CN103218483B - 一种基于梁—弹簧模型的螺纹连接强度计算方法 - Google Patents

一种基于梁—弹簧模型的螺纹连接强度计算方法 Download PDF

Info

Publication number
CN103218483B
CN103218483B CN201310112092.8A CN201310112092A CN103218483B CN 103218483 B CN103218483 B CN 103218483B CN 201310112092 A CN201310112092 A CN 201310112092A CN 103218483 B CN103218483 B CN 103218483B
Authority
CN
China
Prior art keywords
model
beta
tan
nut
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310112092.8A
Other languages
English (en)
Other versions
CN103218483A (zh
Inventor
张铮
陈天宇
安向阳
王晓军
刘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201310112092.8A priority Critical patent/CN103218483B/zh
Publication of CN103218483A publication Critical patent/CN103218483A/zh
Application granted granted Critical
Publication of CN103218483B publication Critical patent/CN103218483B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于梁—弹簧系模型的螺纹连接强度计算方法,该方法首先利用螺纹连接的受力平衡、变形状态、边界条件和变形连续/协调条件建立合理的螺纹连接梁—弹簧简化模型,再通过求解该梁—弹簧系模型,得到梁—弹簧模型的受力、变形情况,最后将该梁—弹簧系模型的受力、变形情况还原到原始螺纹连接状态上,从而建立起基于梁—弹簧模型求解螺纹连接各牙受力分布并用于螺纹连接强度计算的方法。本发明不仅大大简化了原有的实体模型,而且建立起合理的且可操作的力学模型,使通过模型分析检验螺纹连接件的强度条件而非通过实体检验变为了可能;与以往的建模方法相比,该力学模型更加接近于实体模型,模拟、计算精度更加高,应用更加广泛。

Description

一种基于梁—弹簧模型的螺纹连接强度计算方法
技术领域
本发明适用于螺纹连接件各齿受力分布的分析,用以检验螺纹连接的强度是否达标,并可用于指导通过改变齿形、材料参数来优化螺纹连接件受力分布,从而提高连接件的承载能力。
背景技术
螺纹连接件在各个工业部门有着广泛的应用,有资料显示,仅美国一年就要生产1000亿件螺纹连接件。螺纹连接件在使用过程中存在着两个主要问题,目前还没有得到很好的解决,即螺栓的疲劳破坏和自松动问题。
对于不同的受载形式,螺栓的破坏形式有很大的区别。静载荷下受拉螺栓的损坏多为螺纹部分的塑性变形和断裂;变载荷下多为栓杆齿根部分的疲劳断裂。据资料统计,在破坏了的螺栓零件中,疲劳破坏的比例高达85%,其危害性远远高于其它破坏形式。造成螺栓疲劳破坏的主要原因是各齿承载分配不均。另外,螺栓自身存在疲劳源,与其生产工艺有直接关系,也是导致螺栓疲劳破坏的重要原因。现有资料显示,荷载分布不均是螺栓杆破坏的决定性因素。大量研究表明第一牙承担了超过1/3的载荷,前三牙大约承担了全部载荷的70%。
在轴向载荷作用下,螺纹连接的各齿受力很不均匀,严重制约了连接件整体的承载能力。为改善螺栓各齿受力分布,国内外学者做了大量工作,主要集中在两个方面:一方面是降低齿根部的应力集中,主要方法是增大牙底圆角半径、加开应力减轻槽、降低螺纹深度;另一方面是使螺栓各牙承力趋于均匀,主要是改变螺纹各牙的结构参数,如变螺距螺纹、变牙型螺纹、变外形螺母等。这些研究在一定程度上改善了螺栓各齿受力的不均衡,但是目前还没有一种简明有效的理论模型,用以分析螺纹各齿受力,为齿形优化提供理论指导和参考。
发明内容
本发明要解决的技术问题是提供一种基于梁—弹簧模型的螺纹连接强度计算方法,该方法在求解螺纹连接各牙受力分布的过程中,将螺纹连接部分简化为梁—弹簧模型,为螺纹连接的强度检验提供了一种新的简明而较为准确的方法,通过梁—弹簧模型的力学求解,得到各牙受力的分布,从而确定螺纹连接的强度条件。另外,还可通过调整齿形和材料参数,进行螺纹连接的优化设计。
为解决上述技术问题,本发明采用的技术方案为:建立梁—弹簧模型,模拟实际螺纹连接的受力和变形情况,从而通过求解梁—弹簧模型,得到实际连接的受力和变形情况。技术途径包括以下步骤:首先利用螺纹连接的力学平衡、变形、边界条件和协调条件建立合理的梁—弹簧模型,再通过求解该梁—弹簧模型,得到梁—弹簧模型的受力和变形情况,最后将该梁—弹簧模型的受力和变形情况还原到原始螺纹连接状态上,从而建立起基于梁—弹簧模型求解螺纹连接各牙受力分布并用于螺纹连接强度检验的规则。
本发明的优点在于:
(1)简化了原有的实体模型,建立起简单而可操作的力学模型,使通过局部受力分析检验螺纹连接件的强度条件而非通过实验检验变为可能;
(2)与以往的建模方法相比,本力学模型更加接近于实体模型,模拟、计算精度更加高;
(3)与以往的建模方法相比;本模型可以通过更改螺纹连接的材料、齿形参数,进行螺纹连接优化设计。
附图说明
图1是本发明的梁—弹簧模型的受力、边界条件示意图;
图2为本发明中螺栓螺母的梁—弹簧模型局部平衡示意图。
具体实施方式
下面结合附图和实施例对本发明提供的一种基于梁—弹簧模型的螺纹连接强度计算方法进行详细说明。本发明方法的具体步骤如下:
第一步,螺纹连接的梁-弹簧模型的建立。
从工程应用的准确性和实用性考虑,本发明提出了分析螺纹连接各齿承载分析的梁-弹簧模型,如说明书附图1所示,忽略螺纹小螺旋升角的影响,假设螺纹连接是轴对称问题,将整个螺纹连接部分沿半径分割成若干个扇形部分,将螺纹(包括螺栓和螺母)的螺齿简化成扇形梁,即变截面变宽度梁(以下简称变高变宽梁):对于螺栓而言,从螺杆的轴线到齿端部可以看作一端为无转角支撑,另一端自由的模型梁,其中,螺齿部分为变截面变高梁(以下简称变高变宽梁),轴线到齿根部为常高变宽梁;同样的,对于螺母而言,从螺母外表面到齿端部可以看作一端为无转角支撑,另一端自由的模型梁,其中,螺齿部分为变高变宽梁,螺母外表面到齿根部为常高变宽梁。需要说明的是,所谓“无转角支撑”即梁端面无转角,但允许沿轴向(即螺杆轴线方向)移动。螺栓螺齿之间的连接过渡部分用同心圆分割成一个小扇形和N-1个四边扇形,相应的,螺母分为M个四边扇形;对于螺栓,这些扇形的外沿距对称轴的距离分别为r/N,2r/N,…r,对于螺母为R+c/M,R+2c/M…R+c,其中,r为螺栓的内径,R为螺栓的外径,c为螺母模型梁的常高变宽截面部分的长度。每个扇形和四边扇形都简化为弹性模量渐变的模型弹簧。由此,螺栓/螺母相邻两模型梁之间共有N/M根模型弹簧。为方便起见,取
第二步,确定梁-弹簧模型的受力和变形情况。
所述梁-弹簧模型受力、变形分析如下(参看说明书附图1):
(1)假设螺杆芯部分受均匀应力(在齿根部分有应力集中),相应的,螺杆第一齿的模型梁常高变宽部分横截面受均布外载荷;
(2)螺母模型梁常高变宽部分横截面由于固定作用而受到约束,可以简化成固定支撑(也可以看做弹性约束);
(3)同样,相应于螺母模型梁常高变宽部分横截面可假设受均匀应力;
(4)连接相邻两个螺齿的过渡部分的各模型弹簧,可看作均匀变形(拉伸或压缩),变形由相邻的上下两个常高变宽梁的相对位移决定;
考虑到齿根部的应力集中,也可把模型弹簧力看作函数;另外,模型弹簧力可以看作离散的,也可看作连续分布的。
由上可见,模型梁的轴向位移包括两部分:一部分是由于螺齿承载而产生的整***移,即由于承载的前一齿发生位移,后面的各齿由此而发生相应的刚***移;另一部分是由于齿端部承载而形成的模型梁的挠度(位移)。
(5)螺栓和螺母的齿间接触区域可认为是模型梁变高变宽部分,由于螺栓螺母模型结构形式的相似性,可假设接触载荷对接触区中心点对称,且呈抛物线分布。因此,接触载荷也可简化成集中力作用于接触区域中心点;由于螺纹锥度为1:16,所以可以认为接触力方向即为轴向。
接触载荷也可考虑简化为其它形式的对称分布,如三角形线性分布等。
第三步,梁-弹簧模型的力学求解。
1、螺纹连接模型梁和模型弹簧参数计算:
如说明书附图1所示,从上到下,螺栓的模型梁(左边)排序为①、③、⑤、⑦、⑨,螺母的模型梁(右边)排序为②、④、⑥、⑧、⑩。螺栓的内径为r(螺栓小径的一半),外径为R(螺栓大径的一半),螺栓的模型梁变高变宽部分(即螺栓的螺齿部分)长为R-r;与之相对应的,螺母的模型梁全长为C,模型梁常高变宽部分的长度为c,变高变宽部分(即螺母的螺齿部分)长为C-c。螺母的模型梁的变高变宽部分长度和螺栓的模型梁的变高变宽部分的长度一样,即R-r=C-c。设径向坐标为x,螺栓的模型梁的常高变宽部分高为h0,宽b(x),其中x∈(0,r),变高变宽部分高为h(x),宽为b(x),其中x∈(r,R)。
容易得到,螺栓和螺母的模型梁(包括常高变宽梁和变高变宽梁)的宽为x∈(0,R),θ为所取模型梁所对应的扇形的圆心角。为了更加符合实际的受力变形,将整个螺纹连接分割的扇形数量尽量取大,因此θ很小,则对于螺栓,其模型量宽可表示为:
b ( x ) = 2 x sin ( θ 2 ) ≈ xθ
对于螺母,其模型量宽可表示为:
b ( x ) = 2 ( R + c - x ) sin ( θ 2 ) ≈ ( R + c - x ) θ
设螺栓螺母材料的弹性模量均为E,所有模型弹簧的等效初始长度为l(可视为相邻两齿中线间距减去单齿齿根部厚度),为两个相邻齿中心线的间距减掉模型梁常高变宽部分的厚度(也可以认为是齿根部的厚度);为了方便起见,模型弹簧编号如下:在模型梁下侧离啮合点最远处的模型弹簧编号为弹簧i1,由远及近依次为i2,i3…iN(螺母由啮合点到外边缘依次为i(N+1),i(N+2),…i(N+M))。定义模型弹簧i1的刚度为K1,则其中S1为第一个模型弹簧(即第一个小扇形)的面积,
由各扇形的面积容易得到弹簧in的刚度为:
K n = ES n l = [ n 2 - ( n - 1 ) 2 ] ES 1 l = ( 2 n - 1 ) ES 1 l
其中in=i1,i2,i3,…,iN,Sn为第n个模型弹簧对应的面积。所以,相邻两模型梁之间并联的模型弹簧总刚度,对于螺栓,为:
K 0 = Σ n = 1 N K n = N 2 ES 1 l = Eθr 2 2 l
同理,螺母为:
K 0 = Eθr 2 2 l ( M - 1 ) ( M + 1 + 2 N ) N 2 ≈ Eθc ( c + r ) 2 l
2、模型力学方程的建立
如发明书附图1所示,模型梁①上侧受到均匀分布的已知外载荷,载荷集度为q,由模型弹簧整体受力平衡可知在模型梁②上侧受到集度为q′,且满足q=q′。将模型梁①下侧的模型弹簧受力由螺栓轴线到齿根部分别设为F11,F12,…,F1n,n=1,2……,N。以此类推,模型梁(i=1,2,…,8)下侧的模型弹簧受力由螺栓轴线到齿根部分别为Fi1,Fi2,…,Fin。对于螺栓,n=1,…,N;对于螺母,n=N+1,…,N+M。
螺纹连接的接触区域为x∈(r,R),模型梁①与模型梁②的接触载荷集度为:
F 1 - 2 = A 1 - 2 { ( x - r - R - r 2 ) 2 - ( R - r 2 ) 2 } = A 1 - 2 ( x - r ) ( x - R ) - - - ( 1 )
其中,A1-2为接触载荷分布幅值。其它接触载荷分布与此类同,载荷分布幅值分别为A3-4、A5-6、A7-8、A9-10
截开任意一组相互接触的螺栓螺母模型梁下的模型弹簧,其合力如附图2所示,根据模型结构的整体平衡,且考虑到各组弹簧变形均匀相等,则有(对于螺栓和螺母):
F i = Σ n = 1 N F in
(2)
= F i + 1 = Σ m = N + 1 N + M F i + 1 , m
i=1,3,5,7。
一般而言,螺栓处于受拉状态,在齿根部存在较大的拉应力集中区域,易于生成裂纹,造成螺杆沿该截面断裂;相反,螺母处于受压状态,虽然在齿根部也存在压应力集中区域,但不易于生成裂纹进而造成破坏失效。由此可见,可适当选择外径较大的螺杆,以增大螺杆芯部面积,减小其应力;同时,可适当选择外径较小的螺母,以减小螺母外圈面积,增大螺母应力,在保障紧固件强度的同时,也使紧固件得到优化,减轻重量。
模型梁①受力平衡方程为:
1 2 ar 2 - F 1 - A 1 - 2 6 ( R - r ) 3 = 0 - - - ( 3 a )
同理,模型梁③平衡方程为:
F 1 - F 3 - A 3 - 4 6 ( R - r ) 3 = 0 - - - ( 3 b )
以此类推,模型梁⑤的平衡方程为:
F 3 - F 5 - A 5 - 6 6 ( R - r ) 3 = 0 - - - ( 3 c )
模型梁⑦的平衡方程为:
F 5 - F 7 - A 7 - 8 6 ( R - r ) 3 = 0 - - - ( 3 d )
模型梁⑨下侧自由,平衡方程为:
F 7 - A 9 - 10 6 ( R - r ) 3 = 0 - - - ( 3 e )
螺母各模型梁的平衡,由整体平衡和与其相接触的螺杆模型梁平衡,得到自然满足。这里不再复述。
如前所述,螺栓螺母各模型梁在外力和模型梁间相互作用下,发生刚***移和弯曲变形。由于螺栓芯截面应力分布均匀,可以认为模型梁常高变宽部分只有刚***移(无弯曲);模型弹簧的变形为与模型弹簧相邻的上下两模型梁的相对挠度;模型梁变高变宽部分在常高变宽部分的刚体移动的基础上还发生弯曲变形,假设接触区的分布接触力等效为与分布接触力等值的集中力,作用在接触区中心,即螺栓的点(R+r)/2处(亦即螺母的点(C+c)/2处)。
由于约束,模型梁②无刚***移,即刚***移w2,0=0,除此以外,模型梁(i=1,3,4,5,…,9,10)的刚***移为wi,0,相应的各模型梁因弯矩产生的相对挠度为,等效接触力作用点的相对挠度为,则模型弹簧力为:
对于螺栓:
Fij=Kj(wi,0-wi+2,0)j=1,2,3...Ni=1,3,5,7(4a)
Fi=K0(wi,0-wi+2,0)i=1,3,5,7(4b)
wi+2,0为第i+2个模型梁刚***移。
对于螺母:
Fij=Kj(wi,0-wi+2,0)j=N+1,N+2,N+3...N+Mi=2,4,6,8(4c)
Fi=K0(wi,0-wi+2,0)i=2,4,6,8(4d)
在本文的(螺栓/螺母)模型及讨论中,均以约束端(即螺栓轴线或螺母外缘)作为模型梁长度方向坐标x的起点。螺齿高(即模型梁长)相对于螺杆内径(或者螺母***宽)很小,而齿厚(即模型梁高)相对又较大,如果把螺齿作为梁考虑,不仅有较大剪切变形,而且从本质上已超出了梁的范畴。因此,本文提出的模型梁从螺杆轴线或螺母外缘到齿端,基本符合梁的物理内涵,因而采用梁模型进行分析也较为严谨。
弹簧力也可采用连续函数表示。令Fi(x)=K(x)(wi,0-wi+2,0),其中,对于螺栓,螺母为同时,将模型梁的弯矩统一表示为:
对模型梁(i=1,3,5,7,9),在常高变宽段,弯矩可表示为:
M 0 i = ∫ x r Eθx l ( w i + 4,0 + w i , 0 - 2 w i + 2,0 ) ( r - x ) dx + A i - ( i + 1 ) 12 ( R - r ) 3 ( R + r 2 - x ) + γ i
= Eθ 6 l ( w i + 4,0 + w i , 0 - 2 w i + 2,0 ) ( r 3 - 3 x 2 r + 2 x 3 ) + A i - ( i + 1 ) 12 ( R - r ) 3 ( R + r 2 - x ) + γ i
= ( R - r ) 3 A i - ( i + 1 ) 12 [ 3 R + 7 r 6 + 4 x 3 - 6 rx 2 - 3 r 2 x 3 r 2 ] + γ i
由力平衡方程得:
F i - F i + 2 - A i + 2 - i + 3 6 ( R - r ) 3 = 0
将上式转化为弯矩形式:
∫ 0 r [ F i ( x ) dx - F i + 2 ( x ) dx ] - A i + 2 - i + 3 6 ( R + r ) 3 R + r 2 = 0
联立求解可得待定常数γi
γ i = - ( R - r ) 3 A i - ( i + 1 ) 12 3 R + 7 r 6
对模型梁(i=1,3,5,7,9),在常高变宽段,弯矩可表示为
M 0 i = ( R - r ) 3 A i - ( i + 1 ) 12 4 x 3 - 6 rx 2 - 3 r 2 x 3 r 2 - - - ( 5 a )
同时,对模型梁(i=2,4,6,8,10),在常高变宽段,弯矩可表示为:
M 0 i = ∫ x c Eθ ( R + c - x ) l ( w i + 4,0 + w i , 0 - 2 w i + 2,0 ) ( c - x ) dx - A ( i - 1 ) - i 12 ( R - r ) 3 ( C + c 2 - x ) + γ i
= Eθ 6 l ( w i + 4,0 + w i , 0 - 2 w i + 2,0 ) ( 2 c 3 + 3 Rc 2 - 2 x 3 + R + 2 c 2 x 2 - ( R + c ) cx ) - A ( i - 1 ) - i 12 ( R - r ) 3 ( C + c 2 - x ) + γ i
= - ( R - r ) 3 A ( i - 1 ) - i 12 [ 5 c 3 + 9 Rc 2 - 3 CRc - 3 Cc 2 - 8 x 3 + ( 2 R + 4 c ) x 2 + 2 ( R + c ) cx 6 c ( c + r ) ] + γ i
同理,可以得到,
γ i = ( R - r ) 3 A ( i - 1 ) - i 12 ( 5 c 3 + 9 Rc 2 - 3 CRc - 3 Cc 2 )
所以,
M 0 i = - ( R - r ) 3 A ( i - 1 ) - i 12 - 8 x 3 + ( 2 R + 4 c ) x 2 + 2 ( R + c ) cx 6 c ( c + r ) - - - ( 5 b )
模型梁(i=1,3,5,7,9)变高变宽截面段(r<x<(R+r)/2)的弯矩为:
M ^ i = A i - &lang; i + 1 &rang; 12 ( R - r ) 3 ( R + r 2 - x ) - - - ( 6 a )
模型梁(i=2,4,6,8,10)变高变宽截面段(c<x<(C+c)/2)的弯矩为:
M ^ i = - A ( i - 1 ) - i 12 ( R - r ) 3 ( C + c 2 - x ) - - - ( 6 b )
对于变高变宽截面段,设模型梁的楔角为β,则该段模型梁截面高可表示为:
i=1,3,5,7,9h(x)=h0-2(x-)rtanβ(7a)
i=2,4,6,8,10h(x)=h0-2(x-c)tanβ(7b)
故模型梁(i=1,3,5,7,9)的弯曲方程可表示为:
d 2 w ^ i dx 2 = M 0 i EI ( x ) = ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 x&theta; 4 x 3 - 6 rx 2 - 3 r 2 x 3 r 2 = ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 &theta; 4 x 2 - 6 rx - 3 r 2 3 r 2 ( 0 < x < r ) M ^ i EI ( x ) = 12 Eh 3 ( x ) x&theta; [ A i - &lang; i + 1 &rang; 12 ( R - r ) 3 ( R + r 2 - x ) ] ( r < x < R + r 2 ) - - - ( 8 a )
同时模型梁(i=2,4,6,8,10)的弯曲方程可表示为:
d 2 w ^ i dx 2 = M 0 i EI ( x ) = - ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 &theta; ( R + c - x ) - 8 x 3 + ( 2 R + 4 c ) x 2 + 2 ( R + c ) cx 6 c ( c + r ) ( 0 < x < c ) M ^ i EI ( x ) = - 12 Eh 3 ( x ) &theta; ( R + c - x ) [ A &lang; i - 1 &rang; - i 12 ( R - r ) 3 ( C + c 2 - x ) ] ( c < x < C + c 2 ) - - - ( 8 b )
边界条件为:
固支端(螺杆的轴线或螺母的外缘):
w ^ i | x = 0 = 0 , d w ^ i dx | x = 0 = 0 - - - ( 9 a )
齿根部即常高变宽截面段与变高变宽截面段的交接面:
w ^ | x = r - = w ^ | x = r + , d w ^ dx | x = r - = d w ^ dx | x = r + (螺栓)
w ^ | x = c - = w ^ | x = c + , d w ^ dx | x = c - = d w ^ dx | x = c + (螺母)(9b)
由于螺栓(螺母)常高变宽段与变高变宽段的交接面坐标为x=r(x=c),而此处左右两边的弯曲方程是不一样的。故为区别起见,表示由常高变宽段弯曲方程得到的数值,表示由变高变宽段得到的结果。
两次积分式(8a)、(8a)并考虑到边界条件式(9a)、(9b)可得:
i=1,3,5,7,9时(螺栓):
w ^ i = A i - &lang; i + 1 &rang; 9 r 2 Eh 0 3 &theta; ( R - r ) 3 ( x 3 - 3 rx 2 - 9 r 2 x ) x ( 0 < x < r ) A i - &lang; i + 1 &rang; ( R - r ) 3 4 E&theta; ( h 0 + 2 r tan &beta; ) 3 ( 2 ( R + r ) x ln 2 x tan &beta; h 0 + 2 ( r - x ) tan &beta; ) + ( h 0 + 2 r tan &beta; ) 2 ( h 0 + ( R + r ) tan &beta; ) 2 ( h 0 + 2 ( r - x ) tan &beta; ) tan 2 &beta; + &Pi; 1 x + &Xi; 1 ( r < x < R + r 2 ) - - - ( 10 a )
其中:
&Pi; 1 = - A i - &lang; i + 1 &rang; ( R - r ) 3 E h 0 2 &theta; [ 14 r 9 h 0 + ( h 0 + 2 r tan &beta; ) ( 2 R tan &beta; - h 0 ) h 0 + [ 2 h 0 2 ( R + r ) tan &beta; ] ln ( 2 r tan &beta; h 0 ) 4 ( h 0 + 2 r tan &beta; ) 3 tan &beta; ]
&Xi; 1 = A i - &lang; i + 1 &rang; E&theta; ( R - r ) 3 [ 11 r 2 9 h 0 3 - 2 ( R + r ) r ln 2 r tan &beta; h 0 + ( h 0 + 2 r tan &beta; ) 2 ( h 0 + ( R - r ) tan &beta; ) 2 h 0 tan 2 &beta; 4 ( h 0 + 2 r tan &beta; ) 3 ]
(10b)
+ A i - &lang; i + 1 &rang; ( R - r ) 3 Eh 0 2 &theta; [ 14 r 9 h 0 + ( h 0 + 2 r tan &beta; ) ( 2 R tan &beta; - h 0 ) h 0 + [ 2 h 0 2 ( R + r ) tan &beta; ] ln ( 2 r tan &beta; h 0 ) 4 ( h 0 + 2 r tan &beta; ) 3 tan &beta; ] r
i=2,4,6,8,10时(螺母):
w ^ i = - A ( i - 1 ) - i ( R - r ) 3 6 c ( c + r ) Eh 0 3 &theta; x 3 ( - 6 c 3 - 18 R 3 + 9 R 2 x + 3 Rx 2 + 2 x 3 + 3 c 2 ( - 10 R + x ) + 2 c ( - 21 R 2 + 6 Rx + x 2 ) ) - 2 ( c + R ) 2 ( c + 3 R ) ( c + R - x ) ln ( R + c - x ) ( 0 < x < C ) - A < i - 1 > - i ( R - r ) 3 2 E&theta; &times; ( 2 r + c - C ) [ ( 2 ( R + c - x ) tan &beta; ) ln ( h 0 + 2 ( c - x ) tan &beta; ) - ( R + c - x ) ln ( R + c - x ) ] 2 ( h 0 - 2 R tan &beta; ) 3 tan &beta; + h 0 + ( c - C ) tan &beta; 2 ( h 0 - 2 R tan &beta; ) ( h 0 + 2 ( c - x ) tan &beta; ) tan 2 &beta; + &Pi; 2 x + &Xi; 2 ( C < x < C + R - r 2 )
(10c)
其中:
&Pi; 2 = A ( i - 1 ) - i ( R - r ) 3 E&theta; &times;
ln ( R h 0 ) ( 2 R + c - C ) 2 ( 2 R tan &beta; + h 0 ) 3 + ( 2 R tan &beta; - h 0 ) [ ( C - c ) tan &beta; - h 0 ] + 2 ( 2 R + c - C ) h 0 tan &beta; 4 ( 2 R tan &beta; - h 0 ) 2 h 0 2 tan &beta; - 20 c 3 + 9 Rc 2 + 18 R 2 c - 6 ( c + R ) 2 ( C + 3 R ) ln R 18 c ( c + r ) h 0 3
&Xi; 2 = - A ( i - 1 ) - i ( R - r ) 3 E&theta; c 3 ( c 3 - 15 c 2 R - 33 c R 2 - 18 R 3 ) - 2 ( c + R ) 2 ( c + 3 R ) R ln R 1 6 c ( c + r ) h 0 3 + ( 2 R + c - C ) [ ( 2 R tan &beta; ) ln h 0 - R ln R ] 4 ( h 0 - 2 R tan &beta; ) 3 tan &beta; + h 0 + ( c - C ) tan &beta; 8 ( h 0 + 2 R tan &beta; ) h 0 tan 2 &beta; + ln ( R h 0 ) ( 2 R + c - C ) 2 ( 2 R tan &beta; - h 0 ) 3 + ( 2 r tan &beta; - h 0 ) [ ( C - c ) tan &beta; - h 0 ] + 2 ( 2 R + c - C ) h 0 tan &beta; 4 ( 2 R tan &beta; - h 0 ) 2 h 0 2 tan &beta; - 20 c 3 + 9 Rc 2 + 1 8 R 2 c - 6 ( c + R ) 2 ( c + 3 R ) ln R 18 c ( c + r ) h 0 3 c
(10d)
由于螺纹副在受力过程中,螺栓各牙与对应的螺母各牙始终保持接触,并假设无接触面内的相对滑动,可以得到变形协调条件如下:
w i , 0 - w ^ i | x = R + r 2 = w i + 1,0 + w ^ i + 1 | x = C + c 2 , i = 1,3,5,7,9 - - - ( 11 )
3、梁-弹簧模型的求解
由平衡方程式(3a)~(3e)及与之对应的螺母的平衡方程式共可得到九个相互独立的平衡方程。再加上式(4a)~(4d)八个物理方程,十个弯曲方程(10a)~(10d),五个变形协调方程(11),共32个方程;其中含有Fi(i=1,2,…,8),A<i-(i+1)>(i=1,3,5,7,9),以及wi,0(i=1,3,4,…,10)和(i=1,2,…,10)共32个未知数。通过求解上述32个方程组成的方程组,即可求得到各齿承载分布。
第四步,梁—弹簧模型的还原及螺纹连接强度检验、齿形材料参数优化。
将第三步中的模型力学方程求解,其中A<i-(i+1)>(i=1,3,5,7,9)即代表螺纹连接第1、2、3、4、5齿的受力大小。根据工程经验,第一齿的承载往往占总外载的35%~50%,远大于其他各齿的受载。因此,我们可以根据第一齿承载的百分比检验螺纹连接的强度是否符合标准。从而达到螺纹连接强度的检验目的。同时,本方法还可以更改连接螺纹齿形、材料参数(包括螺栓螺母的直径、螺母外圈厚度,以及螺栓螺母的材料弹性模量、螺距、齿根圆半径、牙型半角),计算不同参数下的螺纹连接各齿受力分布,从而达到材料、齿形优化的目的。
实施例
取材料弹性模量为E=2.1×105N/m2(普通碳钢),螺栓大径和小径分别为R=5.000mm,r=4.026mm,螺母大径小径分别为C=3.97mm,c=3mm,螺纹齿部厚度h=1.125,齿间连接部分厚度l=0.375,牙型半角π/6(标准M10螺纹连接),通过MATLAB计算得到各牙承载比例。计算结果如下:
表1计算结果比较
分别通过改变螺纹连接的材料弹性模量,齿形尺寸参数,牙型半角,来对螺纹连接的受力分布情况进行优化设计。
首先,改变材料弹性模量,得到分布情况如表2所示(E1为螺栓弹性模量,E2为螺母弹性模量):
根据表2,通过改变螺母材料,降低螺母的弹性模量,可以降低第一牙的承载至28%,使受力分布更加均匀。
表2材料弹性模量分布情况
其次,改变齿形参数,这里仅就螺距(亦即螺纹齿部厚度、齿间连接部分厚度)的变化进行讨论。
表3螺距影响分布情况
根据表3,通过改变螺纹连接的螺距(螺纹齿部厚度、齿间连接部分厚度),减小牙根圆角半径,可以降低第一牙的承载至43.6%。效果不明显。
另外,改变螺距,得到分布情况如表4所示的变化影响。
表4螺距影响分布情况
根据表4,通过减小螺纹连接的螺距,可以降低第一牙的承载至27.4%。
最后,改变螺纹连接牙型半角,得到分布情况如下:
表5牙型半角影响分布情况
根据表5,通过增大螺纹连接的牙型半角,可以降低第一牙的承载至43%,效果也不明显。
综上,可以通过降低材料弹性模量,减小牙根圆半径,减小螺距,增大牙型半角等方式降低第一牙受力,使各牙承载更加均匀,从而提高螺纹连接整体的承载能力。

Claims (1)

1.一种基于梁—弹簧模型的螺纹连接强度计算方法,采用的技术方案包括以下步骤:首先根据螺纹连接的受力平衡、变形状态、边界条件和连续/协调条件建立梁—弹簧系模型,模拟实际螺纹连接的受力、变形情况,进而求解梁—弹簧系模型得到具体的受力、变形情况,从而建立起基于梁—弹簧系模型求解螺纹连接各牙受力分布并用于螺纹连接强度检验的方法,具体步骤如下:
第一步:螺纹连接的梁-弹簧模型的建立;
假设螺纹连接是轴对称的,将整个螺纹连接部分沿半径分割成若干个扇形部分,从螺杆的轴线到其齿端部的扇形部分简化成扇形梁,螺杆轴线一端为无转角支撑,另一端自由,其中,螺齿部分为变高变宽梁,螺杆轴线到齿根部为常高变宽梁;同样,对于螺母而言,从螺母外表面到齿端部的扇形部分简化成扇形梁,螺母外表面端为无转角支撑,另一端自由,螺齿部分为变高变宽梁,螺母外表面到齿根部为常高变宽梁;所述的螺纹连接部分包括螺栓和螺母;所谓无转角支撑即梁端面无转角,但允许沿轴向即螺杆轴线方向移动;
上述扇形在螺栓模型梁之间的连接过渡部分,用同心圆按径向等分,分成一个小扇形和N-1个四边扇形,所述小扇形和四边扇形的外沿距对称轴的距离分别为r/N,2r/N,…,r,其中,r为螺栓小径;同样,螺母模型梁之间的连接过渡部分,用同心圆按径向等分,分割成M个四边扇形,所述四边扇形的外沿距对称轴的距离分别为R+(c/M),R+(2c/M),…,R+c,其中,R为螺栓外径,R+c为螺母外径;上述螺栓和螺母的每个分割块都简化为模型弹簧,其弹性模量由材料弹性模量、过渡部分高度和横截面面积决定;至此,相邻的两个螺栓模型梁之间共有N根模型弹簧,相邻的两个螺母模型梁之间共有M根模型弹簧,且有c/M=r/N,其中,N为螺栓分割的数量,M为螺母分割的数量,c为螺母外表面到齿根部的长度;所述的小扇形是指最靠近轴线的一块扇形;
第二步:确定梁-弹簧系模型的受力、变形情况;
(1)螺杆芯部分,相应于螺杆的模型梁常高变宽部分,假设其横截面受均匀应力;
(2)螺母第一齿的模型梁常高变宽部分由于固定作用,其横截面简化成受固定约束;
(3)同样,对于螺母模型梁常高变宽部分,假设其横截面受均匀应力;
(4)在螺栓连接部分,相邻两个螺齿之间的过渡部分的各模型弹簧,其变形由相邻的上下两个常高变宽梁的相对位移决定,且假设各模型弹簧变形均匀;
(5)螺栓和螺母的齿间接触区域认为是模型梁变高变宽部分,由于螺栓螺母模型结构形式的相似性,假设接触载荷分布对接触区中心点对称,且呈抛物线分布;因此,接触载荷也简化成集中力作用于接触区域中心点;由于螺纹锥度为1:16,所以认为接触力方向即为轴向;第三步:梁-弹簧系模型的力学求解;
(1)螺纹连接模型梁和模型弹簧参数计算:
从上到下,螺栓的模型梁排序为①、③、⑤、⑦、⑨,螺母的模型梁排序为②、④、⑥、⑧、⑩;螺栓的内径为r,外径为R,螺栓的模型梁全长等于螺栓的外径R,常高变宽部分的长度为r,变高变宽部分长为R-r;与之相对应的,螺母的模型梁全长为C,常高变宽部分的长度为c,变高变宽部分长为C-c;设螺母的模型梁变高变宽部分长度和螺栓的模型梁变高变宽部分长度相同,即R-r=C-c;
设径向坐标为x∈(0,r),螺栓的模型梁常高变宽部分梁高为h0,宽为b(x),其中x∈(0,r);变高变宽部分高为h(x),宽为b(x),其中x∈(r,R);由第一步中模型的建立可知,螺栓模型梁宽b(x)=2xsin(θ/2),其中,x∈(0,R),θ为模型梁所对应的扇形的圆心角;同样,螺母的模型梁的相关尺寸与上述螺栓模型梁的相关尺寸类似,不再复述;
需要说明的是,为了更加符合螺纹连接部分受力变形的实际状态,分割整个螺纹连接的扇形数量应尽量取大值,因此θ很小,则对于螺栓有:
b ( x ) = 2 x s i n ( &theta; 2 ) &ap; x &theta;
对于螺母有:
b ( x ) = 2 ( R + c - x ) s i n ( &theta; 2 ) &ap; ( R + c - x ) &theta; , 其中x从螺母外表面记起
设螺栓螺母材料的弹性模量均为E,所有模型弹簧的等效初始长度为l,各模型弹簧编号如下:在螺栓模型梁下侧离啮合点最远处的模型弹簧编号为i1,由远及近依次为i2,i3,…,iN;螺母由啮合点到外边缘依次为i(N+1),i(N+2),…,i(N+M),定义模型弹簧i1的刚度为同理,其余各模型弹簧的刚度由相应扇形面积确定:
K i N = ES i N l = E &lsqb; iN 2 - ( i N - 1 ) 2 &rsqb; S i 1 l = ( 2 i N - 1 ) K i 1
其中iN=2,3,…,N,SiN为第iN个模型弹簧的面积;
所以相邻两模型梁之间并联的模型弹簧总刚度,对于螺栓为:
K L S = &Sigma; i N = 1 N K i N = N 2 ES i 1 l = E l &CenterDot; r 2 2 &theta;
同理,对于螺母为:
K L M = E&theta;r 2 2 l ( M - 1 ) ( M + 1 + 2 N ) N 2 &ap; E &theta; c ( c + r ) 2 l
(2)模型力学方程的建立:
模型梁①上侧受到均匀分布的已知外载荷,载荷集度为q;由模型整体受力平衡可知,在模型梁②上侧受到均布约束力,集度为q',且满足q=q';将模型梁①下侧的模型弹簧受力由螺栓轴线到齿根部分别设为F11,F12,…,F1n,n=1,2…,N;以此类推,模型梁下侧的模型弹簧受力由螺栓轴线到齿根部分别为Fi1,Fi2,…,Fin,i=1,2,…,8,对于螺栓,n=1,…,N,对于螺母,n=N+1,…,N+M;
螺纹连接的接触区域为x∈(r,R),模型梁①与模型梁②的接触载荷集度为:
F 1 - 2 = A 1 - 2 { ( x - r - R - r 2 ) 2 - ( R - r 2 ) 2 } = A 1 - 2 ( x - r ) ( x - R ) - - - ( 1 )
其中,A1-2为接触载荷分布幅值;其它接触载荷分布与此类同,载荷分布幅值分别为A3-4、A5-6、A7-8、A9-10
截开任意一组相互接触的螺栓螺母模型梁下的模型弹簧,根据模型结构的整体平衡,且考虑到对于各组弹簧,组内各弹簧的变形均匀相等,则对于螺栓和螺母有:
F i = &Sigma; n = 1 N F i n = F i + 1 = &Sigma; m = N + 1 N + M F i + 1 , m - - - ( 2 )
i=1,3,5,7;
模型梁①受力平衡方程为:
1 2 ar 2 - F 1 - A 1 - 2 6 ( R - r ) 3 = 0 - - - ( 3 a )
同理,模型梁③平衡方程为:
F 1 - F 3 - A 3 - 4 6 ( R - r ) 3 = 0 - - - ( 3 b )
以此类推,模型梁⑤的平衡方程为:
F 3 - F 5 - A 5 - 6 6 ( R - r ) 3 = 0 - - - ( 3 c )
模型梁⑦的平衡方程为:
F 5 - F 7 - A 7 - 8 6 ( R - r ) 3 = 0 - - - ( 3 d )
模型梁⑨下侧自由,平衡方程为:
F 7 - A 9 - 10 6 ( R - r ) 3 = 0 - - - ( 3 e )
螺母各模型梁的平衡,由整体平衡和与其相接触的螺杆模型梁平衡,得到自然满足;
由于约束,模型梁②无刚***移,即刚***移w2,0=0,除此以外,模型梁的刚***移为wi,0,i=1,3,4,5,…,9,10;相应的各模型梁因弯矩产生的相对挠度为等效接触力作用点的相对挠度为则模型弹簧力为:
螺栓:
Fij=Kj(wi,0-wi+2,0)j=1,2,3...Ni=1,3,5,7(4a)
Fi=K0(wi,0-wi+2,0)i=1,3,5,7(4b)
wi+2,0为第i+2个模型梁刚***移;
螺母:
Fij=Kj(wi,0-wi+2,0)j=N+1,N+2,N+3...N+Mi=2,4,6,8(4c)
Fi=K0(wi,0-wi+2,0)i=2,4,6,8(4d)
将弹簧力由离散形式连续化,令:Fi(x)=K(x)(wi,0-wi+2,0),其中,对于螺栓,螺母为同时,将模型梁的弯矩统一化,得到模型梁在常高变宽截面段,i=1,3,5,7,9,弯矩表示为:
M 0 i = ( R - r ) 3 A i - ( i + 1 ) 12 4 x 3 - 6 rx 2 - 3 r 2 x 3 r 2 - - - ( 5 a )
同时:
对模型梁i=2,4,6,8,10,在常高变宽截面段,弯矩表示为:
M 0 i = - ( R - r ) 3 A ( i - 1 ) - i 12 - 8 x 3 + ( 2 R + 4 c ) x 2 + 2 ( R + c ) c x 6 c ( c + r ) - - - ( 5 b )
当i=1,3,5,7,9,并且r<x<(R+r)/2时,模型梁变高变宽截面段的弯矩为:
M ^ i = A i - < i + 1 > 12 ( R - r ) 3 ( R + r 2 - x ) - - - ( 6 a )
当i=2,4,6,8,10,并且c<x<(C+c)/2时,模型梁变高变宽截面段的弯矩为:
M ^ i = - A ( i - 1 ) - i 12 ( R - r ) 3 ( C + c 2 - x ) - - - ( 6 b )
对于变高变宽截面段,设模型梁的楔角为β,则该段模型梁截面高表示为:
i=1,3,5,7,9h(x)=h0-2(x-r)tanβ(7a)
i=2,4,6,8,10h(x)=h0-2(x-c)tanβ(7b)
故i=1,3,5,7,9的模型梁的弯曲方程表示为:
d 2 w ^ i dx 2 = { M 0 i E I ( x ) = ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 x &theta; 4 x 3 - 6 rx 2 - 3 r 2 x 3 r 2 = ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 &theta; 4 x 2 - 6 r x - 3 r 2 3 r 2 ( 0 < x < r ) M ^ i E I ( x ) = 12 Eh 3 ( x ) x &theta; &lsqb; A i - < i + 1 > 12 ( R - r ) 3 ( R + r 2 - x ) &rsqb; ( r < x < R + r 2 ) - - - ( 8 a )
同时i=2,4,6,8,10的模型梁的弯曲方程表示为:
d 2 w ^ i dx 2 = M 0 i E I ( x ) = - ( R - r ) 3 A i - ( i + 1 ) Eh 0 3 &theta; ( R + c - x ) - 8 x 3 + ( 2 R + 4 c ) x 2 + 2 ( R + c ) c x 6 c ( c + r ) ( 0 < x < c ) M ^ i E I ( x ) = - 12 Eh 3 ( x ) &theta; ( R + c - x ) &lsqb; A < i - 1 > - i 12 ( R - r ) 3 ( C + c 2 - x ) &rsqb; ( c < x < C + c 2 ) - - - ( 8 b )
边界条件为:
固支端:
w ^ i | x = 0 = 0 , d w ^ i d x | x = 0 = 0 - - - ( 9 a )
齿根部:
w ^ | x = r - = w ^ | x = r + , d w ^ d x | x = r - = d w ^ d x | x = r + (螺栓)
w ^ | x = c - = w ^ | x = c + , d w ^ d x | x = c - = d w ^ d x | x = c + (螺母)(9b)
由于螺栓和螺母常高变宽段与变高变宽段的交接面坐标为x=r和x=c,而此处左右两边的弯曲方程是不一样的,故为区别起见,表示由常高变宽段弯曲方程得到的数值,表示由变高变宽段得到的结果;
两次积分式(8a)、(8a)并考虑到边界条件式(9a)、(9b)得:
i=1,3,5,7,9时,螺栓:
w ^ i = A i - < i + 1 > 9 r 2 Eh 0 3 &theta; ( R - r ) 3 ( x 3 - 3 rx 2 - 9 r 2 x ) x ( 0 < x < r ) A i - < i + 1 > ( R - r ) 3 4 E &theta; ( h 0 + 2 r tan &beta; ) = ( 2 ( R + r ) x ln 2 x tan &beta; h 0 + 2 ( r - x ) tan &beta; + ( h 0 + 2 r tan &beta; ) 2 ( h 0 + ( R - r ) tan &beta; ) 2 ( h 0 + 2 ( r - x ) tan &beta; ) tan 2 &beta; ) + &Pi; 1 x + &Xi; 1 ( c < x < C + c 2 ) - - - ( 10 a )
其中:
&Pi; 1 = - A i - < i + 1 > ( R - r ) 3 Eh 0 2 &theta; &lsqb; 14 r 9 h 0 + ( h 0 + 2 r t a n &beta; ) ( 2 R t a n &beta; - h 0 ) h 0 + &lsqb; 2 h 0 2 ( R + r ) t a n &beta; &rsqb; l n ( 2 r t a n &beta; h 0 ) 4 ( h 0 + 2 r t a n &beta; ) 3 t a n &beta; &rsqb;
&Xi; 1 = A i - < i + 1 > E &theta; ( R - r ) 3 &lsqb; 11 r 2 9 h 0 3 - 2 ( R + r ) r l n 2 r t a n &beta; h 0 + ( h 0 + 2 r t a n &beta; ) 2 ( h 0 + ( R - r ) t a n &beta; ) 2 h 0 tan 2 &beta; 4 ( h 0 + 2 r t a n &beta; ) 3 + A i - < i + 1 ) ( R - r ) 3 Eh 0 2 &theta; &lsqb; 14 r 9 h 0 + ( h 0 + 2 r t a n &beta; ) ( 2 R tan &beta; - h 0 ) h 0 + &lsqb; 2 h 0 2 ( R + r ) t a n &beta; &rsqb; ln ( 2 r t a n &beta; h 0 ) 4 ( h 0 + 2 r t a n &beta; ) 3 t a n &beta; &rsqb; r - - - ( 10 b )
i=2,4,6,8,10时,螺母:
w ^ i = - A ( i - 1 ) - i ( R - r ) 3 6 c ( c + r ) Eh 0 3 &theta; x 3 ( - 6 c 3 - 18 R 3 + 9 R 2 x + 3 Rx 2 + 2 x 3 + 3 c 2 ( - 10 R + x ) + 2 c ( - 21 R 2 + 6 R x + x 2 ) ) - 2 ( c + R ) 2 ( c + 3 R ) ( c + R - x ) ln ( R + c - x ) ( R - r ) 3 ( x 3 - 3 rx 2 - 9 r 2 x ) x ( 0 < x < r ) - A < i - 1 > - i ( R - r ) 3 2 E &theta; &times; ( 2 R + c - C ) &lsqb; ( 2 ( R + c - x ) tan &beta; ) ln ( h 0 + 2 ( c - x ) tan &beta; ) - ( R + c - x ) ln ( R + c - x ) &rsqb; 2 ( h 0 - 2 R tan &beta; ) 3 tan &beta; + h 0 + ( c - C ) tan &beta; 4 ( h 0 - 2 R tan &beta; ) ( h 0 + 2 ( c - x ) tan &beta; ) tan 2 &beta; + &Pi; 2 x + &Xi; 2 ( C < x < C + R - r 2 ) - - - ( 10 c )
其中:
&Pi; 2 = A ( i - 1 ) - i ( R - r ) 3 E &theta; &times; ln ( R h 0 ) ( 2 R + c - C ) 2 ( 2 R tan &beta; - h 0 ) 3 + ( 2 R tan &beta; - h 0 ) &lsqb; ( C - c ) tan &beta; - h 0 &rsqb; + 2 ( 2 R + c - C ) h 0 tan &beta; 4 ( 2 R tan &beta; - h 0 ) 2 h 0 2 tan &beta; - 20 c 3 + 9 Rc 2 + 18 R 2 c - 6 ( c + R ) 2 ( c + 3 R ) ln R 18 c ( c + r ) h 0 3
&Xi; 2 = - A ( i - 1 ) - i ( R - r ) 3 E &theta; c 3 ( c 3 - 15 c 2 R - 33 cR 2 - 18 R 3 ) - 2 ( c + R ) 2 ( c + 3 R ) R ln R 1 6 c ( c + r ) h 0 3 + ( 2 R + c - C ) &lsqb; ( 2 R tan &beta; ) ln h 0 - R ln R &rsqb; 4 ( h 0 - 2 R tan &beta; ) 3 tan &beta; + h 0 + ( c - C ) tan &beta; 8 ( h 0 - 2 R tan &beta; ) h 0 tan 2 &beta; + ln ( R h 0 ) ( 2 R + c - C ) 2 ( 2 R tan &beta; - h 0 ) 3 + ( 2 R tan &beta; - h 0 ) &lsqb; ( C - c ) tan &beta; - h 0 &rsqb; + 2 ( 2 R + c - C ) h 0 tan &beta; 4 ( 2 R tan &beta; - h 0 ) 2 h 0 2 tan &beta; - 20 c 3 + 9 Rc 2 + 18 R 2 c - 6 ( c + R ) 2 ( c + 3 R ) ln R 18 c ( c + r ) h 0 3 c - - - ( 10 d )
由于螺纹副在受力过程中,螺栓各螺牙与对应的螺母各螺牙始终保持接触,并假设两个相接触的螺纹螺牙无接触面内的相对滑动,得到变形协调条件如下:
w i , 0 - w ^ i | x = R + r 2 = w i + 1 , 0 + w ^ i + 1 | x = C + c 2 , i = 1 , 3 , 5 , 7 , 9 - - - ( 11 ) ;
(3)、梁-弹簧模型的求解;
由平衡方程(3a)~(3e)及与之对应的螺母的平衡方程式共得到九个相互独立的平衡方程,再加上式(4a)~(4d)八个物理方程式,十个弯曲方程(10a)~(10d),五个变形协调方程(11),共32个方程;其中含有Fi,i=1,2,…,8;A<i-(i+1)>,i=1,3,5,7,9;以及wi,0,i=1,3,4,…,10;i=1,2,…,10;共32个未知数;通过求解上述32个方程组成的方程组,即求得到各齿承载分布;
第四步,梁—弹簧模型的还原及螺纹连接强度检验:
将第三步中的模型力学方程求解,其中A<i-(i+1)>项,其中i=1,3,5,7,9,即代表螺纹连接第1、2、3、4、5齿的受力大小;
根据第一齿承载的百分比检验螺纹连接的强度是否符合标准,从而达到螺纹连接强度的检验目的。
CN201310112092.8A 2013-04-02 2013-04-02 一种基于梁—弹簧模型的螺纹连接强度计算方法 Expired - Fee Related CN103218483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310112092.8A CN103218483B (zh) 2013-04-02 2013-04-02 一种基于梁—弹簧模型的螺纹连接强度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310112092.8A CN103218483B (zh) 2013-04-02 2013-04-02 一种基于梁—弹簧模型的螺纹连接强度计算方法

Publications (2)

Publication Number Publication Date
CN103218483A CN103218483A (zh) 2013-07-24
CN103218483B true CN103218483B (zh) 2016-01-13

Family

ID=48816264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310112092.8A Expired - Fee Related CN103218483B (zh) 2013-04-02 2013-04-02 一种基于梁—弹簧模型的螺纹连接强度计算方法

Country Status (1)

Country Link
CN (1) CN103218483B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190641B1 (en) 2014-09-04 2020-06-24 Amogreentech Co., Ltd. Flexible battery, manufacturing method therefor, and auxiliary battery comprising flexible battery
CN105956259A (zh) * 2016-04-28 2016-09-21 王炳超 端部接触式少片斜线型变截面主副簧复合刚度的验算方法
CN105912804A (zh) * 2016-04-28 2016-08-31 王炳超 端部接触式少片斜线型变截面主副簧端点力的确定方法
CN105975671B (zh) * 2016-04-29 2018-12-28 中石化石油机械股份有限公司研究院 压裂作业用高压管汇由壬连接结构及螺纹的强度计算方法
CN106295024B (zh) * 2016-08-15 2019-10-01 北京航空航天大学 一种考虑间隙及摩擦影响的复合材料螺栓连接载荷分布计算方法
CN106650169A (zh) * 2017-01-03 2017-05-10 山东理工大学 非等偏频一级渐变刚度板簧悬架最大限位挠度的设计方法
CN106682359B (zh) * 2017-01-12 2019-08-16 山东理工大学 两级副簧式非等偏频型渐变刚度板簧主簧挠度的计算方法
CN106777794B (zh) * 2017-01-12 2019-09-10 山东理工大学 高强度两级渐变刚度板簧的主簧挠度的计算方法
CN108776734B (zh) * 2018-06-06 2020-08-28 东北大学 一种螺栓连接鼓筒转子结构的响应特性分析方法
CN110851924B (zh) * 2019-10-22 2023-05-12 广州广电计量检测股份有限公司 一种确定螺钉刚度的方法、装置、计算机设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219065A (ja) * 2010-04-14 2011-11-04 Yokohama Rubber Co Ltd:The タイヤのシミュレーション方法及びシミュレーション装置
US8503058B2 (en) * 2010-05-10 2013-08-06 Oclaro Technology Limited Etalon with temperature-compensation and fine-tuning adjustment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
考虑螺纹连接的柴油机固定件建模方法;赵建华等;《科技导报》;20121018;第30卷(第Z1期);正文第52页左栏第1节 *
螺纹受力分布分析方法及其应用实例;郭卫凡等;《科技信息》;20100615(第17期);正文第71页左栏第3-4段以及右栏第3段 *

Also Published As

Publication number Publication date
CN103218483A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103218483B (zh) 一种基于梁—弹簧模型的螺纹连接强度计算方法
CN110348110A (zh) 一种螺栓被连接件刚度自适应识别方法
CN103399993A (zh) 往复式压缩机曲轴可靠性优化设计方法
CN105279325B (zh) 考虑整体空间作用的钢管混凝土锥形柱稳定计算方法
CN109918747B (zh) 十字组合双角钢构件受压稳定承载力的计算方法
CN103473410B (zh) 一种外部承受高压的u型波纹管优化设计方法
CN104551838B (zh) 一种组合式弹簧变形补偿装置
Stavridou et al. Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers
CN105973983A (zh) 等截面超声扭转疲劳试样设计方法
CN105046076B (zh) 层叠碳纤维复合材料的三层单胞结构微观力学性能计算方法
JP7348509B2 (ja) 連続梁の評価方法及び連続梁の評価プログラム
CN105133751B (zh) 钢板混凝土组合剪力墙抗剪连接件设计方法
CN103422698B (zh) 用于输电铁塔角钢压杆稳定强度折减系数的计算方法
Sun et al. Analysis and experiment on bending performance of laser-welded web-core sandwich plates
Shakouri et al. Re-interpreting simultaneous buckling modes of axially compressed isotropic conical shells
CN103778330B (zh) 一种复合材料杆件轴压稳定系数的确定方法
Höglund A unified method for the design of steel beam‐columns
Hou et al. Energy absorption behavior of metallic staggered double-sine-wave tubes under axial crushing
da Freitas et al. Numerical and experimental study of steel space truss with stamped connection
CN105808870A (zh) 一种螺钉连接的结合部有限元建模方法
CN113051780A (zh) 一种平板结构轴压屈曲载荷判断方法
CN111241671B (zh) 一种表征螺纹面局部滑移行为的模拟方法和装置
Garzon Resistance of polygonal cross-sections: application on steel towers for wind turbines
Hu et al. Test analysis on prestressed concrete composite beams with steel boxes subjected to torsion and combined flexure and torsion
CN219343606U (zh) 防屈曲抗震支撑结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20170402