背景运动的估计。如果在所述推动之后足够长的时间也采集了至少一个背景运动回波集,则也可以得到背景运动的额外估计,因为可以在从所述推动脉冲之前到之后的时间中内插运动,而非外推。可以在多个与所述推动波束的轴的横向偏移处执行这种技术。如果所述背景运动在所述感兴趣区域上是不均匀的,可以获得在样本体积内轴向运动分量的标量场估计。
应该认识到,除了仅平面以外,还能够针对在3D空间中所做的测量结果执行背景运动校正。如图1中所示的二维阵列换能器的使用实现了在三维中弹性成像的执行,以带来改进的临床应用,因为弹性性质的平面外变化能够不利地影响单平面弹性成像测量结果的有效性。通过二维阵列对推动波束几何形状的额外3D控制能够增强信噪比表现,并带来额外的功能。在这种情况中,可以在感兴趣的3D区域内增加在测量间隔过程中在感兴趣的区域外部的额外的背景运动追踪波束,和/或早期和晚期背景运动跟踪波束,如在上文针对2D情况所指示,以获得轴向运动的完整3D体积估计,以用于校正所测量的对所述推动波束激发的响应。例如,能够在推动脉冲向量周围以90°间隔发射四个背景运动跟踪线。能够在2D推动脉冲片层之前和之后发射背景运动跟踪线,如上文所述的,以感测在其上正在测量横波的三维空间中的组织运动。

Claims (14)

1.一种用于横波分析的超声诊断成像***,其包括:
超声阵列探头,其沿预定向量发射推动脉冲以生成横波,沿毗邻推动脉冲向量的跟踪线发射跟踪脉冲,以及从沿所述跟踪线的点接收回波信号;
存储器,其用于存储跟踪线回波数据;
运动检测器,其响应于所述跟踪线数据,以用于检测经过跟踪线位置的横波;以及
显示器,其用于显示检测到的横波的特性,
其中,所述超声阵列探头还能用于沿一条或多条背景运动跟踪线进行发射,沿所述一条或多条背景运动跟踪线在不同时间接收毗邻所述推动脉冲向量的背景运动回波信号,比较所述背景运动回波信号以感测横波附近的背景运动。
2.如权利要求1所述的超声诊断成像***,其中,通过相关处理来比较在不同时间接收的背景运动信号。
3.如权利要求1所述的超声诊断成像***,其中,背景运动跟踪线沿推动脉冲向量定位,
其中,在位于所述推动脉冲的焦深之上和之下的点处感测背景运动。
4.如权利要求1所述的超声诊断成像***,其中,背景运动跟踪线位于推动脉冲向量的任一横向侧上。
5.如权利要求1所述的超声诊断成像***,还包括位于推动脉冲向量的至少一侧上的、用于横波分析的感兴趣区域,
其中,背景运动跟踪线位于毗邻所述感兴趣区域。
6.如权利要求1所述的超声诊断成像***,还包括位于推动脉冲向量的至少一侧上的、用于横波分析的感兴趣区域,
其中,第一背景运动跟踪线位于所述感兴趣区域中。
7.如权利要求6所述的超声诊断成像***,其中,第二背景运动跟踪线位于所述感兴趣区域中毗邻所述第一背景运动跟踪线。
8.如权利要求1所述的超声诊断成像***,其中,所述超声阵列探头还包括换能器元件的二维阵列,
其中,所述背景运动回波信号位于所述推动脉冲向量周围的三维空间中。
9.如权利要求8所述的超声诊断成像***,其中,从位于所述推动脉冲向量周围的体积象限接收所述背景运动回波信号。
10.如权利要求8所述的超声诊断成像***,其中,所述二维阵列换能器还能用于产生推动脉冲能量的片层,以生成横波阵面,
其中,从所述横波阵面的前方和后方接收背景运动回波信号。
11.如权利要求1所述的超声诊断成像***,还包括处理器,所述处理器响应于横波测量结果和所感测的背景运动,所述处理器能用于针对感测的背景运动调节所述横波测量结果。
12.一种用于针对组织与超声探头之间的相对运动的影响,调节在组织区域中测量的横波特性的测量结果的方法,所述方法包括:
使用超声探头以检测所述组织区域中的横波;
沿一条或多条背景运动跟踪线进行发射并且沿所述背景运动跟踪线接收背景运动回波信号;
比较在不同时间接收的背景运动回波信号以在检测所述横波的时间间隔中,感测所述超声探头与所述组织区域之间的相对运动;以及
产生针对相对运动调节的所述横波的特性。
13.如权利要求12所述的方法,其中,使用超声探头还包括利用所述超声探头发射推动脉冲,以生成横波,
其中,感测相对运动还包括:
在不同时间采集所述推动脉冲附近的背景运动回波信号;以及
比较在不同时间采集的所述背景运动回波信号,以感测背景运动。
14.如权利要求13所述的方法,其中,比较在不同时间采集的背景运动回波信号还包括将背景运动回波信号相关。
CN201180059600.XA 2010-12-13 2011-12-08 针对背景运动影响调节声辐射力效应的测量结果 Active CN103260525B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42247910P 2010-12-13 2010-12-13
US61/422,479 2010-12-13
PCT/IB2011/055546 WO2012080913A1 (en) 2010-12-13 2011-12-08 Adjusting measurements of the effects of acoustic radiation force for background motion effects

Publications (2)

Publication Number Publication Date
CN103260525A CN103260525A (zh) 2013-08-21
CN103260525B true CN103260525B (zh) 2015-07-15

Family

ID=45531894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180059600.XA Active CN103260525B (zh) 2010-12-13 2011-12-08 针对背景运动影响调节声辐射力效应的测量结果

Country Status (7)

Country Link
US (2) US10485514B2 (zh)
EP (1) EP2651307B1 (zh)
JP (1) JP6129744B2 (zh)
CN (1) CN103260525B (zh)
BR (1) BR112013014422A2 (zh)
RU (1) RU2603051C2 (zh)
WO (1) WO2012080913A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973060B2 (ja) 2012-10-07 2016-08-23 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 超音波トランスデューサ素子の下位集合を用いて超音波を送信することによるせん断波エラストグラフィのシステムおよび方法
CN104797199B (zh) * 2012-11-20 2018-02-23 皇家飞利浦有限公司 用于实时胎儿心脏评估的标准平面的自动定位
CN103908289B (zh) * 2012-12-31 2019-11-12 Ge医疗***环球技术有限公司 消除剪切波中的背景噪声的方法和相应的超声成像***
JP6305699B2 (ja) * 2013-07-01 2018-04-04 キヤノンメディカルシステムズ株式会社 超音波診断装置及び超音波イメージングプログラム
KR101654674B1 (ko) 2013-11-28 2016-09-06 삼성전자주식회사 탄성 영상 제공 방법 및 이를 위한 초음파 장치
KR20150070859A (ko) * 2013-12-17 2015-06-25 삼성전자주식회사 전단파를 이용하여 관심 영역에 대한 탄성 정보를 획득하는 방법 및 장치.
US9332963B2 (en) * 2014-01-21 2016-05-10 Siemens Medical Solutions Usa, Inc. Swept focus for acoustic radiation force impulse
JP2015188514A (ja) * 2014-03-27 2015-11-02 日立アロカメディカル株式会社 超音波診断装置
US20150272547A1 (en) * 2014-03-31 2015-10-01 Siemens Medical Solutions Usa, Inc. Acquisition control for elasticity ultrasound imaging
JP5851549B2 (ja) * 2014-04-21 2016-02-03 日立アロカメディカル株式会社 超音波診断装置
US10588604B2 (en) * 2014-05-16 2020-03-17 Koninklijke Philips N.V. Autocorrelation guided cross-correlation in ultrasound shear wave elastography
JP2016022249A (ja) * 2014-07-23 2016-02-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びプログラム
JP6006769B2 (ja) * 2014-10-16 2016-10-12 株式会社日立製作所 超音波診断装置
EP3215018B1 (en) * 2014-10-29 2023-12-06 Mayo Foundation for Medical Education and Research Method for ultrasound elastography through continuous vibration of an ultrasound transducer
JP5936734B1 (ja) * 2015-03-11 2016-06-22 日立アロカメディカル株式会社 超音波診断装置
US20180161011A1 (en) * 2015-06-11 2018-06-14 Koninklijke Philips N.V. Ultrasonic transducer array probe for shear wave imaging
US10582911B2 (en) 2015-08-11 2020-03-10 Siemens Medical Solutions Usa, Inc. Adaptive motion estimation in acoustic radiation force imaging
WO2017062553A1 (en) * 2015-10-08 2017-04-13 Mayo Foundation For Medical Education And Research Systems and methods for ultrasound elastography with continuous transducer vibration
US10376233B2 (en) * 2016-04-08 2019-08-13 Siemens Medical Solutions Usa, Inc. Diffraction source compensation in medical diagnostic ultrasound viscoelastic imaging
JP6601320B2 (ja) * 2016-06-16 2019-11-06 コニカミノルタ株式会社 超音波診断装置、及び超音波診断装置の制御方法
US11304679B2 (en) * 2016-09-12 2022-04-19 Koninklijke Philips N.V. Phase aberration correction in ultrasound shear wave elastography and associated devices, systems, and methods
US11364015B2 (en) * 2016-09-29 2022-06-21 Koninklijke Philips N.V. Ultrasonic shear wave imaging with background motion compensation
KR20180072358A (ko) * 2016-12-21 2018-06-29 삼성메디슨 주식회사 초음파 진단 장치 및 초음파 진단 장치 제어 방법
US11644440B2 (en) 2017-08-10 2023-05-09 Mayo Foundation For Medical Education And Research Shear wave elastography with ultrasound probe oscillation
CN111885965A (zh) * 2018-03-21 2020-11-03 皇家飞利浦有限公司 用于三维中的剪切波成像的超声***
CN109171816B (zh) * 2018-09-05 2021-07-20 中北大学 一种用于检查乳腺的超声ct***及其扫描方法
JP7304230B2 (ja) 2019-07-26 2023-07-06 富士フイルムヘルスケア株式会社 超音波撮像装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571649A (zh) * 2001-10-17 2005-01-26 谱声成像公司 用于指示身体组织机械硬度特性的设备和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810731A (en) * 1995-11-13 1998-09-22 Artann Laboratories Method and apparatus for elasticity imaging using remotely induced shear wave
WO2009140607A1 (en) * 2008-05-15 2009-11-19 Mayo Foundation For Medical Education And Research Vibration generation and detection in shear wave dispersion ultrasound vibrometry with large background motions
US6527717B1 (en) * 2000-03-10 2003-03-04 Acuson Corporation Tissue motion analysis medical diagnostic ultrasound system and method
US8118744B2 (en) 2007-02-09 2012-02-21 Duke University Methods, systems and computer program products for ultrasound shear wave velocity estimation and shear modulus reconstruction
US9364194B2 (en) * 2008-09-18 2016-06-14 General Electric Company Systems and methods for detecting regions of altered stiffness
US20100191113A1 (en) * 2009-01-28 2010-07-29 General Electric Company Systems and methods for ultrasound imaging with reduced thermal dose
US20100286520A1 (en) * 2009-05-11 2010-11-11 General Electric Company Ultrasound system and method to determine mechanical properties of a target region
US8500639B2 (en) * 2009-09-11 2013-08-06 Mr Holdings (Hk) Limited Systems and methods for shear wave field formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571649A (zh) * 2001-10-17 2005-01-26 谱声成像公司 用于指示身体组织机械硬度特性的设备和方法

Also Published As

Publication number Publication date
CN103260525A (zh) 2013-08-21
EP2651307B1 (en) 2017-11-15
US10485514B2 (en) 2019-11-26
RU2013132551A (ru) 2015-01-20
JP6129744B2 (ja) 2017-05-17
US11446006B2 (en) 2022-09-20
JP2013544615A (ja) 2013-12-19
RU2603051C2 (ru) 2016-11-20
BR112013014422A2 (pt) 2017-03-21
US20200060655A1 (en) 2020-02-27
US20130296698A1 (en) 2013-11-07
WO2012080913A1 (en) 2012-06-21
EP2651307A1 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
CN103260525B (zh) 针对背景运动影响调节声辐射力效应的测量结果
CN103260527B (zh) 用于超声材料特性测量和成像的超声波声辐射力激励的***
US11464489B2 (en) Ultrasonic shear wave imaging with focused scanline beamforming
KR101868381B1 (ko) 의료용 초음파 이미징에서의 전단파 정보의 해석
EP2536339B1 (en) Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
CN103505243B (zh) 测量超声波的声吸收或衰减
KR101983126B1 (ko) 음향 방사력 이미징에서의 적응식 모션 추정
KR102210372B1 (ko) 초음파 의료 이미징에서 전단 속도로부터의 조직 점탄성 추정
EP3111206A1 (en) Methods and systems for measuring properties with ultrasound
US20220386996A1 (en) Ultrasonic shearwave imaging with patient-adaptive shearwave generation
KR102206496B1 (ko) 증가된 펄스 반복 인터벌을 갖는 초음파에 기반한 전단파 이미징

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant