CN103067006A - 一种针对时间交替模数转换***时间误差的实时校正方法 - Google Patents

一种针对时间交替模数转换***时间误差的实时校正方法 Download PDF

Info

Publication number
CN103067006A
CN103067006A CN2012104802430A CN201210480243A CN103067006A CN 103067006 A CN103067006 A CN 103067006A CN 2012104802430 A CN2012104802430 A CN 2012104802430A CN 201210480243 A CN201210480243 A CN 201210480243A CN 103067006 A CN103067006 A CN 103067006A
Authority
CN
China
Prior art keywords
time
error
signal
passage
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104802430A
Other languages
English (en)
Other versions
CN103067006B (zh
Inventor
刘素娟
齐佩佩
王俊山
张美慧
姜文姝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201210480243.0A priority Critical patent/CN103067006B/zh
Publication of CN103067006A publication Critical patent/CN103067006A/zh
Application granted granted Critical
Publication of CN103067006B publication Critical patent/CN103067006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

一种针对时间交替模数转换***时间误差的实时校正方法,其思想是,对于M通道的时间交替模数转换***,把任一个通道作为参考,其余M-1个通道为待校正通道,基于自适应滤波器估计出待校正的M-1个通道的理想采样信号,计算出两通间的误差信号,然后基于LMS方法计算出时间误差值,再通过补偿结构实现时间误差的实时校正。本方法模型把时间误差的估计和补偿合为一体,真正的到达了硬件少、复杂度低以及实时校正的目标。

Description

一种针对时间交替模数转换***时间误差的实时校正方法
技术领域
本发明涉及一种基于最小均方差(LMS, Least Mean Square)方法的时间交替模数转换(TIADC)***的时间误差实时校正方法,属于高速度高精度模数转换技术领域。
背景技术
模数转换器(ADC)作为模拟技术与数字技术的接口,被广泛的应用于雷达、医疗仪器、通信***等现代电子***中。随着数字集成电路及数字信号处理技术的不断进步,对ADC的速度和精度提出了更高的要求,而传统的ADC由于器件工艺的限制很难满足同时具备高精度和高速度的要求。
采用多个相对低速、高精度的ADC多个通道并行时间交替采样构成TIADC***是目前高速、高精度ADC的发展方向。这种并行交替ADC由M个独立的并行子通道构成,各个子通道以fs/M的采样频率对相同的输入信号进行交替采样,然后M个子通道的输出重组成一组数字输出信号。这时,整个并行交替ADC***的采样频率为fs。理想情况下,M个子通道应该是相同的线性电路,并有相同的电路特性。但在实际应用中,ADC的制造工艺等引入通道失配误差(偏置误差、增益误差、时间误差),这些误差如果不加以校正,就会严重影响TIADC***的性能。其中偏置误差和增益误差较易校准,只需要在各个子通道输出信号通路上分别增加一个加法器和乘法器。然而,时间误差的校正相对困难很多。
针对时间误差,相关论文和专利中提出不少校正方法。申请专利号为200510122833.6四通道无失配时钟控制电路提供了一种减小时间误差的时钟控制电路,这种方法要求采样保持电路必须以***的采样速度运行,而设计高速高精度的采样保持电路是很困难的,限制了TIADC***的采样速度。申请专利号为200910109487.6只给出了时间误差的补偿方法。因此,研究一种新的性能好、计算复杂度低、易于硬件实现的TIADC***时间误差实时校正方法具有重大意义。
发明内容
本发明的目的是提出一种基于LMS方法的TIADC***的时间误差实时校正方法,该校正方法不仅硬件开销小,而且不需要专门的补偿电路,可以高效率地实现时间误差的实时校正。
本发明是采用以下技术方案实现的:
一种针对时间交替模数转换***时间误差的实时校正方法,其特征在于,对于M通道的时间交替模数转换TIADC***,把任一个通道作为参考,基于最小均方差LMS方法估计出其它M-1通道的时间误差值,再通过补偿结构实现时间误差的实时校正;具体步骤如下:
(1)、时间误差估计
a1、向M通道的TIADC***输入频率为f0的正弦信号x(t),TIADC***对输入信号进行采样,得到M通道采样输出信号数据yk(n),其中k代表通道号,k=1,2,3…M;为方便描述把第一通道作为参考通道,其余M-1个通道均为带有时间误差ti(n)的待校正通道,i=2,3…M,n表示采样点的个数;
a2、把M通道的采样输出信号分别送入低通滤波器进行滤波,随后将M-1个待校正通道滤波后的输出信号分别送入Farrow结构分数延时滤波器中得到延迟半个单元的序列ak(n),再把此序列分别送入微分器进行求导运算得到序列bk(n),最后将bk(n)送入乘法器与时间误差值ti(n)相乘得到序列ck(n);由此得到,待校正的M-1个通道的理想采样输出信号ykk(n)就等于序列ak(n)与相应的序列ck(n)的和;
a3、将待校正的M-1个通道的理想采样输出信号ykk(n)送入减法器分别与参考通道的采样输出信号进行求差,所得的通道间的误差信号e(n)反馈作为时间误差的参考值,基于LMS方法自适应地调整时间误差的值,直到误差的数量级满足设计指标要求,估计结束;其中,误差的数量级范围为10-4~10-5
(2)时间误差实时补偿
向M通道的TIADC***输入频率为f0的正弦信号x(t),TIADC***对输入信号进行采样,得到M通道采样信号后,将M通道的采样信号通过多路复用器MUX拼接成一路输出信号y(n);对于M通道TIADC***,其输出信号近似看作是由输入信号和***误差信号两部分组成;具体步骤如下:
b1、上述补偿方法实现的前提就是要估计出***误差信号ec(n),而***误差信号可以由下列表达式得到:
ec(n)=(-1)n(x(n)*h(n))ti(n)
其中:*表示卷积,x(n)为输入信号x(t)经傅里叶变换后的信号;h(n)是h(e)经傅里叶变换后的信号,h(e)表示微分器的频率响应,其表达式为:
h(e)=-j2ω
b2、用TIADC***的输出信号y(n)减去估计出来的时间误差信号ec(n),最后得到了补偿后的输出信号。
其步骤(a3)中基于LMS方法自适应计算时间误差值的表达式为:
ti(n)=ti(n-1)+μe(n)bk(n)
其中,在采样点的个数n不断增加过程中, ti(n-1)表示ti(n)的初始值;μ为步长参数,设置范围为0.01—0.00001;e(n)是步骤(a3)中的通道间的误差信号;bk(n)是步骤(a2)中通过微分器求导之后得到的序列。
实时校正方法模型包括时钟产生电路、TIADC***、多路复用器MUX、低通滤波器、Farrow结构延时滤波器、微分器、时间误差自调整模块、变量系数模块、乘法器、减法器以及累加器,其特征在于:
所述的时钟电路的输出端与TIADC***的输入端连接;TIADC***的输出端与多路复用器MUX10以及M个低通滤波器的输入端连接;低通M-1个滤波器的输出端与Farrow结构延时滤波器3的输入端连接;Farrow结构延时滤波器3的输出端与第一微分器4以及累加器7的输入端连接;第一微分器4的输出端与乘法器5输入端连接;乘法器5的输出端与累加器7的输入端连接;累加器7以及一个滤波器的输出端与减法器8的输入端连接;减法器8的输出端与时间误差自调整模块9的输入端连接;时间误差自调整模块9的输出端与乘法器5以及乘法器6的输入端连接;变量系数模块11以及第二微分器13的输出端与乘法器6的输入端连接,乘法器6的输出端与减法器12的输入端连接;多路复用器MUX10的输出端与第二微分器13以及减法器12的输入端连接,最后由减法器12的输出的信号就是校正后的***输出信号。
前述的时间误差自调整模块9是基于LMS方法来自适应计算时间误差值ti(n),其表达式为:
ti(n)=ti(n-1)+μe(n)b(n)
其中,在采样点的个数n不断增加过程中, ti(n-1)表示ti(n)的初始值;μ为步长参数,设置范围为0.01—0.00001;e(n)表示通道间的误差信号,是减法器8的输出信号;b(n)表示微分器4的输出信号。
与现有技术相比,本发明的优点在于:
本发明所述的校正方法模型把时间误差的估计和补偿合成一个整体模型,即不需要预先测量时间误差的大小,避免了时间误差的测量、计算等复杂工作;也不需要额外的补偿电路,并且能对TIADC***的时间误差进行实时校正。此外,本发明中的校正部分全数字实现,不存在模拟器件的实现偏差问题,不会对ADC芯片的设计引入任何限制,通用性强,计算复杂度低、易于硬件实现,适用于绝大多数新一代的ADC。
附图说明
图1是时间交替模数转换器(TIADC)***结构框图;
图2是TIADC***时间误差校正方法的模型图;
图3是两通道TIADC***时间误差估计的一种具体实施方式结构图;
图4是基于LMS方法计算时间误差值的模型图;
图5是两通道TIADC***时间误差补偿的一种具体实施方式结构图;
图6是未进行时间误差校正时***的正弦输出频谱图;
图7是根据本发明的校正方法对***输出进行时间误差校正后***的正弦输出频谱图。
具体实施方式
以下结合附图详细说明本发明的具体实施方式。
如图1所示为TIADC采样***,也可以叫M通道并行时间交替模数转换器采样***的结构框图。假设采样的输入模拟信号为x(t),整个采样***的采样间隔Ts=1/fs,则单个通道采样间隔T=M Ts。图1为一个M通道的并行采样***,M通道的采样后的信号通过多路复用器MUX拼接在一起还原为一个输出信号y(n)。然后采用本发明中的补偿方法进行校准操作。
图2是TIADC***时间误差校正方法的模型图。
如图2所示, 本发明所述基于LMS方法的TIADC时间误差的校正方法是一个包含估计和补偿在内的自适应滤波(AF,adaptive filtering)模型。为了便于本领域的技术人员更好的理解本发明,我们把本发明的时间误差校正方法模型分为估计和补偿两部分分别来介绍。
图3是两通道TIADC***时间误差估计的一种具体实施方式结构图。
在本实施例中,如图3所示,为两通道(M=2)的TIADC***时间误差估计方法模型。每一个ADC的采样频率为100MHz,则TIADC***的采样频率为200MHz。需要说明的是本发明方法并不仅限于两通道的情况,只是以两通道的TIADC***为例验证方法的可行性。本发明的时间误差估计方法把第一通道作为参考通道,把第二通道的相对误差值设置为0.01,具体步骤如下所示:
(1)为实验方便,我们分别采用三个不同频率的正弦信号(ω1=12.89MHz, ω2=28.91MHz,ω3=42.97MHz)作为输入信号,经TIADC***采样后得到第一通道和第二通道的采样信号分别为y1(n)、y2(n)。将两路采样后的信号分别送入30阶低通滤波器(截止频率为30MHz)得到滤波后的输出信号,然后把第二通道滤波后的输出信号送入Farrow结构分数延时滤波器中可以得到延迟半个单元的序列a2(n),再让此序列通过21阶微分器求导得到序列b2(n),最后乘以时间误差值t2(n)得到序列c2(n)。第二通道的理想采样信号y22 (n)就等于序列a2(n)与序列c2(n)的和。
(2)将求得的理想采样信号y22(n)送入减法器与第一通道滤波后的输出信号进行求差,所得通道间的误差信号e(n)反馈作为时间误差的参考值,基于LMS方法自适应地调整时间误差的值,直到误差的数量级到达1×10-4,估计结束。
如图4所示是基于LMS方法计算时间误差值的模型图。
基于LMS方法,时间误差值的表达式为:
ti(n)=ti(n-1)+ μe(n)b2(n)
其中,μ为步长参数,此处为0.01。
图5是两通道TIADC***时间误差补偿的一种具体实施方式结构图。
在本实例中,如图5所示,为两通道TIADC***误差补偿方法模型。将采样输出的信号通过多路复用器MUX拼接成一路输出信号。TIADC***的输出信号近似看作是由输入信号x(n)和***误差信号ec(n)两部分组成。基于上述模型,我们可以得到一个基本的补偿方法就是把***误差信号从输出信号中消除。具体原理表述如下:
(1)、上述补偿方法实现的前提就是要估计出***误差信号。如图4所示,***误差信号的表达式为:
ec(n)=(-1)n(x(n)*h(n))ti(n)
其中:*表示卷积,x(n)为输入信号x(t)经傅里叶变换后的信号;h(n)是h(e)经傅里叶变换后的信号,h(e)表示微分器的频率响应,其表达式为:
h(e)=-j2ω
对于两通道的TIADC***,由于输入信号远远大于误差信号,因此可以用输出信号y(n)来代替输入信号x(n)。
(2)、用TIADC***的输出信号y(n)减去估计出来的***误差信号ec(n),最后得到了补偿后的输出信号yc(n)。
图6和图7为使用本发明对时间误差校正前后的正弦信号频谱图。
如前所述,我们采用三个不同频率的正弦信号(ω1=12.89MHz, ω2=28.91MHz,ω3=42.97MHz)来验证本发明的性能。由图6可以看出,无杂散动态范围(SFDR)分别为-53.99dB、-46.85dB和-43.57dB,可见由于时间误差产生的杂散频率谱线严重降低了信号的SFDR。由图7可以看出由时间误差产生的失真频谱大幅降低,这时SFDR分别为-84.7dB、-90.82dB和-76.24dB。采用本发明的校正方法使得SFDR提高了30dB,满足提高25dB的实验要求。由以上分析说明本发明能有效地校正TIADC***的时间误差,提高信号的SFDR,降低由时间误差产生的频率谱线。

Claims (2)

1.一种针对时间交替模数转换***时间误差的实时校正方法,其特征在于,对于M通道的时间交替模数转换TIADC***,把任一个通道作为参考,基于最小均方差LMS方法估计出其它M-1通道的时间误差值,再通过补偿结构实现时间误差的实时校正;具体步骤如下:
(1)、时间误差估计
a1、向M通道的TIADC***输入频率为f0的正弦信号x(t),TIADC***对输入信号进行采样,得到M通道采样输出信号数据yk(n),其中k代表通道号,k=1,2,3…M;为方便描述把第一通道作为参考通道,其余M-1个通道均为带有时间误差ti(n)的待校正通道,i=2,3…M,n表示采样点的个数;
a2、把M通道的采样输出信号分别送入低通滤波器进行滤波,随后将M-1个待校正通道滤波后的输出信号分别送入Farrow结构分数延时滤波器中得到延迟半个单元的序列ak(n),再把此序列分别送入微分器进行求导运算得到序列bk(n),最后将bk(n)送入乘法器与时间误差值ti(n)相乘得到序列ck(n);由此得到,待校正的M-1个通道的理想采样输出信号ykk(n)就等于序列ak(n)与相应的序列ck(n)的和;
a3、将待校正的M-1个通道的理想采样输出信号ykk(n)送入减法器分别与参考通道的采样输出信号进行求差,所得的通道间的误差信号e(n)反馈作为时间误差的参考值,基于LMS方法自适应地调整时间误差的值,直到误差的数量级满足设计指标要求,估计结束;其中,误差的数量级范围为10-4~10-5
(2)时间误差实时补偿
向M通道的TIADC***输入频率为f0的正弦信号x(t),TIADC***对输入信号进行采样,得到M通道采样信号后,将M通道的采样信号通过多路复用器MUX拼接成一路输出信号y(n);对于M通道TIADC***,其输出信号近似看作是由输入信号和***误差信号两部分组成;具体步骤如下:
b1、上述补偿方法实现的前提就是要估计出***误差信号ec(n),而***误差信号可以由下列表达式得到:
ec(n)=(-1)n(x(n)*h(n))ti(n)
其中:*表示卷积,x(n)为输入信号x(t)经傅里叶变换后的信号;h(n)是h(e)经傅里叶变换后的信号,h(e)表示微分器的频率响应,其表达式为:
h(e)=-j2ω
b2、用TIADC***的输出信号y(n)减去估计出来的时间误差信号ec(n),最后得到了补偿后的输出信号。
2.根据权利要求1所述的一种针对时间交替模数转换***时间误差的实时校正方法,其特征在于,其步骤(a3)中基于LMS方法自适应计算时间误差值的表达式为:
ti(n)=ti(n-1)+μe(n)bk(n)
其中,在采样点的个数n不断增加过程中, ti(n-1)表示ti(n)的初始值;μ为步长参数,设置范围为0.01—0.00001;e(n)是步骤(a3)中的通道间的误差信号;bk(n)是步骤(a2)中通过微分器求导之后得到的序列。
CN201210480243.0A 2012-11-22 2012-11-22 一种针对时间交替模数转换***时间误差的实时校正方法 Active CN103067006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210480243.0A CN103067006B (zh) 2012-11-22 2012-11-22 一种针对时间交替模数转换***时间误差的实时校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210480243.0A CN103067006B (zh) 2012-11-22 2012-11-22 一种针对时间交替模数转换***时间误差的实时校正方法

Publications (2)

Publication Number Publication Date
CN103067006A true CN103067006A (zh) 2013-04-24
CN103067006B CN103067006B (zh) 2015-07-29

Family

ID=48109492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210480243.0A Active CN103067006B (zh) 2012-11-22 2012-11-22 一种针对时间交替模数转换***时间误差的实时校正方法

Country Status (1)

Country Link
CN (1) CN103067006B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393872A (zh) * 2014-11-17 2015-03-04 大唐微电子技术有限公司 一种多通道并行adc***的采样时间误差校正方法
CN104467842A (zh) * 2014-11-03 2015-03-25 合肥工业大学 一种带参考通道的tiadc的数字后台实时补偿方法
WO2015096433A1 (zh) * 2013-12-27 2015-07-02 中兴通讯股份有限公司 一种扩展adc采样带宽的装置和方法
CN104852742A (zh) * 2014-02-14 2015-08-19 英飞凌科技股份有限公司 模数转换
CN105024696A (zh) * 2015-07-02 2015-11-04 大唐微电子技术有限公司 多通道并行模数转换***采样时间误差的校准装置及方法
CN105116219A (zh) * 2015-08-06 2015-12-02 宁波大学 基于自适应tiadc的频谱分析模块
CN105811980A (zh) * 2016-03-06 2016-07-27 北京工业大学 一种基于微分器和平均时间误差的tiadc的时间误差失配的自适应盲校正方法
CN106154907A (zh) * 2016-06-15 2016-11-23 北京航空航天大学 一种基于时间交错采样的高速高精度数据采集***
CN106209103A (zh) * 2016-07-29 2016-12-07 电子科技大学 基于频谱分析的tiadc增益和时间误差的校正方法
CN106374921A (zh) * 2016-09-05 2017-02-01 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于多相分解的时间交织模数转换器线性失真校正方法
CN108494403A (zh) * 2018-03-26 2018-09-04 中国人民解放军国防科技大学 一种双通道tiadc采样保持电路失配自适应校准方法
CN109245766A (zh) * 2018-07-20 2019-01-18 中国电子科技集团公司第二十四研究所 一种时间交织结构模数转换器的误差补偿校正***及方法
CN109756227A (zh) * 2019-01-11 2019-05-14 北京工业大学 一种基于测试信号的tiadc时间误差的半盲校正方法
CN113063978A (zh) * 2021-06-03 2021-07-02 深圳市鼎阳科技股份有限公司 一种数字示波器及采样时刻失配的校正方法
CN113114241A (zh) * 2021-03-10 2021-07-13 电子科技大学 一种时间交替架构采集***中频响失配误差的校正方法
CN113759784A (zh) * 2021-09-10 2021-12-07 国网江苏省电力有限公司淮安供电分公司 一种自动时间补偿校正方法及同步采样通用模组
CN117200790A (zh) * 2023-09-22 2023-12-08 扬州宇安电子科技有限公司 一种交织采样***的杂散抑制方法、装置及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903023A (en) * 1985-11-06 1990-02-20 Westinghouse Electric Corp. Subranging analog-to-digital converter with digital error correction
CN101674087A (zh) * 2009-09-27 2010-03-17 电子科技大学 一种时间交替adc***通道失配误差的获取方法
CN102075464A (zh) * 2011-01-18 2011-05-25 电子科技大学 Tiadc***通道误差的联合估计及实时校正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903023A (en) * 1985-11-06 1990-02-20 Westinghouse Electric Corp. Subranging analog-to-digital converter with digital error correction
CN101674087A (zh) * 2009-09-27 2010-03-17 电子科技大学 一种时间交替adc***通道失配误差的获取方法
CN102075464A (zh) * 2011-01-18 2011-05-25 电子科技大学 Tiadc***通道误差的联合估计及实时校正方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015096433A1 (zh) * 2013-12-27 2015-07-02 中兴通讯股份有限公司 一种扩展adc采样带宽的装置和方法
CN104852742A (zh) * 2014-02-14 2015-08-19 英飞凌科技股份有限公司 模数转换
CN104852742B (zh) * 2014-02-14 2018-08-21 英飞凌科技股份有限公司 模数转换
CN104467842A (zh) * 2014-11-03 2015-03-25 合肥工业大学 一种带参考通道的tiadc的数字后台实时补偿方法
CN104393872A (zh) * 2014-11-17 2015-03-04 大唐微电子技术有限公司 一种多通道并行adc***的采样时间误差校正方法
CN104393872B (zh) * 2014-11-17 2018-01-16 大唐微电子技术有限公司 一种多通道并行adc***的采样时间误差校正方法
CN105024696B (zh) * 2015-07-02 2019-06-07 大唐微电子技术有限公司 多通道并行模数转换***采样时间误差的校准装置及方法
CN105024696A (zh) * 2015-07-02 2015-11-04 大唐微电子技术有限公司 多通道并行模数转换***采样时间误差的校准装置及方法
CN105116219A (zh) * 2015-08-06 2015-12-02 宁波大学 基于自适应tiadc的频谱分析模块
CN105116219B (zh) * 2015-08-06 2017-10-24 宁波大学 基于自适应tiadc的频谱分析模块
CN105811980A (zh) * 2016-03-06 2016-07-27 北京工业大学 一种基于微分器和平均时间误差的tiadc的时间误差失配的自适应盲校正方法
CN105811980B (zh) * 2016-03-06 2019-04-12 北京工业大学 一种基于微分器和平均时间误差的tiadc的时间误差失配的自适应盲校正方法
CN106154907B (zh) * 2016-06-15 2018-08-14 北京航空航天大学 一种基于时间交错采样的高速高精度数据采集***
CN106154907A (zh) * 2016-06-15 2016-11-23 北京航空航天大学 一种基于时间交错采样的高速高精度数据采集***
CN106209103A (zh) * 2016-07-29 2016-12-07 电子科技大学 基于频谱分析的tiadc增益和时间误差的校正方法
CN106209103B (zh) * 2016-07-29 2019-09-24 电子科技大学 基于频谱分析的tiadc增益和时间误差的校正方法
CN106374921A (zh) * 2016-09-05 2017-02-01 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于多相分解的时间交织模数转换器线性失真校正方法
CN106374921B (zh) * 2016-09-05 2019-04-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 基于多相分解的时间交织模数转换器线性失真校正方法
CN108494403A (zh) * 2018-03-26 2018-09-04 中国人民解放军国防科技大学 一种双通道tiadc采样保持电路失配自适应校准方法
CN108494403B (zh) * 2018-03-26 2022-02-15 中国人民解放军国防科技大学 一种双通道tiadc采样保持电路失配自适应校准方法
CN109245766A (zh) * 2018-07-20 2019-01-18 中国电子科技集团公司第二十四研究所 一种时间交织结构模数转换器的误差补偿校正***及方法
CN109756227A (zh) * 2019-01-11 2019-05-14 北京工业大学 一种基于测试信号的tiadc时间误差的半盲校正方法
CN109756227B (zh) * 2019-01-11 2022-12-16 北京工业大学 一种基于测试信号的tiadc时间误差的半盲校正方法
CN113114241A (zh) * 2021-03-10 2021-07-13 电子科技大学 一种时间交替架构采集***中频响失配误差的校正方法
CN113114241B (zh) * 2021-03-10 2022-04-19 电子科技大学 一种时间交替架构采集***中频响失配误差的校正方法
CN113063978A (zh) * 2021-06-03 2021-07-02 深圳市鼎阳科技股份有限公司 一种数字示波器及采样时刻失配的校正方法
CN113063978B (zh) * 2021-06-03 2021-08-03 深圳市鼎阳科技股份有限公司 一种数字示波器及采样时刻失配的校正方法
CN113759784A (zh) * 2021-09-10 2021-12-07 国网江苏省电力有限公司淮安供电分公司 一种自动时间补偿校正方法及同步采样通用模组
CN117200790A (zh) * 2023-09-22 2023-12-08 扬州宇安电子科技有限公司 一种交织采样***的杂散抑制方法、装置及***
CN117200790B (zh) * 2023-09-22 2024-04-12 扬州宇安电子科技股份有限公司 一种交织采样***的杂散抑制方法、装置及***

Also Published As

Publication number Publication date
CN103067006B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN103067006B (zh) 一种针对时间交替模数转换***时间误差的实时校正方法
CN108471313B (zh) 一种基于数模混合信号的tiadc***校准方法
CN108494402B (zh) 一种基于正弦拟合的tiadc***误差估计和补偿方法
CN105024696B (zh) 多通道并行模数转换***采样时间误差的校准装置及方法
CN107359878B (zh) 一种基于最小量化误差的流水线adc的前端校准方法
CN102075464A (zh) Tiadc***通道误差的联合估计及实时校正方法
CN104993827A (zh) 模数转换器误差估计校正的装置及其方法
CN107453756B (zh) 一种用于流水线adc的前端校准方法
CN102857225A (zh) 一种多通道高速并行交替采样***的失配误差校准方法
CN106341132B (zh) 时间交织采样adc的误差盲校正方法
CN108055039B (zh) 一种用于tiadc采样时间误差的全数字校准模块及其校准方法
CN102118167B (zh) 一种多通道模数转换器
US8307248B2 (en) Method and a system for estimating errors introduced in a time-interleaved analog-to-digital converter system
CN112751564A (zh) 采样时钟相位失配误差估计方法及装置
KR20110104021A (ko) 비선형 오차의 추정 및 보상을 위한 방법 및 장치
CN113114243B (zh) 一种tiadc***失配误差校正方法及***
CN104393872A (zh) 一种多通道并行adc***的采样时间误差校正方法
CN203057112U (zh) 一种针对时间交替模数转换***时间误差的实时校正装置
CN103078640A (zh) 一种用于adc的rls自适应滤波校准算法
CN108432140A (zh) 一种校正装置和方法
CN108494403B (zh) 一种双通道tiadc采样保持电路失配自适应校准方法
CN115776299A (zh) 一种低复杂度的tiadc时间失配误差校准方法
CN116781079A (zh) 一种基于参考通道的tiadc时间失配误差校准电路
CN110912556A (zh) 一种基于差值均衡的tiadc***采样时刻失配误差估计方法
CN115459770A (zh) 一种多通道时间交织adc采样时间失配的校正方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant