CN103053105A - 双向电流双升压平方dc/dc转换器 - Google Patents

双向电流双升压平方dc/dc转换器 Download PDF

Info

Publication number
CN103053105A
CN103053105A CN2011800376122A CN201180037612A CN103053105A CN 103053105 A CN103053105 A CN 103053105A CN 2011800376122 A CN2011800376122 A CN 2011800376122A CN 201180037612 A CN201180037612 A CN 201180037612A CN 103053105 A CN103053105 A CN 103053105A
Authority
CN
China
Prior art keywords
switch
voltage source
transducer
voltage
branch road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800376122A
Other languages
English (en)
Other versions
CN103053105B (zh
Inventor
优素福·图扎尼
莱德·克夫斯
格拉德·查姆佩诺伊斯
让-保罗·戈伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Universite de Poitiers
Original Assignee
IFP Energies Nouvelles IFPEN
Universite de Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Universite de Poitiers filed Critical IFP Energies Nouvelles IFPEN
Publication of CN103053105A publication Critical patent/CN103053105A/zh
Application granted granted Critical
Publication of CN103053105B publication Critical patent/CN103053105B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及电流可逆DC/DC双升压平方转换器,该转换器能够实现高变换比。

Description

双向电流双升压平方DC/DC转换器
技术领域
本发明涉及DC/DC电压转换器,换言之,涉及被设计为维持在两个电压源之间的能量流量的***。特别地,本发明可用于对应于平均和高功率应用的通常称为斩波器(chopper)的转换器类型。
从电路的角度来看,这种类型的转换器可以被认为是直接电量变换器。有两个定义DC/DC转换器类型的基本变量:
-如果输出电压小于输入电压,那么其称为降低(step-down)DC/DC转换器或“降压(buck)”转换器,
-如果输出电压大于输入电压,那么其称为升高(step-up)DC/DC转换器或“升压(boost)”转换器。
对于这种类型的转换器,当在转换器的工作期间输入或输出电流可以在两者中的任一方向上时,使用术语双向电流。
背景技术
DC/DC升高或升压转换器特别地用于电动和混合动力车辆。它们通过增加或减少在DC总线端子的电压来连接电池电压和电马达逆变器的DC总线。它们也可以用于在逆变器的输入端耦接电池和超级电容。
图1是示出了用于电动或混合动力车辆的电转换***。参考标号1表示在A点和B点之间输出电压U的电池。逆变器2的输入端连接在A点和B点之间。逆变器2的输出给车辆的三相电马达3供电。DC/DC转换器4构成第一的A点和B点与第二的超级电容5之间的连接。在本附图中I电池表示电池电流,I超级电容表示在超级电容中的电流。
在本领域中的DC/DC转换器的使用具有多个优点。它们使得能够管理在逆变器的DC总线和能量存储***之间的能量流动。它们使得能够使用低电压电池。它们使得能够使用具有非常高的DC总线电压的逆变器(高速机械)。它们使得速度能够大范围地变化。它们给出电转换***的更好的总效率。
混合动力和电动车辆的趋势导致逆变器DC总线上日益增高的电压。该趋势的优点是减少了斩波器线圈的截面并且减少了电机的尺寸。但是这需要使用DC/DC转换器来升高电池电压。
DC/DC升压型转换器的第二用途包括耦接机载能量存储装置。例如,耦接电池(能量)和超级电容(功率)。
当仅有的能量源是电池时,当负载可以在非常短的时间内吸收或输出高电流时(例如,在车辆的加速或刹车期间),很难维持DC总线上的电压。因此,可以在正和负峰值电流期间察觉到由安装在具有混合动力马达驱动的车辆上的电池输出的电压波动。这是因为实际上电池旨在(并且通常设置尺寸为)提供电能量(额定功率)而非瞬时功率。电池也不能在非常短的时间间隔内单独吸收全部的刹车能量。单独使用电池(电压不稳定)会加速老化。实际上结合超级电容(设置为用于功率的尺寸)可以在电池的全部工作范围期间减少电池电压波动以及利用在刹车期间可用的全部电能量。
如果DC/DC转换器用于耦接电池和超级电容,那么电池影响转换器的输出电压。直接以电流来控制转换器从而在加速期间提供功率峰值或在刹车时吸收电流峰值。因为超级电容的电压可以下降50%(从而使用超级电容充电的75%),所以所使用的DC/DC转换器必须是电流可逆升压型。
在应用的电动或混合动力车辆类型中,对DC/DC转换器的典型的规定将对DC电压施加可忽略的脉动比(少于3%)。然后,转换器的基本结构与设计为调适电源(电流/电压)且用于滤波的线性元件(感应线圈、电容器)相结合。
图2是示出了安装在Lexus混合动力车上的RX400h马达上使用的电转换***的示图。参考标号11指代连接至电流可逆DC/DC升压转换器12的输入端的288V电池,该电流可逆DC/DC升压转换器12在电阻13和平滑电容器14的端子上输出650V的输出电压。转换器的输出电压给第一逆变器15和第二逆变器16供电。逆变器15和16的输入端设置有滤波电容器17和18。逆变器15对马达19输出AC供电电压同时逆变器16复原由马达20产生的电流。
转换器12在滤波电容器21的端子接收来自电池11的电压。该电压通过感应线圈22传输至IPM(智能功率模块)23。
图3A和图3B是示出了变换器12(电流可逆DC/DC升压转换器)的输入电压的变换比的变化和转换器的效率ρ(纵坐标)相对于循环比(cyclic ratio)RC(横坐标)的示图。图3A和图3B中示出的曲线由这种类型的装置(传导、切换并且在无源组件中)中的建模损失(modelling loss)绘制。对40kW的功率转换器进行计算(200V的输入电压和由控制信号的循环比控制的输出电压)。图3A和图3B中的曲线示出了转换器的效率随着电压变换比的增加而减少。控制信号的循环比对应于被转换器的斩波周期除的控制脉冲的持续时间。该比值在0到1的范围内变化。
总之,当试图耦接机载能量源时,目的是在不改变效率的条件下减小机载装置的尺寸、重量和成本。当超级电容耦接至电池时,该耦接必须不产生任何比简单地在电池中添加额外的单元更严格的尺寸、成本和重量的限制。换言之,超级电容的电压必须低于电池电压。例如,如果超级电容的电压等于电池电压的一半,那么标准可逆升压转换器能够以92%量级的效率来使用。然而,如果需要使用超级电容的全部充电范围,那么转换器将具有低得多的效率(80%的量级)。如果需要达到50%的超级电容电压,那么多于4的电压变换比是必须的。该问题在超级电容的额定电压较低时是特别重要的。
发明内容
为了克服上述现有技术的问题,提出了一种新型DC/DC升压型转换拓扑,其能够在效率完全相同的条件下实现比根据现有技术的装置更高的变换比。该新型装置可以称作“电流可逆双升压平方DC/DC转换器”。
因此,本发明的目的是将用作在第一DC电压源和第二DC电压源之间的接口的电流可逆DC/DC升压转换器,第一DC电压源的电压小于第二DC电压源的电压,转换器的拓扑由以下支路组成:
-第一支路,连接第一DC电压源和第二DC电压源的正极,包括从第一DC电压源到第二DC电压源串联的第一感应线圈、以断开和闭合控制的第一开关、第二感应线圈、以断开和闭合控制的第三开关;
-第二支路,连接第一DC电压源和第二DC电压源的负极;
-第三支路,并联地连接至串联的第一开关和第二线圈,包括阳极在第一电压源的正极侧的二极管;
-第四支路,连接在第二支路和位于第一感应线圈和第一开关之间的部分第一支路之间,包括阳极在第二支路侧的第二二极管;
-第五支路,连接在第二支路和位于第一开关和第二感应线圈之间的部分第一支路之间,包括第一电容器;
-第六支路,连接在第二支路和位于第二感应线圈和第三开关之间的部分第一支路之间,包括以断开和闭合控制的第二开关;
-第七支路,并联地连接到DC电压源上,包括第二电容器;
该转换器包括控制开关的装置,以便:
-当电流在转换器中在从0到T变化的控制周期期间以循环比α从第一电压源向第二电压源流通时:
·从t=0到时间t=αT,其中0<α<1,第一开关和第三开关断开而第二开关闭合;
·从t=αT到时间t=T,第一开关和第三开关闭合而第二开关断开;
-当电流在转换器中在从0到T变化的控制周期期间以循环比α从第二电压源向第一电压源流通时:
·从时间t=0到时间t=αT,其中0<α<1,第一开关和第三开关闭合而第二开关断开;
·从时间t=αT到时间t=T,第一开关和第三开关断开而第二开关闭合;
优选地,循环比α在0.25和0.75之间。
优选地,以断开和闭合来控制的开关是从MOSFET和IGBT中选择的具有并联安装的二极管的组件。
附图说明
在阅读伴随有附图的作为非限制性示例给出的以下描述之后,本发明将被更好地理解并且其他优点和特征将变得明确,在附图中:
图1是示出了用于电动或混合动力车辆的电转换***的示图;
图2是示出了根据现有技术的混合动力车辆上使用的电转换***的示图;
图3A和图3B分别是示出了输入电压的变换比相对于电流可逆DC/DC升压转换器的变化和转换器效率相对于控制信号的循环比的变化的示图;
图4是示出了根据本发明的电流可逆双升压平方转换器的拓扑的示图;
图5是示出了根据本发明的用于转换器的控制信号的循环比的原理的示图;
图6是示出了根据本发明的作为对于转换器的循环比的函数的电压变换比的变化的示图;
图7A和图7B是示出了根据本发明的在顺向(升压)方向上的转换器的工作原理的电路图;
图8A和图8B是示出了根据本发明的在逆向(降压)方向上的转换器的工作原理的电路图。
具体实施方式
图4是示出了根据本发明的电流可逆双升压平方转换器的拓扑的示图。该图中示出的转换器形成在末端(点C和D)接收输入电压U输入的超级电容5和其间具有输出电压U输出的点A和B(参见图1)之间的连接。
第一感应线圈L1、第一开关Q1、第二感应线圈L2和第三开关Q3串联地连接在点C和点A之间。在点D和点B之间的连接接地。
二极管D1并联地连接到串联安装的元件Q1和L2上。二极管D1的阳极在点C的同一侧,它的阴极在点A的同一侧。
二极管D2连接在地与元件L1和Q1之间的连接之间。二极管D2的阳极接地。
电容器C1连接在地与元件Q1和L2之间的连接之间。电容器C2连接在点A和点B之间。
第二开关Q2连接在地与元件L1和Q3之间的连接之间。
开关Q1、Q2和Q3是具有反并联安装的二极管的以断开和闭合来控制的MOSFET或IGBT型的开关。
图5是示出了根据本发明的作为对于转换器的时间t的函数的控制信号的循环比的原理的示图。开关Q1和Q3由称作Cmd1的同一控制信号来控制。开关Q2由与Cmd1互补的控制信号Cmd2来控制。图5中的示图示出了在单个控制周期T内控制信号的循环比α的原理。
感应线圈L1和L2分别具有r1和r2的内阻。与在点A和点B之间的负载相等的阻抗称为R。控制脉冲的时长(由循环比α表示)控制转换器的变换比。输出电压相对于输入电压的表达式在以下写出:
Figure BDA00002796555400081
关系式(1)可以用于绘制示出作为循环比α的函数的U输出/U输入比值变化的曲线。该曲线在图6的示图中示出为参考标号31。根据已知技术的对于可逆升压型DC/DC转换器的相应的变化曲线也在本示图中示出为参考标号32(参见图3A)。
例如,根据本发明的转换器的值可以如下:
r1=r2=10mΩ
L1=625μH以及L2=1250μH
C1=500μF以及C2=250μF
R=10Ω
斩波频率:20kHz
U输入=25V以及U输出=100V
I输入=40A以及I输出=10A
考虑到开关(MOSFET、IGBT等)的开关频率限制以及为避免在DC/DC转换器中由开关增加的损耗,循环比通常在0.25和0.75之间。在这些条件下,使用根据本发明的转换器的拓扑的增益远高于使用标准拓扑的增益。应注意,在图6中的两条曲线是在相同效率条件下绘制的。
我们现将描述根据本发明的双升压型DC/DC转换器的工作原理。该描述将基于图5中的示图中示出的两个控制信号。我们将在电流从U输入流通至U输出时的工作方向称为顺向以及将在电流从U输出流通至U输入时的工作方向称为逆向。
顺向方向上的工作(升压)
图7A示出了根据本发明的转换器在t=0和t=αT(换言之,Cmd1=0和Cmd2=1)之间的工作阶段期间如何工作。开关Q1和Q3断开而开关Q2闭合。二极管D1自然导通而二极管D2截止。这意味着感应线圈L1和L2可以并联地充电。线圈L1通过输入源U输入来充电而线圈L2通过电容器C1来充电。
图7B示出了根据本发明的转换器在t=αT和t=T(换言之,Cmd1=1和Cmd2=0)之间的工作阶段期间的工作。开关Q1和Q3闭合而开关Q2断开。两个二极管D1和D2保持截止。这导致两个感应线圈L1和L2串联地在输出U输出中放电同时再一次对电容器C1充电。
逆向方向上的工作(升压)
图8A示出了根据本发明的转换器在t=0和t=αT(换言之,Cmd1=0和Cmd2=1)之间的工作阶段期间如何工作。开关Q1和Q3闭合而开关Q2断开。二极管D1和D2自然截止。在该工作阶段,感应线圈L2通过源U输出来充电而感应线圈L1通过电容器C1和输入源U输入来充电。
图8B示出了根据本发明的转换器在t=αT和t=T(换言之,Cmd1=0和Cmd2=1)之间的工作阶段期间的工作。开关Q1和Q3断开而开关Q2闭合。二极管D2自然导通而二极管D1截止。这导致感应线圈L2通过开关Q2在电容器C1中放电以及感应线圈L1通过L1通过续流二极管D2在U输入中放电。

Claims (3)

1.一种电流可逆DC/DC升压转换器,所述电流可逆DC/DC升压转换器将用作第一DC电压源和第二DC电压源之间的接口,所述第一DC电压源的电压小于所述第二DC电压源的电压,所述转换器的拓扑由以下支路组成:
-第一支路,连接所述第一DC电压源和所述第二DC电压源的正极,包括从所述第一DC电压源到所述第二DC电压源串联的第一感应线圈(L1)、以断开和闭合来控制的第一开关(Q1)、第二感应线圈(L2)、以断开和闭合来控制的第三开关(Q3);
-第二支路,连接所述第一DC电压源和所述第二DC电压源的负极;
-第三支路,并联地连接至串联的所述第一开关(Q1)和所述第二线圈(L2),包括阳极在第一电压源的正极侧的二极管(D1);
-第四支路,连接在所述第二支路和位于所述第一感应线圈(L1)和所述第一开关(Q1)之间的部分所述第一支路之间,包括阳极在所述第二支路侧的第二二极管(D2);
-第五支路,连接在所述第二支路和位于所述第一开关(Q1)和所述第二感应线圈(L2)之间的部分所述第一支路之间,包括第一电容器(C1);
-第六支路,连接在所述第二支路和位于所述第二感应线圈(L2)和所述第三开关(Q3)之间的部分所述第一支路之间,包括以断开和闭合来控制的第二开关(Q2);
-第七支路,并联地连接在所述第二DC电压源上,包括第二电容器(C2);
所述转换器包括控制开关的装置,以便:
-当电流在所述转换器中在从0到T变化的控制周期期间以循环比α从第一电压源向第二电压源流通时:
·从时间t=0到时间t=αT,其中0<α<1,所述第一开关(Q1)和所述第三开关(Q3)断开而所述第二开关(Q2)闭合;
·从时间t=αT到时间t=T,所述第一开关(Q1)和所述第三开关(Q3)闭合而所述第二开关(Q2)断开;
-当电流在所述转换器中在从0到T变化的控制周期期间以循环比α从第二电压源向第一电压源流通时:
·从时间t=0到时间t=αT,其中0<α<1,所述第一开关(Q1)和所述第三开关(Q3)闭合而所述第二开关(Q2)断开;
·从时间t=αT到时间t=T,所述第一开关(Q1)和所述第三开关(Q3)断开而所述第二开关(Q2)闭合。
2.根据权利要求1所述的转换器,其中,所述循环比α在0.25和0.75之间。
3.根据权利要求1或2中任一项所述的转换器,其中,以断开和闭合来控制的开关(Q1,Q2,Q3)是从MOSFET和IGBT中选择的具有并联安装的二极管的组件。
CN201180037612.2A 2010-07-30 2011-07-29 双向电流双升压平方dc/dc转换器 Expired - Fee Related CN103053105B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1056339A FR2963508B1 (fr) 2010-07-30 2010-07-30 Convertisseur dc/dc quadratique double boost bidirectionnel en courant
FR1056339 2010-07-30
PCT/EP2011/063118 WO2012013786A2 (fr) 2010-07-30 2011-07-29 Convertisseur dc/dc quadratique double boost bidirectionnel en courant

Publications (2)

Publication Number Publication Date
CN103053105A true CN103053105A (zh) 2013-04-17
CN103053105B CN103053105B (zh) 2016-07-20

Family

ID=43901608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180037612.2A Expired - Fee Related CN103053105B (zh) 2010-07-30 2011-07-29 双向电流双升压平方dc/dc转换器

Country Status (6)

Country Link
US (1) US9000740B2 (zh)
EP (1) EP2599206B1 (zh)
JP (1) JP5842278B2 (zh)
CN (1) CN103053105B (zh)
FR (1) FR2963508B1 (zh)
WO (1) WO2012013786A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994770A (zh) * 2018-01-09 2018-05-04 青岛大学 具有串联多级开关感容网络的单级电流型变换器
CN108134521A (zh) * 2018-01-09 2018-06-08 青岛大学 具有串联磁集成开关感容网络的单级单相电压型变换器
CN108155779A (zh) * 2018-01-09 2018-06-12 青岛大学 具有级联多级开关感容网络的单级电流型变换器
CN109843097A (zh) * 2016-10-19 2019-06-04 英美烟草(投资)有限公司 感应加热装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200815A1 (en) * 2012-02-06 2013-08-08 David Schie Energy storage means for last gasp / impedance limited applications
KR102035003B1 (ko) * 2012-02-20 2019-10-23 엘지디스플레이 주식회사 백라이트 드라이버 및 그를 포함하는 액정표시장치
WO2013190914A1 (ja) * 2012-06-19 2013-12-27 シャープ株式会社 スイッチング電源回路
US20140160031A1 (en) * 2012-12-06 2014-06-12 David Schie Quadratic converter minimizing driver size for piezo haptics
KR102016688B1 (ko) * 2012-12-10 2019-09-02 한국전자통신연구원 에너지 변환 장치
US10075067B2 (en) 2014-03-16 2018-09-11 The Regents Of The University Of California Two-switch switched-capacitor converters
US10199935B2 (en) 2014-09-12 2019-02-05 The Regents Of The University Of California Hybrid boosting converters
BR112018004748A2 (pt) 2015-09-11 2018-09-25 Invertedpower Pty Ltd controlador para uma carga indutiva tendo um ou mais enrolamentos indutivos
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
US10461640B2 (en) * 2015-11-16 2019-10-29 Cirrus Logic, Inc. Switching power converter
US9831775B2 (en) * 2016-02-25 2017-11-28 International Business Machines Corporation Buck converter
EP3622608A4 (en) 2017-05-08 2021-01-27 Invertedpower Pty Ltd VEHICLE CHARGING STATION
DE102017006199A1 (de) * 2017-06-30 2019-01-03 Daimler Ag Ladevorrichtung zum Laden eines Energiespeichers eines Fahrzeugs, sowie Fahrzeug mit einer solchen Ladevorrichtung
US11552568B2 (en) 2019-03-21 2023-01-10 Samsung Electronics Co., Ltd. Switching regulator and power management unit including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
CN1677815A (zh) * 2004-03-31 2005-10-05 株式会社电装 可逆反极性升压斩波电路以及具有它的逆变器电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346431A (en) * 1981-01-12 1982-08-24 General Electric Company Field controlled thyristor switching power supply
FR2663169A1 (fr) * 1990-06-08 1991-12-13 Alcatel Espace Dispositif de regulation d'un parametre par une structure bidirectionnelle en courant.
AT399625B (de) * 1992-03-13 1995-06-26 Zach Franz Dipl Ing Dr Bidirektionale wandlerschaltung
DE19853626A1 (de) * 1998-11-20 2000-05-31 Texas Instruments Deutschland Schaltregler und Verfahren zum Betreiben von Schaltreglern
JP3552087B2 (ja) * 1999-04-01 2004-08-11 富士電機ホールディングス株式会社 電気自動車の電源システム
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
US6304460B1 (en) * 2000-05-05 2001-10-16 Slobodan Cuk Switching DC-to-DC converter utilizing a soft switching technique
KR100901217B1 (ko) * 2000-12-04 2009-06-05 엔이씨 도낀 가부시끼가이샤 대칭형 dc/dc 컨버터
JP3501226B2 (ja) * 2001-08-29 2004-03-02 トヨタ自動車株式会社 Dc−dcコンバータ
JP2005137142A (ja) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd 昇圧コンバータ及びそれを含むモータ駆動回路
JP2007221956A (ja) * 2006-02-20 2007-08-30 Oita Univ Dc−dcコンバータ
US7382113B2 (en) * 2006-03-17 2008-06-03 Yuan Ze University High-efficiency high-voltage difference ratio bi-directional converter
JP5011874B2 (ja) * 2006-07-31 2012-08-29 ミツミ電機株式会社 双方向性コンバータおよび電子装置
JP4878562B2 (ja) * 2007-02-06 2012-02-15 本田技研工業株式会社 複合型トランスおよびそれを用いた昇降圧回路
US20090108677A1 (en) * 2007-10-29 2009-04-30 Linear Technology Corporation Bidirectional power converters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736842A (en) * 1996-07-11 1998-04-07 Delta Electronics, Inc. Technique for reducing rectifier reverse-recovery-related losses in high-voltage high power converters
CN1677815A (zh) * 2004-03-31 2005-10-05 株式会社电装 可逆反极性升压斩波电路以及具有它的逆变器电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE HONGWEN,XIONG RUI: "DC/DC converters design and control for hybrid power system", 《2010 INTERNATIONAL CONFERENCE ON INTERLLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843097A (zh) * 2016-10-19 2019-06-04 英美烟草(投资)有限公司 感应加热装置
US11470883B2 (en) 2016-10-19 2022-10-18 Nicoventures Trading Limited Inductive heating arrangement
US11937643B2 (en) 2016-10-19 2024-03-26 Nicoventures Trading Limited Inductive heating circuit for volatilizing smokeable material
CN107994770A (zh) * 2018-01-09 2018-05-04 青岛大学 具有串联多级开关感容网络的单级电流型变换器
CN108134521A (zh) * 2018-01-09 2018-06-08 青岛大学 具有串联磁集成开关感容网络的单级单相电压型变换器
CN108155779A (zh) * 2018-01-09 2018-06-12 青岛大学 具有级联多级开关感容网络的单级电流型变换器

Also Published As

Publication number Publication date
EP2599206A2 (fr) 2013-06-05
JP5842278B2 (ja) 2016-01-13
US9000740B2 (en) 2015-04-07
WO2012013786A3 (fr) 2012-04-26
FR2963508A1 (fr) 2012-02-03
WO2012013786A2 (fr) 2012-02-02
CN103053105B (zh) 2016-07-20
US20130119966A1 (en) 2013-05-16
JP2013532942A (ja) 2013-08-19
FR2963508B1 (fr) 2012-08-31
EP2599206B1 (fr) 2016-06-15

Similar Documents

Publication Publication Date Title
CN103053105A (zh) 双向电流双升压平方dc/dc转换器
US10056755B2 (en) Multi-source energy storage system and energy management and control method
CN101976894B (zh) 一种电能双向流动的储能***及其控制方法
Chen et al. A single stage integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles
CN103647321B (zh) 电动汽车多功能车载充电电路
CN103414337A (zh) 一种电动车开关磁阻电机功率变换器拓扑结构
CN102347698A (zh) 输出电压直接箝位的可变电压转换器
CN1881727B (zh) 用于燃料电池应用的有源直流总线滤波器
DE102017104983A1 (de) Dynamischer igbt-gate-treiber zur reduzierung von schaltverlust
CN102935812A (zh) 一种具有220vac/380vac充电功能的电机驱动-充电一体化装置
CN207518479U (zh) 一种Boost双向DC/DC变换器
US8058744B2 (en) Electrical system and automotive drive system having an on-demand boost converter, and related operating methods
CN111806267A (zh) 基于四重交错并联dc/dc的电动汽车牵引-双向充电***
CN210881738U (zh) 一种大功率双向充电机
CN102820775A (zh) 充电装置的整合式升降压转换器
CN105811766A (zh) 一种燃料电池汽车升降压型dc-dc变换器
CN201008129Y (zh) 静止电力双向可逆升降压变频装置
CN114583959A (zh) 一种软开关mppt控制器及光伏电源***
DE102019116823A1 (de) Hybridfahrzeugantriebsstrang mit isoliertem zweifachbus
CN201985600U (zh) 带充电功能的电动汽车牵引变频器电路
CN205905801U (zh) 一种制动能量回收的电机直流驱动***
CN209200934U (zh) 一种融合耦合电感技术的直流三电平升压变换器
CN204993064U (zh) 一种带耦合电感的Buck-Boost型大功率双向DC/DC变换器
CN103580476A (zh) 一种电能变换装置及其直流电路最优并联路数的确定方法
CN203457048U (zh) 一种低纹波四开关升降压直流变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160720

Termination date: 20170729