CN103181001B - 导电高分子材料及其制备方法和应用 - Google Patents

导电高分子材料及其制备方法和应用 Download PDF

Info

Publication number
CN103181001B
CN103181001B CN201080069880.8A CN201080069880A CN103181001B CN 103181001 B CN103181001 B CN 103181001B CN 201080069880 A CN201080069880 A CN 201080069880A CN 103181001 B CN103181001 B CN 103181001B
Authority
CN
China
Prior art keywords
conducting polymer
polymer composite
solution
fluorinated graphene
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080069880.8A
Other languages
English (en)
Other versions
CN103181001A (zh
Inventor
周明杰
钟玲珑
王要兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Publication of CN103181001A publication Critical patent/CN103181001A/zh
Application granted granted Critical
Publication of CN103181001B publication Critical patent/CN103181001B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

提供了一种导电高分子材料及其制备方法和应用。该导电高分子材料包括导电聚合物和掺杂在其中的氟化石墨烯。导电高分子与氟化石墨烯的质量比为1:0.05-1。该导电高分子为聚噻吩或其衍生物、聚吡咯或其衍生物以及聚苯胺或其衍生物中的一种。该导电高分子材料的循环稳定性能由于掺杂氟化石墨烯而大大增强,同时导电高分子使其具有优异的容量性能。其制备方法操作简单,成本低廉,对设备要求低,适于工业化生产。

Description

导电高分子材料及其制备方法和应用
技术领域
本发明属于高分子材料技术领域,尤其涉及一种导电高分子材料、其制备方法和应用。
背景技术
导电聚合物是由一些碳骨架具有大共轭π键结构的导电聚合物,经化学或电化学掺杂后形成的导电率可以从绝缘体延伸到导体范围的一类高分子材料。导电高分子材料具有导电性能良好、制备方法简单,存放时间长久的优点,但是,现有的导电高分子材料循环稳定性能较差,在应用的过程中容易出现不稳定现象。
对发明的公开
技术问题
有鉴于此,本发明实施例提供一种导电高分子材料,解决现有技术中导电高分子材料循环性能差的技术问题。本发明实施例进一步提供一种导电高分子材料制备方法。本发明实施例还提供上述导电高分子材料在太阳能电池、有机电致发光器件或锂离子电池中的应用。
技术解决方案
本发明是这样实现的,
一种导电高分子材料,包括导电聚合物和掺杂在该导电聚合物之中的氟化石墨烯,该导电聚合物和氟化石墨烯质量比为1∶0.05-1,该导电聚合物为聚噻吩或其衍生物、聚吡咯或其衍生物以及聚苯胺或其衍生物中的一种。
本发明实施例进一步提供的一种导电高分子材料制备方法包括如下步骤:
将氟化石墨烯溶于含表面活性剂的溶液中,得到第一溶液;
按有机单体和该氟化石墨烯质量比1∶0.05-1将有机单体加入至该第一溶液中,加入电解质,放置工作电极和对电极,通电进行电化学聚合,得到导电高分子材料,其中,该有机单体为苯胺或其衍生物、吡咯或其衍生物以及噻吩或其衍生物中的一种。
本发明实施例还提供上述导电高分子材料在太阳能电池、有机电致发光器件或锂离子电池中的应用。
有益效果
本发明实施例导电高分子材料,通过掺杂氟化石墨烯,使其循环稳定性能大大增强,同时,该导电聚合物使其具有优异的容量性能。本发明实施例制备方法,操作简单,成本低廉,对设备要求低,适于工业化生产。
附图说明
图1是本发明实施例导电高分子材料在1mol/L的硫酸中循环寿命图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种导电高分子材料,包括导电聚合物和掺杂在该导电聚合物之中的氟化石墨烯,该导电聚合物和氟化石墨烯质量比为1∶0.05-1,该导电聚合物为聚噻吩或其衍生物、聚吡咯或其衍生物以及聚苯胺或其衍生物中的一种。
本发明实施例导电高分子材料,包括氟化石墨烯,以及聚噻吩或其衍生物、聚吡咯或其衍生物,或者聚苯胺中或其衍生物的一种。氟化石墨烯具有良好的循环稳定性能,能够大大增加本发明实施例导电高分子材料的循环稳定性能,增长其使用期限;同时,上述导电聚合物具有优异的容量性能,使得本发明实施例导电高分子化合物具有较高的容量。
进一步,氟化石墨烯具有优异的导电性能,通过掺杂氟化石墨烯,使得本发明实施例导电高分子材料的导电性能得到显著增强。
具体地,该导电聚合物和氟化石墨烯的质量比为1∶0.05-1,优选1∶0.5-1。该氟化石墨烯掺杂在该导电聚合物之中;在一些具体实施例中,导电聚合物长链形成网状结构,该氟化石墨烯位于该网状结构之中,即该导电聚合物将氟化石墨烯包围。
本发明实施例进一步提供一种导电高分子材料制备方法,包括如下步骤:
S01,制备第一溶液:
将氟化石墨烯溶于含表面活性剂的溶液中,得到第一溶液;
S02,制备高分子材料;
按有机单体和氟化石墨烯质量比1∶0.05-1将有机单体加入至该第一溶液中,加入电解质,放置工作电极和对电极,通电进行电化学聚合,得到导电高分子材料。
具体地,在S01步骤中,
该表面活性剂为阴离子表面活性剂、阳离子表面活性剂或非离子型表面活性剂或者两性表面活性剂。该阴离子表面活性剂选自烷基苯磺酸盐、脂肪醇硫酸盐、磷酸酯、十二烷基苯磺酸钠或甲基苯磺酸钠;该阳离子表面活性剂选自脂肪胺、胺氧化物、季铵盐或氯化四乙基铵;该非离子型表面活性剂选自脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、羧酸酯或脂肪醇酰胺;该两性活性剂选自咪唑啉。
进一步,该含有表面活性剂的溶液中表面活性剂的浓度为0.01-0.6mol/L,所使用的溶剂为水或其他溶剂。按氟化石墨烯质量分数为0.01-0.1%将氟化石墨烯溶于该含表面活性剂的溶液,然后超声振荡5分钟-2小时,得到第一溶液。氟化石墨烯和表面活性剂之间具有相容性,采用含表面活性剂的溶液作为氟化石墨烯的溶剂,能够保证氟化石墨烯被完全溶解、分散。
具体地,本发明实施例制备方法中使用的氟化石墨烯没有限制,可以为市售的氟化石墨烯,也可以为自制的氟化石墨烯。优选采用自制氟化石墨烯,制备过程如下:
无水无氧条件下,将石墨烯加入至反应器,通入氟气或氟气与惰性气体组成的混合气体,于50-500℃温度下反应3-120h,得到氟化石墨烯。该惰性气体是指氮气、氦气、氩气及氖气等。优选的,向反应器中通入的氟氮混合气体,氟气占混合气体体积的10-30%,氮作为氟的稀释气体。最优选为通入氟气占总体积20%的氟氮混合气体,在250℃反应6h。该无氧条件没有限制,保证整个反应过程中没有氧气的存在即可,优选的,在通入氟气前,往反应器中通入氮气、氩气或氦气0.5-4小时,然后在密封条件下,通入上述反应气体;无水条件,即在反应前将石墨烯干燥,同时通入经过干燥的氟气或氟气与惰性气体的混合气体。
具体地,S02步骤中,
该有机单体是指噻吩或其衍生物、苯胺或其衍生物、吡咯或其衍生物。该有机单体加入至第一溶液中得到第二溶液,在该第二溶液中,有机单体浓度为0.01-0.6mol/L,有机单体和氟化石墨烯的质量比为1∶0.01-1。
该电解质加入至第二溶液中,该电解质没有限制,能够溶于上述第二溶液并且导电即可,例如,氯化钾、氯化钠、氯酸钾、高氯酸钾、溴化钠、溴化钾、碘化钾、碘化钠、硝酸钾、硝酸钠或硫酸钠中一种或以上。加入该电解质后,得到第三溶液,第三溶液中电解质的浓度为0.001-0.3mol/L。
然后,将工作电极和对电极置于该第三溶液中,向工作电极施加0.1-10mA/cm2电流密度的电流进行电化学聚合反应,上述有机单体在电场作用下聚合,生成长链导电聚合物,大量该长链导电聚合物聚集形成网状结构或其他结构,进一步,该网状结构将氟化石墨烯包围,氟化石墨烯均匀掺杂在导电聚合物之间,在工作电极上形成均匀的复合膜,即导电高分子材料。通过控制聚合过程中通入电流的电量,可以控制高分子材料复合膜的厚度。
进一步地,该工作电极可以作为超级电容器电极板的基材,形成有导电高分子材料复合膜的工作电极可直接作为超级电容器电极。
该工作电极和对电极的材质没有限制。
本发明实施例通过电化学聚合方法制备导电高分子材料,使该高分子材料中导电聚合物和氟化石墨烯之间更加均匀的掺杂,从而大大提高导电高分子材料的导电性能和循环稳定性能。
本发明实施例导电高分子材料,通过掺杂氟化石墨烯,使其循环稳定性能大大增强,同时,该导电聚合物使其具有优异的容量性能。本发明实施例制备方法,操作简单,成本低廉,对设备要求低,适于工业化生产。
本发明实施例进一步提供上述导电高分子材料在太阳能电池、有机电致发光器件、锂离子电池中的应用。
以下结合具体实施例对本发明实施例制备方法进行详细阐述。
实施例一
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气,在300℃下反应12h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.5mol/L的含十二烷基苯磺酸的溶液中超声振荡30min,制得氟化石墨烯质量百分数0.035%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入噻吩单体,使噻吩单体的浓度为0.5mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.3mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加10mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
将得到的导电高分子材料与导电剂、粘结剂进行充分混合,然后涂在泡沫镍上,烘烤后制成电极,再将两片同样的电极组装成对称型电容器进行恒电流充放电测试,请参阅图1,图1显示本发明采用实施例1制备的导电高分子材料制成的电极在1mol/L的硫酸中循环寿命图,测试条件:电流密度为0.2A/g,截止电压范围0-1V,循环1000次。从图1中可看出,当初始容量为372F/g,1000次循环以后容量仍保有350F/g,本发明实施例导电高分子材料具有优异的循环稳定性能。
实施例二
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积20%的氟氮混合气体,在100℃下反应75h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.01mol/L的含十二烷基苯磺酸的溶液中超声振荡5min,制得氟化石墨烯质量百分数0.056%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入吡咯单体,使吡咯单体的浓度为0.01mol/L,得到第二溶液;向第二溶液中加入硝酸钾,使硝酸钾浓度为0.02mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加10mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为352F/g,1000次循环以后容量仍保有320F/g。
实施例三
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积30%的氟氦混合气体,在250℃下反应86h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.25mol/L的含十二烷基苯磺酸的溶液中超声振荡110min,制得氟化石墨烯质量百分数0.025%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入苯胺单体,使苯胺单体的浓度为0.25mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.1mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加10mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为349F/g,1000次循环以后容量仍保有337F/g。
实施例四
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积10%的氟氦混合气体,在450℃下反应45h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.6mol/L的含十二烷基苯磺酸的溶液中超声振荡15min,制得氟化石墨烯质量百分数0.01%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入苯胺单体,使苯胺单体的浓度为0.6mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.2mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加10mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为354F/g,1000次循环以后容量仍保有340F/g。
实施例五
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积10%的氟氦混合气体,在50℃下反应120h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.1mol/L的含十二烷基苯磺酸的溶液中超声振荡2小时,制得氟化石墨烯质量百分数0.1%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入苯胺单体,使苯胺单体的浓度为0.1mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.025mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加0.1mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为355F/g,1000次循环以后容量仍保有338F/g。
实施例六
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积15%的氟氦混合气体,在500℃下反应3h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.45mol/L的含十二烷基苯磺酸的溶液中超声振荡1小时,制得氟化石墨烯质量百分数0.06%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入苯胺单体,使苯胺单体的浓度为0.45mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.3mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加7mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为375F/g,1000次循环以后容量仍保有359F/g。
实施例七
(1)制备氟化石墨烯
将石墨烯放入干燥箱中干燥24小时,再放入至反应器,通入干燥的氮气0.5h,然后通入氟气占总体积17%的氟氦混合气体,在150℃下反应65h,得到氟化石墨烯;
(2)制备第一溶液
将该氟化石墨烯在0.035mol/L的含十二烷基苯磺酸的溶液中超声振荡15分钟,制得氟化石墨烯质量百分数0.08%的第一溶液;
(3)制备导电高分子材料
向第一溶液中加入苯胺单体,使苯胺单体的浓度为0.035mol/L,得到第二溶液;向第二溶液中加入氯化钾,使氯化钾浓度为0.3mol/L,得到第三溶液;
将工作电极和对电极置于第三溶液中,向工作电极施加7mA/cm2电流密度电流,进行电化学聚合反应,得到导电高分子材料。
制备电极的方法参照实施例1,当初始容量为382F/g,1000次循环以后容量仍保有374F/g。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种导电高分子材料,包括导电聚合物和掺杂在所述聚合物之中的氟化石墨烯,所述导电聚合物和氟化石墨烯质量比为1:0.05-1,所述导电聚合物为聚噻吩或其衍生物、聚吡咯或其衍生物以及聚苯胺或其衍生物中的一种。
2.如权利要求1所述的导电高分子材料,其特征在于,所述导电聚合物和氟化石墨烯的质量比为1:0.5-1。
3.一种导电高分子材料制备方法,包括如下步骤:
将氟化石墨烯溶于含表面活性剂的溶液中,得到第一溶液;
按有机单体和所述氟化石墨烯质量比1:0.05-1将有机单体加入至所述第一溶液中,加入电解质,放置工作电极和对电极,通电进行电化学聚合,得到导电高分子材料,该有机单体为苯胺或其衍生物、吡咯或其衍生物以及噻吩或其衍生物中的一种。
4.如权利要求3所述的导电高分子材料制备方法,其特征在于,还包括如下制备氟化石墨烯的步骤:
无水无氧条件下,将石墨烯加入至反应器,通入氟气或氟气与惰性气体组成的混合气体,于50-500 ℃温度下反应3-120 小时,得到氟化石墨烯。
5.如权利要求3所述的导电高分子材料制备方法,其特征在于,所述表面活性剂为阴离子表面活性剂、阳离子表面活性剂、非离子型表面活性剂或两性表面活性剂。
6.如权利要求5所述的导电高分子材料制备方法,其特征在于,所述工作电极为超级电容器电极板的基材。
7.如权利要求3所述的导电高分子材料制备方法,其特征在于,所述第一溶液中氟化石墨烯的质量分数为0.01-0.1%。
8.如权利要求3所述的导电高分子材料制备方法,其特征在于,所述有机单体加入至所述第一溶液后,所述有机单体浓度为0.01-0.6mol/L。
9.如权利要求3所述的导电高分子材料制备方法,其特征在于,所述电化学聚合过程中通入的电流密度为0.1-10 mA/cm2
10.如权利要求1-2所述的导电高分子材料在太阳能电池、有机电致发光器件、锂离子电池或超级电容器中的应用。
CN201080069880.8A 2010-12-30 2010-12-30 导电高分子材料及其制备方法和应用 Expired - Fee Related CN103181001B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080512 WO2012088691A1 (zh) 2010-12-30 2010-12-30 导电高分子材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103181001A CN103181001A (zh) 2013-06-26
CN103181001B true CN103181001B (zh) 2015-03-25

Family

ID=46382208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080069880.8A Expired - Fee Related CN103181001B (zh) 2010-12-30 2010-12-30 导电高分子材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US9142330B2 (zh)
EP (1) EP2660900B1 (zh)
JP (1) JP2014502653A (zh)
CN (1) CN103181001B (zh)
WO (1) WO2012088691A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810688B2 (en) 2013-03-15 2017-11-07 Robert Bosch Gmbh Smart glass slide for microarrays
US9874538B2 (en) 2012-07-06 2018-01-23 Robert Bosch Gmbh Methods for generating pH/ionic concentration gradient near electrode surfaces for modulating biomolecular interactions
US9910008B2 (en) 2012-07-06 2018-03-06 Robert Bosch Gmbh Methods for generating pH/ionic concentration gradient near electrode surfaces for modulating biomolecular interactions
ITTO20130561A1 (it) * 2013-07-04 2015-01-05 Fond Istituto Italiano Di Tecnologia Metodo per la preparazione di compositi di polianilina e ossido di grafene ridotto
WO2015121206A1 (en) 2014-02-13 2015-08-20 Robert Bosch Gmbh Capacitive bubble detection
CN104851611A (zh) * 2015-04-03 2015-08-19 安徽江威精密制造有限公司 一种低电阻秸秆基电极材料及其制备方法
US11401426B1 (en) * 2015-05-22 2022-08-02 University Of South Florida Composite conducting polymer films
CN104993146A (zh) * 2015-05-29 2015-10-21 深圳好电科技有限公司 一种掺杂氟化石墨烯制备高导电浆料的方法
CN104992987B (zh) * 2015-06-18 2016-11-23 西交利物浦大学 氟化石墨烯作为高阻层的太阳能电池及其制备方法
US11867660B2 (en) 2015-07-06 2024-01-09 Robert Bosch Gmbh Electronic control of the pH of a solution close to an electrode surface
US10011549B2 (en) 2015-07-06 2018-07-03 Robert Bosch Gmbh Electrochemically active agents for pH modulation in biological buffers
US10379080B2 (en) 2015-07-06 2019-08-13 Robert Bosch Gmbh Electronic control of the pH of a solution close to an electrode surfaces
KR20180113969A (ko) 2016-02-22 2018-10-17 세키스이가가쿠 고교가부시키가이샤 복합 재료, 도전성 재료, 도전성 입자 및 도전성 필름
CN106336486B (zh) * 2016-08-19 2018-11-09 雷海波 一种高分子导电聚合物及其制备方法
WO2018053496A1 (en) * 2016-09-19 2018-03-22 University Of Houston System Orientation of materials via application of a magnetic field and use of magnetically-oriented devices and device component
JP2019031648A (ja) * 2017-08-10 2019-02-28 積水化学工業株式会社 発光材料組成物、発光材料−炭素材料複合体、及び蛍光センサ
CN108841173A (zh) * 2018-05-21 2018-11-20 南昌航空大学 一种材料的合成方法及其在微生物燃料电池阴极材料的应用
CN110055680A (zh) * 2019-05-10 2019-07-26 上海纳旭实业有限公司 纳米纤维素复合膜的制备方法及产品和应用
CN112723349B (zh) * 2020-12-24 2021-08-31 广东工业大学 一种氟化石墨烯的温和放电制备方法和装置
CN116462914A (zh) * 2023-06-02 2023-07-21 揭阳市良伟塑料模具厂有限公司 一种具有高耐磨性的复合pp材料制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467287A (zh) * 2006-03-03 2009-06-24 加州理工学院 氟离子电化学电池
CN101527202A (zh) * 2009-04-24 2009-09-09 南京理工大学 氧化石墨烯/聚苯胺超级电容器复合电极材料及其制备方法、用途
CN101781458A (zh) * 2010-02-04 2010-07-21 南京理工大学 一种石墨烯-有机酸掺杂聚苯胺复合材料及其制备方法
US7785492B1 (en) * 2006-09-26 2010-08-31 Nanotek Instruments, Inc. Mass production of nano-scaled platelets and products

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017101A1 (en) 1998-09-18 2000-03-30 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
JP4747505B2 (ja) * 2004-03-29 2011-08-17 パナソニック株式会社 非水電解液電池
US7535462B2 (en) 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US7794880B2 (en) * 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
KR20100117570A (ko) 2008-01-03 2010-11-03 내셔널 유니버시티 오브 싱가포르 기능성화된 그래핀 옥사이드
EP2085357A1 (en) * 2008-02-01 2009-08-05 UNIVERSITE JOSEPH FOURIER - Grenoble 1 Electropolymerizable surfactant for dispersing carbon nanotubes
WO2009158117A2 (en) 2008-05-30 2009-12-30 The Regents Of The University Of California Chemical modulation of electronic and magnetic properties of graphene
US8501318B2 (en) * 2008-09-03 2013-08-06 Nanotek Instruments, Inc. Dispersible and conductive nano graphene platelets
US9096431B2 (en) 2008-09-08 2015-08-04 Nanyang Technological University Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467287A (zh) * 2006-03-03 2009-06-24 加州理工学院 氟离子电化学电池
US7785492B1 (en) * 2006-09-26 2010-08-31 Nanotek Instruments, Inc. Mass production of nano-scaled platelets and products
CN101527202A (zh) * 2009-04-24 2009-09-09 南京理工大学 氧化石墨烯/聚苯胺超级电容器复合电极材料及其制备方法、用途
CN101781458A (zh) * 2010-02-04 2010-07-21 南京理工大学 一种石墨烯-有机酸掺杂聚苯胺复合材料及其制备方法

Also Published As

Publication number Publication date
US20130334467A1 (en) 2013-12-19
CN103181001A (zh) 2013-06-26
EP2660900B1 (en) 2017-02-15
EP2660900A4 (en) 2016-06-08
JP2014502653A (ja) 2014-02-03
US9142330B2 (en) 2015-09-22
WO2012088691A1 (zh) 2012-07-05
EP2660900A1 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
CN103181001B (zh) 导电高分子材料及其制备方法和应用
Zhu et al. Effects of various binders on supercapacitor performances
CN101800131B (zh) 一种活性碳基材料及其制备方法
CN103779568B (zh) 一种用于锂离子电池的柱醌正极材料及其应用
CN102800432A (zh) 一种氧化石墨烯/导电聚吡咯纳米线复合材料的制备方法
Liu et al. Highly strong and tough double‐crosslinked hydrogel electrolyte for flexible supercapacitors
CN112531162B (zh) 基于氮杂共轭多孔聚合物的水系质子电池电极及其制备方法
CN113444371A (zh) 一种金属有机框架/聚苯胺复合材料的制备方法及其应用
CN106910643B (zh) 原位聚合聚苯胺—磺化石墨烯复合材料在电极材料中的应用
CN107068998A (zh) 含导电聚合物/石墨烯的电池电极及其制备方法和应用
CN104022263A (zh) 共掺杂导电聚合物及其制备方法和应用
CN113583246A (zh) 一种三维介孔结构的金属有机骨架mil-101-v的制备方法及其应用
Wang et al. A high-performance carbon-carbon (c/c) quasi-solid-state supercapacitor with conducting gel electrolyte
Yang et al. Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3 [Fe (CN)] 6 for wearable flexible supercapacitors
CN113527673A (zh) 一种氧化石墨烯/聚苯胺复合材料的制备方法及其应用
CN112053857A (zh) 一种仿生水系电解液及制备方法和在超级电容器中的应用
CN106128802B (zh) 一种用于超级电容器的电极材料的制备方法
CN109360947B (zh) 一种准固态锂硫电池的多孔碳正极材料的制备方法
CN108923033B (zh) 一种基于相转移法的锂硫电池多孔碳正极材料的制备方法
CN112952214A (zh) 水系锌离子电池及其制备方法
CN113444365B (zh) 一种杂化掺杂型聚吡咯纸基柔性电极材料及制备方法
CN114242465B (zh) 一种水系锌离子混合电容器及其制备方法
CN110120552B (zh) 一种碱金属离子-电子混合导体及其制备方法和固态电池
CN113755012A (zh) 一种三维介孔微球结构MnO2/PPy复合材料的制备方法及其应用
CN102842436B (zh) 一种超级电容器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150325

Termination date: 20181230

CF01 Termination of patent right due to non-payment of annual fee