CN103187254B - 一种双多晶硅栅的制造方法 - Google Patents

一种双多晶硅栅的制造方法 Download PDF

Info

Publication number
CN103187254B
CN103187254B CN201110448357.2A CN201110448357A CN103187254B CN 103187254 B CN103187254 B CN 103187254B CN 201110448357 A CN201110448357 A CN 201110448357A CN 103187254 B CN103187254 B CN 103187254B
Authority
CN
China
Prior art keywords
silicon nitride
polysilicon gate
manufacture method
integrated circuit
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110448357.2A
Other languages
English (en)
Other versions
CN103187254A (zh
Inventor
潘光燃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co Ltd filed Critical Peking University Founder Group Co Ltd
Priority to CN201110448357.2A priority Critical patent/CN103187254B/zh
Priority to US13/729,338 priority patent/US8722483B2/en
Publication of CN103187254A publication Critical patent/CN103187254A/zh
Application granted granted Critical
Publication of CN103187254B publication Critical patent/CN103187254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66689Lateral DMOS transistors, i.e. LDMOS transistors with a step of forming an insulating sidewall spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种双层多晶硅栅的制造方法。所述制造方法包括:在所述待处理集成电路的氧化硅上淀积氮化硅;各向异性刻蚀所述氮化硅,在所述待处理集成电路的第一层多晶硅栅侧壁形成氮化硅侧墙;制作第二层多晶硅栅;以及漂洗所述氮化硅侧墙。

Description

一种双多晶硅栅的制造方法
技术领域
本发明涉及半导体集成电路制造技术领域,尤其涉及一种双多晶硅栅的制造方法。
背景技术
专业术语说明:
N阱:在衬底上扩散N型区;P阱:在衬底上扩散P型区;N+:N型重掺杂区;P+:P型重掺杂区;Fox:场氧化层;Pbody:P型掺杂体区。
MOS管是构成半导体集成电路的基本单元,MOS管由阱、源、漏和栅组成,多晶硅在半导体集成电路中常作为MOS管的栅极,即多晶硅栅。
在某些类型的集成电路中,比如某些BCD集成电路(双极-互补型MOS-功率双扩散MOS集成电路),包含有两层多晶硅并且都作为MOS管的栅极,分别称之为第一层多晶硅栅和第二层多晶硅栅。
以下以BCD集成电路为例,介绍双多晶硅栅的结构,如图1所示。
在图1中,列举了BCD集成电路中的一个低压NMOS和一个功率LDNMOS共两个MOS管,第一层多晶硅栅(图1中的多晶一)为功率LDNMOS的栅,第二层多晶硅栅(图1中的多晶二)为低压NMOS的栅,其中的厚氧化层为Fox,Fox覆盖的区域为场区,没有Fox覆盖的区域为有源区,有源区表面的薄氧化层为栅氧,多晶一下方和多晶二下方的栅氧分别称之为第一层栅氧和第二层栅氧,N+为MOS管的源、漏,Pbody为功率LDNMOS的体区。
在现有技术中,制造双多晶硅栅的方法如图2所示:
步骤201:在衬底上制作N阱和P阱(请参考图3);
步骤202:制作有源区和场区(请参考图4,在图4中被Fox覆盖的区域即场区,没被Fox覆盖的即为有源区);
步骤203:在有源区上生长第一层栅氧(请参考图5);
步骤204:淀积第一层多晶硅,并对第一层多晶硅进行光刻和刻蚀形成第一层多晶硅栅(请参考图6,即图6中的多晶一);
步骤205:进行Pbody掺杂(请参考图7);
步骤206:低压化学气相淀积氧化硅(LPTEOS)(请参考图8);
步骤207:Pbody高温推结(请参考图9);
步骤208:氧化硅湿法刻蚀(请参考图10);
步骤209:生长第二层栅氧(请参考图11);
步骤210:淀积第二层多晶硅(请参考图12);
步骤211:对第二层多晶硅进行光刻和刻蚀形成第二层多晶硅栅(请参考图13,即图13中的多晶二)。
以上步骤完成后,已经完成双多晶硅栅的制作,其他步骤都为本领域技术人员习知的标准工艺,比如制作N+和P+重掺杂区(请参考图14)。
本发明人在实现本发明的过程中发现,在上述制作方法中至少存在以下两个很难克服的缺点:第一是在步骤208中,当进行氧化硅湿法刻蚀时,是使用稀释的氢氟酸把裸露的LPTEOS和第一层栅氧腐蚀掉,多晶一下方的栅氧化层由于有多晶硅的遮蔽,不会被腐蚀掉,但是多晶一边缘的第一层栅氧很容易被腐蚀液损伤到,导致器件的可靠性下降;第二是在步骤211中,预留第二层多晶硅栅的区域被光刻胶覆盖,其他区域的光刻胶不被保留,然后采用干法刻蚀工艺把没有光刻胶覆盖的区域的多晶二刻蚀掉,然后去除光刻胶,这种刻蚀方法使得在多晶一的侧壁区域,多晶二的厚度(特指纵向厚度,请参见图12中的d1,下文同)比平坦区的多晶二的厚度d2大得多,所以刻蚀的工艺难度很大。
发明内容
本发明提供一种双多晶硅栅的制造方法,用以解决现有技术中存在的第一层多晶硅栅的边缘的第一层栅氧很容易被腐蚀液损伤到,导致器件的可靠性下降以及刻蚀第二层多晶硅的工艺难度大的问题。
本发明提供一种双多晶硅栅的制造方法,应用于一待处理集成电路,所述制造方法包括:在所述待处理集成电路的氧化硅上淀积氮化硅;对所述待处理集成电路的掺杂区进行热处理;各向异性刻蚀所述氮化硅,在所述待处理集成电路的第一多晶硅栅侧壁形成氮化硅侧墙;制作第二多晶硅栅;以及漂洗所述氮化硅侧墙;所述第一多晶硅栅和所述第二多晶硅栅在沿衬底方向上不重叠。
优选地,所述各向异性刻蚀所述氮化硅具体为使用等离子体干法垂直向下刻蚀。
优选地,所述氮化硅的厚度为1000~3000埃。
优选地,所述制作第二多晶硅栅具体包括:在所述待处理集成电路的有源区的表面和所述第一多晶硅栅上生长第二层栅氧;在所述第二层栅氧上淀积第二层多晶硅;以及刻蚀所述第二层多晶硅形成所述第二多晶硅栅。
优选地,所述热处理为高温推结,所述高温推结的温度为1050~1150摄氏度。
本发明有益效果如下:
本发明一实施例中采用了在氧化硅上淀积氮化硅,各向异性刻蚀氮化硅后在第一层多晶硅栅侧壁形成氮化硅侧墙,所以在进行氧化硅刻蚀时第一层多晶硅栅下方的第一层栅氧不会被损伤到,器件的可靠性提高,另外,由于氮化硅侧墙可以减缓第一层多晶硅栅产生的台阶,从而降低了第二层多晶硅刻蚀的工艺难度。
附图说明
图1为理想状态的双多晶硅栅的结构图;
图2为现有技术中制造双多晶硅栅的方法流程图;
图3-图14分别为图2中的制造方法中各步骤完成之后的结构图;
图15为本发明一实施例中双多晶硅栅的制造方法流程图;
图16-图24分别为图15中的制造方法中各步骤完成之后的结构图。
具体实施方式
本发明一实施例中提供一种双多晶硅栅的制造方法,用于处理一待处理集成电路,在本实施例中,以BCD集成电路为例。该待处理集成电路包括:衬底;N阱和P阱,形成于衬底上(请参考图3);场氧化层,设置于N阱和P阱上,形成有源区和场区,其中场氧化层覆盖的区域为场区,没有被场氧化层覆盖的区域为有源区(请参考图4);第一层栅氧,形成于有源区上(请参考图5);第一层多晶硅栅,形成于第一层栅氧上(请参见图6);掺杂区,形成于N阱上,其中在本实施例中掺杂区以Pbody为例,但是在实际运用中,可以按照器件结构和参数要求进行掺杂(请参考图7);氧化硅,覆盖于场氧化层、第一层栅氧和第一层多晶硅栅,其中该氧化硅为低压化学气相淀积氧化硅,即LPTEOS(请参考图8),LPTEOS的厚度一般为200~600埃,其作用是防止硅表面和第一层多晶硅栅的表面在后续的热处理过程中被氮化。请参考图15,图15为该制造方法的流程图,如图15所示,该方法包括:
步骤1501:在待处理集成电路的氧化硅上淀积氮化硅;
步骤1502:各向异性刻蚀氮化硅,在第一层多晶硅栅侧壁形成氮化硅侧墙;
步骤1503:制作第二层多晶硅栅;
步骤1504:漂洗氮化硅侧墙。
其中,步骤1501完成之后的结构图请参见图16,LPSIN代表低压化学气相淀积氮化硅,LPSIN的厚度为1000~3000埃,LPSIN可以防止硅表面和多晶一(即第一层多硅晶栅,下文同)的表面在后续的热处理过程中被氮化。
在步骤1501之后和步骤1502之前,还将掺杂区进行热处理,如图17所示,在本实施例中掺杂区以Pbody为例,而热处理以对Pbody高温推结为例,但是在实际运用中,可以按照器件结构和参数要求进行掺杂,并按照器件结构和参数要求进行热处理,本发明不作限制。高温推结在高温设备中进行,温度一般为1050~1150摄氏度。
在步骤1502中,各向异性刻蚀氮化硅,直至有源区的表面和场氧化层的表面上的氮化硅被刻蚀完,请参见图18,在本实施例中,使用等离子体干法刻蚀设备,垂直向下刻蚀LPSIN,当有源区表面和场氧化层表面的LPSIN被刻蚀完,即停止刻蚀,由于在多晶一的侧壁区域,LPSIN的厚度(特指纵向厚度,如图17中的d1,下文同)比平坦区的LPSIN厚度(图17中的d2)大得多,因此当完成刻蚀之后,多晶一侧壁区域的LPSIN被自动保留了下来,称之为氮化硅侧墙。
进一步,刻蚀氧化硅和第一层栅氧,请参考图19,在本实施例中,使用稀释的氢氟酸把图18中裸露的LPTEOS和第一层栅氧腐蚀掉,由于有氮化硅侧墙的掩蔽,多晶一的边缘的第一层栅氧不会被腐蚀液损伤到,因此器件的可靠性高。
步骤1503中,制作第二层多晶硅栅的具体过程为:在有源区的表面和第一层多晶硅栅上生长第二层栅氧,请参考图20,如图20所示,在本实施例中,在有源区的表面和多晶一的表面,生成了第二层栅氧;在第二层栅氧上和场氧化层上淀积第二层多晶硅,请参考图21,如图21所示,在本实施例中,在第二层栅氧和场氧化层上淀积第二层多晶硅;刻蚀第二层多晶硅形成第二层多晶硅栅,第二层多晶硅栅位于第二层栅氧的上方,请参考图22,在本实施例中,预留第二层多晶硅栅的区域被光刻胶覆盖,其他区域的光刻胶不被保留,然后采用干法刻蚀工艺把没有光刻胶覆盖的区域的第二层多晶硅刻蚀掉,然后去除光刻胶。如图22所示,第二层多晶硅栅(即图22中的多晶二)位于第二层栅氧的上方。而且由于有氮化硅侧墙的过渡作用,即减缓多晶一产生的陡直台阶,在多晶一侧壁区域的第二层多晶硅厚度(参见图21中的d3)与平坦区的第二层多晶硅的厚度(参见图21中的d4)之比不再像传统制造方法中那么大,刻蚀工艺的难度大大降低。
步骤1504中漂洗氮化硅侧墙具体请参见图23,使用热磷酸把氮化硅侧墙清洗掉。
以上步骤完成后,已经完成双多晶硅栅的制作,其他步骤都为本领域技术人员习知的标准工艺,比如制作N+和P+重掺杂区(请参考图24)。
本发明一实施例中采用了在氧化硅上淀积氮化硅,各向异性刻蚀氮化硅后在第一层多晶硅栅侧壁形成氮化硅侧墙,所以在进行氧化硅刻蚀时第一层多晶硅栅下方的第一层栅氧不会被损伤到,器件的可靠性提高,另外,由于氮化硅侧墙可以减缓第一层多晶硅栅产生的台阶,从而降低了第二层多晶硅刻蚀的工艺难度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种双多晶硅栅的制造方法,应用于一待处理集成电路,其特征在于,所述制造方法包括:
在所述待处理集成电路的氧化硅上淀积氮化硅;
对所述待处理集成电路的掺杂区进行热处理;
各向异性刻蚀所述氮化硅,在所述待处理集成电路的第一多晶硅栅侧壁形成氮化硅侧墙;
制作第二多晶硅栅;以及
漂洗所述氮化硅侧墙;所述第一多晶硅栅和所述第二多晶硅栅在沿衬底方向上不重叠。
2.如权利要求1所述的制造方法,其特征在于,所述各向异性刻蚀所述氮化硅具体为使用等离子体干法垂直向下刻蚀。
3.如权利要求1所述的制造方法,其特征在于,所述氮化硅的厚度为1000~3000埃。
4.如权利要求1所述的制造方法,其特征在于,所述制作第二多晶硅栅具体包括:
在所述待处理集成电路的有源区的表面和所述第一多晶硅栅上生长第二层栅氧;
在所述第二层栅氧上淀积第二层多晶硅;以及
刻蚀所述第二层多晶硅形成所述第二多晶硅栅。
5.如权利要求1所述的制造方法,其特征在于,所述热处理为高温推结,所述高温推结的温度为1050~1150摄氏度。
CN201110448357.2A 2011-12-28 2011-12-28 一种双多晶硅栅的制造方法 Active CN103187254B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110448357.2A CN103187254B (zh) 2011-12-28 2011-12-28 一种双多晶硅栅的制造方法
US13/729,338 US8722483B2 (en) 2011-12-28 2012-12-28 Method for manufacturing double-layer polysilicon gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110448357.2A CN103187254B (zh) 2011-12-28 2011-12-28 一种双多晶硅栅的制造方法

Publications (2)

Publication Number Publication Date
CN103187254A CN103187254A (zh) 2013-07-03
CN103187254B true CN103187254B (zh) 2015-12-02

Family

ID=48678364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110448357.2A Active CN103187254B (zh) 2011-12-28 2011-12-28 一种双多晶硅栅的制造方法

Country Status (2)

Country Link
US (1) US8722483B2 (zh)
CN (1) CN103187254B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230954B1 (en) * 2015-05-20 2016-01-05 United Microelectronics Corporation LDNMOS device for an ESD protection structure
CN107492497A (zh) * 2016-06-12 2017-12-19 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN109461733B (zh) * 2018-10-18 2021-10-19 上海华力微电子有限公司 闪存器件的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604371A (en) * 1994-04-15 1997-02-18 Kabushiki Kaisha Toshiba Semiconductor device with an insulation film having an end covered by a conductive film
CN1214540A (zh) * 1997-10-15 1999-04-21 世界先进积体电路股份有限公司 具有p+多晶硅栅极的金属氧化物半导体晶体管的制作方法
CN101263607A (zh) * 2005-07-18 2008-09-10 德克萨斯仪器股份有限公司 具有二极管钳位的漏极扩展mosfet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762085B2 (en) * 2002-10-01 2004-07-13 Chartered Semiconductor Manufacturing Ltd. Method of forming a high performance and low cost CMOS device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604371A (en) * 1994-04-15 1997-02-18 Kabushiki Kaisha Toshiba Semiconductor device with an insulation film having an end covered by a conductive film
CN1214540A (zh) * 1997-10-15 1999-04-21 世界先进积体电路股份有限公司 具有p+多晶硅栅极的金属氧化物半导体晶体管的制作方法
CN101263607A (zh) * 2005-07-18 2008-09-10 德克萨斯仪器股份有限公司 具有二极管钳位的漏极扩展mosfet

Also Published As

Publication number Publication date
US20130183821A1 (en) 2013-07-18
CN103187254A (zh) 2013-07-03
US8722483B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
CN103824764A (zh) 一种沟槽型mos器件中沟槽栅的制备方法
TWI480951B (zh) 用於半導體元件之寬溝渠終端結構
US9356124B2 (en) Method for fabricating multi-gate structure device with source and drain having quasi-SOI structure
CN104347422A (zh) 带静电释放保护电路的沟槽式mos晶体管的制造方法
CN106158957B (zh) 横向扩散金属氧化物半导体场效应管及其制造方法
CN104282543A (zh) 应用于沟槽型mos器件的沟槽栅及其制备方法
CN105655284A (zh) 沟槽隔离结构的形成方法
CN103187254B (zh) 一种双多晶硅栅的制造方法
CN102254867B (zh) 快闪存储器的制作方法
TW201413794A (zh) 埋層的形成方法
CN114361251A (zh) 一种***栅功率mos器件的制备方法
CN112242355A (zh) 半导体器件及其形成方法
CN104253041A (zh) 非穿通型绝缘栅双极晶体管的制造方法
CN102214572B (zh) 在制造平面双极型晶体管中的间隔物形成
CN103839791A (zh) 应用于沟槽型mos器件的沟槽栅的制备方法
CN105810583A (zh) 横向绝缘栅双极型晶体管的制造方法
CN107799528A (zh) 存储元件的制造方法
CN101800172B (zh) 一种自对准多晶硅浮栅的制作方法
CN102810463A (zh) 接触孔刻蚀方法
CN104282569A (zh) Rfldmos的制作工艺方法
CN105206666B (zh) 半导体器件
CN102194684B (zh) 栅极介质层制造方法
CN104241356A (zh) 一种dmos器件及其制作方法
CN104347378A (zh) 一种应用于沟槽型mos器件的沟槽栅的制备方法
CN104008975A (zh) 一种沟槽型功率mos晶体管的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220722

Address after: 518116 founder Microelectronics Industrial Park, No. 5, Baolong seventh Road, Baolong Industrial City, Longgang District, Shenzhen, Guangdong Province

Patentee after: SHENZHEN FOUNDER MICROELECTRONICS Co.,Ltd.

Address before: 100871, Beijing, Haidian District Cheng Fu Road 298, founder building, 9 floor

Patentee before: PEKING UNIVERSITY FOUNDER GROUP Co.,Ltd.

Patentee before: SHENZHEN FOUNDER MICROELECTRONICS Co.,Ltd.