CN103035191A - 图像处理方法、控制电路、面板和显示器 - Google Patents

图像处理方法、控制电路、面板和显示器 Download PDF

Info

Publication number
CN103035191A
CN103035191A CN2012103777802A CN201210377780A CN103035191A CN 103035191 A CN103035191 A CN 103035191A CN 2012103777802 A CN2012103777802 A CN 2012103777802A CN 201210377780 A CN201210377780 A CN 201210377780A CN 103035191 A CN103035191 A CN 103035191A
Authority
CN
China
Prior art keywords
pixel
sub
data value
brightness
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103777802A
Other languages
English (en)
Other versions
CN103035191B (zh
Inventor
夏洛特·温迪·米歇尔·鲍格斯
本杰明·约翰·布劳顿
保罗·安东尼·加斯
哈里·加斯·沃尔顿
约翰·努韦乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN103035191A publication Critical patent/CN103035191A/zh
Application granted granted Critical
Publication of CN103035191B publication Critical patent/CN103035191B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

公开了一种图像处理方法、控制电路、面板和显示器。该方法包括:接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及修改子像素颜色分量数据值中的一个或更多个。沿彼此相反的方向修改来自两个像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度看起来实质上未改变。两个像素可以是帧中彼此在空间上靠近的两个像素,使得观看者的眼睛可以将两个像素的亮度平均。备选地,两个像素可以具有彼此相同的空间位置,但是出现在两个不同但连续的帧或帧组中。同样,观看者的眼睛可以将两个像素的亮度平均。

Description

图像处理方法、控制电路、面板和显示器
技术领域
本发明涉及用于处理图像数据以由多原色显示设备显示的方法和设备。
背景技术
液晶显示器(这里称为LCD)一般具有多个部件,包括但不限于:
1、背光单元(在透射型显示器的情况下),向面板提供均匀、宽角度照明。
2、控制电子装置,针对每个像素接收数字图像数据并输出模拟信号电压,以及针对所有像素的反电极(counter electrode)的定时脉冲和公共电压。图1示出了LCD控制电子装置的标准布局的示意图(参见E.Lueder,Liquid Crystal Displays,Wiley and Sons Ltd.,2001)。
3、液晶(这里称为LC)面板,用于通过空间光调制来显示图像,包括两个相对的玻璃基板,在基板之一上放置有画面单元电极阵列和有源矩阵阵列,有源矩阵阵列用于将从控制电子装置接收的电子信号引导至画面单元电极。在另一基板上通常放置有均匀公共电极和滤色器阵列薄膜。在玻璃基板之间包含了给定厚度(通常2-6μm)的液晶层,可以通过玻璃基板的内表面上存在的对准层(alignment layer)将液晶层对准。玻璃基板一般放置在正交偏振膜(crossed polarizing film)与其他光学补偿膜之间,以在LC层的每个画面单元区域内引起电感应的对准改变,从而产生来自背光单元和周围环境光的期望的光学调制,并由此产生图像。
上述画面单元通常称为像素,每个像素一般包括多个子像素。典型的LCD具有RGB条状几何结构,其中像素是方形的,具有三个子像素,一个红色、一个绿色和一个蓝色,全部这些子像素的形状为垂直条。然而,多原色显示器的像素包括四个或更多个子像素,例如一个红色、一个绿色、一个蓝色和一个白色,这种多原色显示器正越来越普遍。
生产多原色显示器的目的在于扩展可显示颜色的范围(Proceedings of the IDW′09,2009,第1199-1202页)。出于提供显示亮度以及由此提高效率的目的,已经开发了具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色显示器(SID’08Digest,第1112-1115页)。生产多原色显示器的目的也在于同时提高亮度和提高呈现子像素级别上的精细图像特征的能力(IMID’05Digest,第867-872页)。已经开发了具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色显示器;这些显示器展示了增强的亮度、增大的色域和提高的子像素呈现能力(SID’10Digest,第281-282页)。
由于多原色显示器具有多于三种颜色的子像素,对于许多色度和亮度值,可能存在个体数据值的多种配置提供给彩色子像素,彩色子像素产生整体上相同的亮度和色度。产生整体上相同的亮度和色度的不同数据值集合称为条件等色体(metamer)。US 20100277498(公开于2010年11月4日)描述了一种基于子像素呈现因素来选择最想要的条件等色体的方法。
LCD技术有许多其他进步,带来了非常高性能的显示器,具有提高的度量,例如显示面积、亮度、图像对比度、分辨率、比特深度和响应时间。然而,对于许多类型的LCD,视角特性仍然较差。为实现良好的视角特性,对于给定像素的输入图像数据值与观察的像素亮度之间的关系(通常称为伽马曲线)随视角的改变必须尽可能地小。显示器的伽马曲线由显示驱动器的数据值到信号电压映射以及LC面板的信号电压到亮度响应的组合效应来确定。
一个存在问题的观看特性是对比度反转。当从显示器表面的法线方向(这里称为在轴(on-axis))观察时,如果一个像素已切换为比另一像素具有较高亮度,而该像素没有在所有视角上保持较高亮度,从而所显示的图像可能看起来随视角的改变而反转,则发生了对比度反转。已经开发了多种技术来解决对比度反转问题。例如,已经生产了具有角度补偿膜的显示器,角度补偿膜例如包括针对扭曲向列(这里称为TN)显示器的splayed-discotic宽视角膜、针对垂直对准向列(这里称为VAN)显示器的多域像素、面内开关(这里称为IPS)模式显示器以及改进的电极几何结构。
第二个存在问题的观看特性是感知的颜色随视角而改变;这通常称为颜色偏移。颜色偏移来源于像素随视角的亮度改变量依据像素的在轴亮度这一事实。因此,在三个子像素具有不同亮度值的RGB条显示器中,三个颜色分量间的亮度相对差异可能随视角而改变。尽管对比度反转问题已经得到广泛的解决,但是对于许多类型的LCD而言颜色偏移仍然是问题。
为清楚起见,以下用于说明颜色偏移效应的示例以及用于减小该效应的实施例的描述将针对具有8比特每颜色灰度控制的VAN模式LCD显示器。随角度的颜色偏移问题以及这里所述实施例的应用不限于VAN模式显示器或任何特定颜色深度的显示器,因此这不应该限制了本发明范围,本发明可应用于展示出随角度的颜色偏移的任意LCD。
图2示出了移动电话显示器中所测量的多域VAN模式LCD亮度的角度相关性,在从输入数据等级=0(黑色)到255(白色)的32阶灰色色调上。图3(a)示出了向右手侧0°和50°倾斜处图2的点(沿正常观看显示器的取向,水平),这些点相对于输入数据等级而绘制。在轴曲线(on-axis curve)是显示器伽马曲线,设计为近似遵循关系
Figure BDA00002228144000031
其中L是针对给定数据等级D的输出亮度,γ(伽马)是两者各自被归一化到其最大值时联系两者的幂。伽马值在工程中典型地在2.0到2.4的范围内,对于图2和3所示显示器,近似2.3。
图3(b)示出了基于在轴亮度0°和50°处显示器的亮度,两者都归一化至其最大值。
从图中可以清楚看到,针对中等灰度级,VAN模式显示器的典型表现是当离轴(off-axis)观看时,看起来亮得不均衡。这进一步在图4中示出,示出了对于显示等于255、160和0的输入数字值的同一VAN模式显示器,在每个角度上,依据视角的被归一化到数据=255的亮度状态下的亮度。从该图中可以看出,如果像素的输入是针对红色子像素输入数据=255,针对绿色子像素输入数据=160以及针对蓝色子像素输入数据=0,则在轴的归一化亮度的比率近似为R∶G∶B=1∶0.35∶0,这将造成像素看起来呈橙色。然而,当从50°倾角看时,颜色分量比率近似为1∶0.77∶0.03,这将造成像素看起来呈黄色。这是随视角的颜色偏移的原因,并且可以看出,尤其是VAN模式显示器,对于包括最大亮度附近的一个颜色分量以及中等亮度范围的一个或两个颜色分量在内的颜色而言,颜色偏移程度最大。
已经开发了多种技术来减轻色偏效应。最有效的方法利用***的子像素结构,从而显示器中每个彩色子像素包括两个或更多个区。每个子像素区具有不同的亮度,一个亮度高于另一个;由此,每个子像素区具有的随视角的亮度变化不同。选择子像素区亮度值,使得子像素区的平均在轴亮度具有期望的总体亮度,并使得子像素区的随视角的平均亮度变化比起单独每个区的亮度变化而言较不显著。
该方法称为部分空间抖动或数字半色调化,并可以使用在***子像素的区域之间的电容性分压器来实现,如在US 4840460(公开于1989年6月20日)和US 7474292(公开于2005年10月6日)中所述;或者可以通过针对每个彩色子像素使用附加的源极线,使得子像素的两个区域在由公共栅极线激活时各自接收独立受控的信号电压,来实现上述方法。这第二种实现在US 6067063(公开于2000年5月23日)中有所描述。这两种一般方法也在US 7079214(公开于2006年7月18日)中有所总结,此外,该专利还描述了如何优化施加至较亮和较暗子像素区的电压间的关系,以减小颜色偏移。
然而,硬件的***子像素结构具有不利方面。需要添加像素电子器件,这增加了显示器成本,并且该方法不适用于高分辨率、小面积显示。
不一定要用***子像素结构来实现这种方法。该技术可以有效地以软件实现,或者实现在LCD控制电子装置中,并通过在空间或时间域中交替地向上和向下调整全部彩色子像素的亮度,应用于任何现有彩色显示器,从而以显示器的有效分辨率为代价来产生相同效果。亮度在相邻像素的相同子像素之间有效传送;这按照如下方式进行:确保相邻像素的平均在轴亮度不变,同时改善平均颜色偏移。这在US6801220(公开于2002年10月17日),US 7113159(公开于2003年8月7日),US 5847688(公开于1998年12月8日),US 7250957(公开于2007年7月31日),US 20040061711(公开于2004年4月1日),US 20100156774(公开于2010年6月24日)和US 7764294(公开于2006年8月10日)中有所描述。
在US 6801220中,通过图像处理方法实现在RGB显示器上,其中利用查找表(这里称为LUT)处理输入LCD的图像数据,使得对于每个输入数据等级,提供一对输出数据等级。假设足够的显示分辨率和观看距离,当在LCD上通过相邻像素显示时,观看者的眼睛将该对输出数据等级进行平均,以便看起来像是原始输入数据等级显示在两个像素上一样。因此,对于给定输入数据值,该图像处理方法在整个显示器上,空间地交替将一对输出数据值中的哪一个施加至每个像素。
US 7113159描述了包括红绿蓝三种子像素的液晶显示设备,具有良好的分度(graduation)曲线和宽视角。通过在时域中上下调整子像素的亮度来实现宽视角。换言之,一个像素中的帧分别显示不同的分度。以足够高的速度执行帧切换,这通过图像持久性来引起颜色混合的发生,并且对于眼睛而言颜色看起来呈中等亮度。该专利还描述了一种硬件***子像素结构,但是突出了该方法的两个问题。第一个问题是像素电子器件的增加,第二个问题是子像素的透射率降低。建议了针对这些问题的非硬件***方案,从而向每个像素添加白色子像素。然后通过相对于红绿蓝的组合来校正分度特性,来改善视角。
然而,软件***子像素结构也有不利方面。虽然不像硬件***子像素结构中那样需要添加像素电子器件,并且软件方法可以应用于高分辨率、小面积显示器,但是得到的图像确实在亮度分辨率方面遭受实质损失。每个单独像素的色度也可能不同于其原始值,这会导致所得图像中的颜色伪像。US 6801220指出了只有当图像内容逐像素地逐渐改变时,使用的半色调化图案才具有与原始图像相同的总体外观。如果图像内容的逐像素改变剧烈,则半色调化图案被破坏。例如,该专利指出在图案的周期性是沿水平和垂直两个方向的2×2子像素图案时,可以使用2×2子像素图案。加亮或加暗的区域包括单个子像素或一对子像素。图5示出了针对该图案的绿色/洋红色布置。如果将该图像逐个像素地应用于棋盘格图像,则半色调化图案被破坏,颜色伪像可见。图6(a)和6(b)示出了当上述图案的绿色/洋红色布置应用于1×1灰/黑棋盘格图像时,该图像看起来的样子。绿色和洋红色伪像可见。单像素对角线也遭受类似的颜色伪像问题。(图5、6(a)和6(b)的子像素中的符号“+”和“-”指示了在一帧中向该子像素施加的电压的极性,其中逐帧地反转向子像素施加的电压的极性,如通常用于驱动LC显示器那样。)
US 20100156774描述了一种帧反转驱动方法,对于静止图像,在亮度或色度方面没有明显的分辨率损失。在该驱动方法中,在每一帧内,在图像中施加明暗空间棋盘格图案,但是随着每帧变化来反转棋盘格图案。对于观看者,由于眼睛的空间平均化使得无法在给定帧内洞悉一对像素中哪个像素已经变亮或变暗,因此每帧的图像看起来相同。该帧反转驱动方法的关键优点在于,虽然针对静止输入图像,每一帧的宏观外表相同,但是像素的亮度在逐帧地改变,以提供与对应于该像素的输入数据值的期望亮度相等的时间上的平均亮度。因此,虽然在每一帧内由于通过施加明暗棋盘格图案而应用的数据修改引起了分辨率损失,但是在两帧或更多帧的时间段上,每个单独像素提供正确的平均亮度,从而没有引发明显的分辨率损失。
尽管上述帧反转驱动方法确实可以恢复一些亮度分辨率损失,并且在静止图像中没有可见的颜色伪像,但是眼睛在显示器周围的移动或眨眼会导致显示器的瞬时隐约闪烁,因而在这个时刻分辨率损失依然可见;然而必须注意,在显示器的瞬时隐约闪烁期间,颜色伪像不可见。
尽管在向静止图像施加帧反转驱动方法时颜色伪像的确不可见,但是在一些运动图像中颜色伪像可见。例如,当将图5所示修改图案施加到以每帧一个像素的速率水平移动的逐像素棋盘时,即使在应用了帧反转驱动方法时颜色伪像也可见。
US 20100156774描述了一种可以用于解决运动图像中颜色伪像问题的方法。该方法包括防止在可能造成颜色伪像的输入图像区域上执行任何修改。虽然该方法确实在静止和运动图像两者中都防止了颜色伪像,但是该方法的缺点在于,在防止了修改的位置处的任何像素的离轴外观得不到任何改善。由此,对于相同的输入像素,在修改应用于其中之一而没有应用于另一个像素时,相同的输入像素对于离轴观看者而言看起来是不同的。该方法还具有的另一缺点在于,需要额外资源来实施该方法。因此,优选的是首先没有发生颜色伪像。
因此,清楚的是,需要一种减少LCD中随视角的颜色偏移的优化方法,相比于现有方法没有亮度分辨率损失或者减小了亮度分辨率损失,以及对于运动和静止图像两者均没有颜色伪像。
发明内容
本发明第一方面提供了一种处理图像以供显示的方法,该方法包括:获得构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:沿彼此相反的方向修改来自像素对的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
本发明第二方面提供了一种处理图像以供显示的方法,该方法包括:接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
本发明第三方面提供了一种用于多原色显示面板的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
本发明第四方面提供了一种用于多原色显示面板的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
本发明第五方面提供了一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中显示面板配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
本发明第六方面提供了一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
本发明第七方面提供了一种包含指令的计算机可读介质,当由处理器执行时,指令引起处理器执行根据本发明的方法。
为实现上述和相关目的,本发明包括下面充分描述并在权利要求中具体指出的特征。以下描述和附图详细阐述了本发明的某些说明性实施例。然而,这些实施例只是示出了本发明原理可以应用的多种方式中的少数。结合附图,本发明的其他目的、优点和新颖特征将从以下本发明的详细描述中明显可见。
附图说明
图1是LCD的控制电子装置的标准布局示意图。
图2是示出了在输入数据值的范围上测量的VAN模式LCD的角度亮度依赖性的曲线。
图3的(a)和(b)是示出了根据输入数据值和0°和50°观看倾角处的亮度,图2数据在0°和50°观看倾角处的一对曲线。
图4是示出了在输入数据值的范围上测量的VAN模式LCD的角度亮度依赖性的曲线,在每个角度上归一化到最大数据值的亮度。
图5是具有绿/洋红排列的2×2RGB子像素图案的视图。
图6的(a)和(b)示出了当图5所示半色调化图案被破坏时,颜色伪像的外观。图6的(a)示出了逐像素的黑和灰棋盘格,图6的(b)示出了当应用图5的半色调化图案时图6的(a)的外观。
图7的(a)和(b)是示出了对于颜色通道的所有可能数据值组合,离轴亮度与在轴亮度的曲线。
图8是示出了根据本发明实施例的可能硬件实现的处理流图。
图9的(a)和(b)示出了各自具有一个红色、一个绿色和一个蓝色子像素的像素的阵列,图9的(b)示出了可以应用于图9的(a)所示像素阵列的修改图案。
图10的(a)、(b)和(c)示出了各自具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色像素的阵列,图10的(b)和(c)示出了可以应用于图10的(a)所示像素阵列的修改图案。
图11的(a)和(b)示出了各自具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色像素的阵列,图11的(b)示出了可以应用于图11的(a)所示像素阵列的修改图案。
图12的(a)和(b)示出了各自具有一个红色、一个绿色和一个蓝色子像素的像素的阵列,图12的(b)示出了可以应用于图12的(a)所示像素阵列的修改图案。
图13的(a)、(b)和(c)示出了各自具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色像素的阵列,图13的(b)和(c)示出了可以应用于图13的(a)所示像素阵列的修改图案。
图14的(a)和(b)示出了各自具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色像素的阵列,图14的(b)示出了可以应用于图14的(a)所示像素阵列的修改图案。
图15的(a)-(g)示出了可以应用于四原色显示的7种不同修改图案。
图16是示出了根据本发明实施例的可能硬件实现的处理流图。
图17示出了针对如下具体情况图16所示的处理流:输入像素具有数据值分别等于200、100、200和100的一个红色、一个绿色、一个蓝色和一个白色子像素。
图18是示出了sRGB颜色空间的色域和三原色R、G和B的位置的CIE 1931xy色度图。
图19是示出了根据本发明实施例的可能硬件实现的处理流图。
图20示出了针对如下具体情况图19所示的处理流:输入像素具有数据值分别等于200、160、120和120的一个红色、一个绿色、一个蓝色和一个白色子像素。
图21示出了针对如下具体情况图19所示的处理流:输入像素具有数据值分别等于200、160、120和120的一个红色、一个绿色、一个蓝色和一个白色子像素。
图22的(a)和(b)示出了可以如何在多原色子像素之间转移亮度以确保无亮度或色度分辨率损失。
图23是示出了根据本发明实施例的可能硬件实现的处理流图。
图24示出了以2行点反转极性图案(2line dot inversion polaritypattern)向RGBY面板应用的修改图案。图像和极性图案的刷新速率相同。
图25示出了以2行点反转极性图案向RGBY面板应用的另一修改图案。图像和极性图案的刷新速率相同。
图26示出了以2行点反转极性图案向RGBY面板应用的另一修改图案。图像和极性图案的刷新速率相同。
图27示出了以2行点反转极性图案向RGBY面板应用的另一修改图案。图像和极性图案的刷新速率相同。
图28示出了以2行点反转极性图案向RGBY面板应用的另一修改图案。图像和极性图案的刷新速率相同。
图29示出了以2行点反转极性图案向RGBY面板应用的修改图案。图像的刷新速率是极性图案的刷新速率的两倍。
图30示出了用于防止颜色伪像并仍然实现离轴图像改善的方法。
图31示出了用于防止颜色伪像并仍然实现离轴图像改善的另一方法。
图32的(a)和(b)是根据本发明实施例的两种可能硬件实现的处理流图。
图33示出了以2行点反转极性图案向RGBY面板应用的修改图案。图像的刷新速率是极性图案的刷新速率的两倍。
具体实施方式
在根据本发明的显示器的示例性实施例中,显示器包括标准LCD显示器,图1示出了其示例,具有修改后的控制电子装置。
当该显示器以标准方式操作时,在每个帧周期,典型地以串行比特流的形式,向控制电子装置输入构成单个图像的一组主图像数据。控制电子装置将一组信号数据电压输出至LC面板。每个信号电压被LC面板的有源矩阵阵列引导至对应的像素电极,LC层中得到的像素的集体电光响应产生图像。
如上所述,在包括颜色偏移减小技术的显示器中,可以在控制电子装置、驱动器电路或像素内电子器件中修改图像数据,使得像素对或来自两个像素的相同子像素对的数据值被沿相反方向修改。这具有从一个像素向另一像素或者从一个子像素向另一子像素转移亮度的效果。转移亮度,以确保在轴观看者观看的一对像素或子像素的组合亮度看起来未改变(使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变),并且离轴观看者看起来得到改进。注意,两个像素可以是帧中彼此在空间上靠近的两个像素,使得观看者的眼睛可以将两个像素的亮度平均,或者两个像素可以具有彼此相同的空间位置,但是出现在两个不同但连续的帧中,或者两个像素可以具有彼此相同的空间位置,但是出现在不同但连续的第一和第二帧组中。
参照图1,根据本发明示例性实施例,控制ASIC被修改为除了常规控制外,还执行本文所述的根据本发明的处理。控制ASIC包括用于接收显示输入数据的输入,显示输入数据的形式为构成了图像的多个像素数据。每个像素数据包括具有相应数据值的多个子像素颜色分量。控制ASIC包括修改部,如下所述地修改像素数据中包括的子像素颜色分量数据值,以减小当显示在LCD上时的颜色偏移。修改后的像素数据进而提供给LCD显示器。
输出至显示器的修改数据值存储在查找表(LUT)中,每个彩色子像素一个修改数据值。每个LUT包括两列,每列具有的行的数目等于输入数据等级,例如在8比特每颜色显示器中,256行。如果需要,可以将LUT组合为具有更大列数目的单个扩展LUT。在每个LUT内,基于待显示图像中被修改的像素或子像素的位置,依据修改图案来选择哪个输出值。例如,为产生棋盘格排列的明暗像素或子像素的图案,可以修改显示器上行和列位置都为奇数或都为偶数的像素或子像素,以获得LUT中两个可能输出值中的较大值,同时可以修改图像中行和列位置为奇数和偶数或者偶数或奇数的像素或子像素,以获得两个可能输出值中的较小值。可以针对图像的一个或更多个颜色分量,反转像素或子像素的明暗图案,以减小像素到像素的亮度变化。的确,可以采用较大和较小调整后像素值的空间和/时间排列的任意变体或组合,其允许在轴观看者舒服地观看图像而无明显劣化。
可以使用如下方法来计算LUT的值。可以针对具体颜色通道的所有输入数据值,或者选择的可能数据值以及插值的剩余数据值,测量显示器的在轴和离轴(例如,倾斜50°)亮度。可以从该数据推断该颜色的两个像素上所有可能数据值组合的平均组合离轴和在轴亮度。如果将这些值归一化,每个组合绘制成在轴-离轴亮度空间中的点,则结果如图7的(a)所示。
可以根据LUT的每个输入数据值的所需的在轴和离轴亮度,选择一系列这种点。图7的(b)示出了对于像素数据组合,可用的平均在轴和离轴亮度点的相同总体,其中粗黑线将已为LUT选择的点连接。在这种情况下,针对每个输入数据值,选择了点来提供归一化在轴亮度和归一化离轴亮度,该归一化在轴亮度也接近输入数据值自身本可以生成的归一化在轴亮度,并且该归一化离轴亮度也尽可能接近归一化在轴亮度,以避免具有相似在轴亮度的像素之间出现任何剧烈的离轴亮度变化,这种离轴亮度变化对于离轴观看者而言会导致图像伪像。可以选择可用点空间中的任何离轴至在轴亮度轨迹,但是示出了图7的(b)所述形式的轨迹提供良好的颜色偏移改善。可以确定LUT的输出值为产生了图7的(b)中每个所选点的两个数据值的组合。该方法可以针对显示器的每个颜色通道来执行,这提供了仅使用每个颜色通道所需的一个LUT来实现良好的颜色偏移改善的机制,每个LUT由针对每个输入数据值的输出数据值的对组成。
在示例实施例中,不同LUT存储输出值对,输出值对是基于显示器的伽马特性计算的。选择的输出值确保对于任何给定输入值,每个LUT将产生对于在轴观看者而言具有相同的平均亮度的输出像素对。
在示例实施例中,将修改数据值应用于多颜色显示器的像素对或者来自像素对的相同子像素对。例如,在使用帧中彼此在空间上靠近的两个像素(例如两个相邻像素)来应用于本发明的示例中,可以将修改数据值应用于多原色显示器中相邻像素的相同子像素对,该多原色显示器的像素包含四个或更多个子像素:一个红色、一个绿色、一个蓝色和一个白色。以棋盘格排列来应用数据修改图案,在棋盘格排列中,可以将行和列位置在显示器上都为奇数或偶数的子像素修改为采用LUT中对应于该彩色子像素的两个可能值中的较大值,而将行和列位置分别为奇数和偶数或者为偶数或奇数的子像素修改为采用LUT中对应于该彩色子像素的两个可能值中的较小值。必须注意到,多原色显示器不限于这种子像素组合,并且也不限于4个子像素。
在对输入图像中所有像素数据值执行了数据修改步骤之后,从修改的控制电子装置向显示器输出修改后的图像。图8给出了用于执行该操作的示例处理流图。该图仅示出了四个输入,但是必须注意,***不限于四个。可以经由硬件、例如只读存储器等计算机可读存储器中存储的软件等、或者硬件或软件的组合来实现该处理流,例如可以在图1所示控制电子装置的控制ASIC中实现。针对LCD显示器的计算机软件和/或硬件设计领域的普通技术人员基于本文提供的描述,将容易认识到如何提供软件和/或硬件来执行本文所述的功能,而无需过度的努力或实验。因此,为简洁起见,这里省略了对于具体结构的进一步细节。
图8示例性示出了构成图像的初始多原色子像素数据值如何被控制ASIC接收、根据本发明被处理并被输出作为修改子像素数据值。在图8中,输入子像素数据值标记为R、G、B和X,输出数据值标记为R’、G’、B’和X’。LUT提供修改输出数据值,修改输出数据值被馈送给复用器。在LUT内,选择输出哪个具体输出值依据修改图案和子像素位置,修改图案和子像素位置也被馈送至复用器。然后将来自所选LUT的所选输出的修改图像数据提供给源极驱动器IC并提供给每个对应像素。
在其他实施例中,将修改数据值应用于来自多原色显示器的两个像素的相同子像素对,以便最小化两个像素中每个像素的亮度的净变化。这可以针对多个像素对来执行,例如逐个像素对地执行。这通过以下来执行:针对每个子像素,选择LUT中存储的至少两个修改数据值之一,使得一个或更多个子像素的亮度变化近似相等地被一个或更多个剩余子像素的亮度变化平衡。在应用该修改方法时,相比于标准RGB显示器,可以减少多原色显示器的表观亮度分辨率损失。对于具有一个红色、一个绿色、一个蓝色和一个白色的多原色显示器这一特定情况,提供了平均而言整个显示器的总的净亮度变化最小的最佳修改图案是在与白色子像素的修改相反地修改红色、绿色和蓝色子像素时。对于具有一个红色、一个绿色、一个蓝色和一个黄色的多原色显示器这一特定情况,提供了平均而言整个显示器的总的净亮度变化最小的最佳修改图案是在与蓝色和黄色子像素的修改相反地修改红色和绿色子像素时。
使用下面等式来计算亮度净变化:
ΔL=LINPUT-LOUTPUT
LINPUT=(WeightRED·R′INPUT+WeightGREEN·G′INPUT+WeightBLUE·B′INPUT+WeightX·X′INPUT)
LOUTPUT=(WeightRED·R′OUTPUT+WeightGREEN·G′OUTPUT+WeightBLUE·B′OUTPUT+WeightX·X′OUTPUT)
其中WeightRED,WeightGREEN,WeightBLUE和WeightX分别是红色、绿色、蓝色和X子像素的权重。R′INPUT,G′INPUT,B′INPUT和X′INPUT分别是红色、绿色、蓝色和X子像素的经伽马调整的输入数据值,R′OUTPUT,G′OUTPUT,B′OUTPUT和X′OUTPUT分别是红色、绿色、蓝色和X子像素的经伽马调整的输出数据值。使用以下等式计算经伽马调整的数据值:
R ′ = ( R 255 ) γ RED
G ′ = ( G 255 ) γ GREEN
B ′ = ( B 255 ) γ BLUE
X ′ = ( X 255 ) γ X
其中R,G,B和X分别是红色、绿色、蓝色和X子像素的数据值,γRED,γGREEN,γBLUE和γX分别是红色、绿色、蓝色和X子像素的伽马值。
对于具有一个红色、一个绿色、一个蓝色和一个白色的多原色显示器这一特定情况,假设sRGB色域面板并且假设完全开启的白色像素的亮度等于完全开启的红色、绿色和蓝色子像素的总亮度,则权重具有如下值: Weight RED = 0.2126 2 , Weight GREEN = 0.7152 2 , Weight BLUE = 0.0722 2 并且伽马值如下:γRED=2.2,γGREEN=2.2,γBLUE=2.2和γWHITE=2.2(Recommendation ITU-R BT.709-5,Parameter values for theHDTV standards for production and international programme exchange)。
对于具有一个红色、一个绿色、一个蓝色和一个黄色的多原色显示器这一特定情况,假设sRGB色域面板并且假设完全开启的黄色像素的亮度等于完全开启的红色和绿色子像素的总亮度,则权重具有如下值: Weight RED = 0.2126 2 , Weight GREEN = 0.7152 2 , WeightBLUE=0.0722和
Figure BDA00002228144000167
并且伽马值如下:γRED=2.2,γGREEN=2.2,γBLUE=2.2和γYELLOW=2.2(Recommendation ITU-R BT.709-5,Parametervalues for the HDTV standards for production and internationalprogramme exchange)。
例如,图9的(a)示出了像素阵列,每个像素具有一个红色、一个绿色和一个蓝色子像素,每个子像素的数据值在图中示出。当与绿色子像素的修改相反地修改红色和蓝色子像素时,如图9的(b)中修改图案所示,像素1具有51%的亮度净减,像素2具有51%的亮度净增。图10的(a)示出了多原色像素的阵列,每个像素具有一个红色、一个绿色、一个蓝色和一个白色子像素,每个子像素的数据值在图中示出。图10的(a)中应用于红色、绿色和蓝色子像素的灰度级与图9的(a)中的相同。当根据图10的(b)所示修改图案(与图9的(b)所示修改图案类似)转移亮度时,像素1具有71%的亮度净减,像素2具有71%的亮度净增。可以向图10的(a)应用更优的修改图案,其中,一个或更多个子像素的亮度变化近似等于一个或更多个剩余子像素的亮度变化。为此,如图10的(c)所示,与白色子像素的修改相反地修改红色、绿色和蓝色子像素。当应用该更优图案时,像素1具有9%的亮度净减,像素2具有9%的亮度净增。
对于显示出灰度数据并且具有一个红色、一个绿色、一个蓝色和一个白色子像素(所有子像素的数据值都相等)的任何像素,红色、绿色和蓝色子像素的总亮度等于白色子像素的亮度。换言之,应用了一种类型的修改的子像素的总亮度等于应用了另一类型的修改的子像素的总亮度。由此,当前实施例的附加优点在于,当显示在具有前述修改图案的RGBW面板上时,灰度图像不遭受亮度分辨率损失,因为红色、绿色和蓝色子像素的亮度变化被白色子像素的亮度变化平衡了。此外,灰度图像不会遭受色度分辨率损失,并因此不会遭受颜色伪像。例如,图11的(a)示出了显示出灰度数据并且具有一个红色、一个绿色、一个蓝色和一个白色子像素的像素的阵列,如图所示,所有子像素的数据值都相等。当根据图11的(b)所示修改图案(与图10的(c)中的相同)转移亮度时,像素1和像素2的亮度净变化为零。
虽然RGBW上显示彩色图案确实具有一些亮度分辨率损失,但是该损失已最小化。这在图10的(a)所示的具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色像素的阵列的前述示例中得以说明,其中当应用图10的(c)所示的修改图案时,像素1经历-9%的亮度净变化,而像素2经历+9%的亮度净变化。虽然像素的亮度净变化非零,像素对的亮度经变化为零,因此对于在轴观看者,像素对的平均亮度看起来未改变。彩色图像也具有一些色度分辨率损失,但是同样,像素对的平均色度(即,总体色度)未改变。如果彩色图像的图像内容逐像素地发生剧烈改变,则图像将遭受彩色伪像。
在另一示例中,图12的(a)示出了像素阵列,每个像素具有一个红色、一个绿色和一个蓝色子像素,每个子像素的数据值在图中示出。当与绿色子像素的修改相反地修改红色和蓝色子像素时,如图12的(b)中修改图案所示,像素1具有43%的亮度净减,像素2具有43%的亮度净增。图13的(a)示出了多原色像素的阵列,每个像素具有一个红色、一个绿色、一个蓝色和一个黄色子像素,每个子像素的数据值在图中示出。图13的(a)中应用于红色、绿色和蓝色子像素的灰度级与图12的(a)中的相同。当根据图13的(b)所示修改图案(与图12的(b)所示修改图案类似)转移亮度时,像素1具有70%的亮度净减,像素2具有70%的亮度净增。可以向图12的(a)应用更优的修改图案,其中,一个或更多个子像素的亮度变化近似等于一个或更多个剩余子像素的亮度变化。为此,如图13的(c)所示,与蓝色和黄色子像素的修改相反地修改红色和绿色子像素。当应用该更优图案时,像素1具有3%的亮度净减,像素2具有3%的亮度净增。
对于显示出灰度数据并且具有一个红色、一个绿色、一个蓝色和一个黄色子像素(所有子像素的数据值都相等)的任何像素,红色、绿色和蓝色子像素的总亮度等于白色子像素的亮度。换言之,应用了一种类型的修改的子像素的总亮度等于应用了另一类型的修改的子像素的总亮度。由此,当显示在具有前述修改图案的RGBY面板上时,灰度图像的确遭受小的亮度和色度分辨率损失,但是分辨率损失仍然小于RGB面板的分辨率损失。例如,图14的(a)示出了显示出灰度数据并且具有一个红色、一个绿色、一个蓝色和一个黄色子像素的像素的阵列,如图所示,所有子像素的数据值都相等。当根据图14的(b)所示修改图案(与图13的(c)中的相同)转移亮度时,像素1具有-4%的亮度净变化,而像素2具有+4%的亮度净变化。类似地,彩色图像也遭受一些小的亮度和色度分辨率损失,如图12的(a)和(c)中所示示例所展示的。然而,对于灰度和彩色图像,已经通过适应上述修改图案最小化了亮度分辨率损失。对于任何像素对,亮度和色度的净变化是零。因此对于在轴观看者,像素对的平均亮度和色度看起来未改变。然而,如果显示在RGBY面板上的灰度或彩色图像的图像内容逐像素地发生剧烈改变,则图像将遭受彩色伪像。
在再一实施例中,可以通过针对图像中每个像素对的修改图案,而非向图像中所有像素对施加相同修改图案,来进一步最小化多原色显示器上显示的修改后图像的亮度净变化。在先前实施例中,选择修改图案,使得平均而言,整个显示器的修改后像素的亮度净变化最小。然而,在本实施例中,针对像素对,逐个像素对地计算最佳修改图案。
对于四原色显示器,可以应用7种不同的修改图案(假设修改所有子像素;如果一个或更多个子像素未修改,则还存在其他的修改图案)。图15的(a)到(g)中示出了七种不同的图案。7种图案如下:
(a)与子像素2和4相反地修改子像素1和3
(b)与子像素3和4相反地修改子像素1和2
(c)与子像素2和3相反地修改子像素1和4
(d)与子像素2、3和4相反地修改子像素1
(e)与子像素1、3和4相反地修改子像素2
(f)与子像素1、2和4相反地修改子像素3
(g)与子像素1、2和3相反地修改子像素4
可以通过计算针对所有可能修改图案的亮度净变化,并识别给出最小亮度净变化的图案,来逐个像素对地确定针对像素对的最佳亮度净变化。
在具有4个子像素的多原色面板情况下,进行亮度净变化的7次不同计算,每次计算针对一个修改图案。然后向像素对应用给出了最小亮度净变化绝对值的修改图案。
也可以通过遵循用于识别给出了最小亮度净变化的图案的预定规则集合,来逐个像素对地确定针对像素对的最佳亮度净变化。
相比于示例实施例,本实施例的处理流需要附加步骤。图16示出了针对本实施例的处理流。该图仅示出了四个输入,但是必须注意***不限于4个。
例如,图17的(a)示出了对于具有一个红色、一个绿色、一个蓝色和一个白色子像素的输入像素这一特定情况的处理流,其中数据值分别等于200、50、200和50。如图15的(a)-(g)所示,针对每个修改图案,计算亮度净变化绝对值。这些计算揭示了给出最小亮度净变化绝对值的图案是图15的(d)所示图案。该修改图案与图11的(b)所示先前实施例中使用的修改图案不同。
当前实施例的附加优点在于,相比于先前实施例,当前实施例的整个显示器的净亮度变化通常更小。然而,当前实施例需要额外的处理步骤,从而需要更多计算资源。
逐个像素对地改变修改图案,这对于在轴和离轴观看者而言,会产生可见伪像。可以通过将具有最高亮度贡献的子像素的修改图案保持固定,而仅逐个像素对地优化剩余子像素的修改图案,来减小或消除这些伪像。例如,在另一实施例中,对于具有红色、绿色、蓝色和白色子像素的显示器,可以固定绿色和白色子像素的修改图案(因为这些子像素很可能具有最高亮度贡献),可以优化红色和蓝色子像素的修改图案,以最小化像素的亮度净变化。对于具有红色、绿色、蓝色和黄色子像素的显示器,可以固定绿色和黄色子像素的修改图案,并可以优化红色和蓝色子像素的修改图案,以最小化像素的亮度净变化。
虽然上述两个实施例最小化亮度分辨率的实质损失,但是在许多情况下,当应用修改时亮度改变非零。此外,通常没有保持每个像素的色度,因此得到的图案可能仍然遭受颜色伪像。
在另一实施例中,向来自多原色显示器的两个像素的相同子像素对应用修改后的数据值,以保持每个像素的亮度。(虽然像素亮度大体上未改变,但是像素色度可能改变。然而这是可接受的,因为眼睛对于亮度比对于色度敏感。)
为实施当前实施例,按照不同方式来处理原色子像素和非原色子像素。对于RGBX显示器,将红色、绿色和蓝色子像素视为原色子像素,例如白色和黄色子像素等所有其他子像素视为非原色子像素。除了红色、绿色和蓝色子像素之外的其他所有子像素视为非原色,这是因为它们不会显著增加显示器的色域。此外,可以使用原色的组合来近似非原色。图18示出了CIE 1931xy色度图,该图示出了sRGB颜色空间的色域以及三原色RGB的位置。该图还示出了黄色的位置。从图中可以清楚看到,将黄色添加至红色、绿色和蓝色,这不会显著增加色域。
显示器中每个像素对由两个像素,像素1和像素2构成,每个像素具有四个或更多个子像素。在第一情况下,向像素对的红色、绿色和蓝色子像素应用修改,这通过选择LUT中存储的至少两个修改数据值之一来实现。应用于像素1的红色、绿色和蓝色子像素的修改全部是相同类型的,例如选择LUT的两个可能输出值中较大值,并且与像素1的红色、绿色和蓝色子像素的修改相反地修改像素2的红色、绿色和蓝色子像素,例如选择LUT的两个可能输出值中较小值。通过与像素的原色子像素的修改相反地修改该像素的非原色子像素,补偿了由第一修改引起的像素1和像素2的结果变化。应用于非原色子像素的修改的幅度确保了像素1和像素2的净亮度未改变。在一些情况下,第二修改需要非原生子像素具有负亮度。在这种情况下,由于不可能具有负亮度,所以有必要对相关像素进行进一步修改。第三修改需要修改原色子像素,使得该修改的亮度净变化等于非原色子像素的负亮度。这三次修改的顺序确保了每个像素的亮度净变化为零,并且像素对的平均色度在在轴观看者看来未修改。
第一种情况下应用于原色子像素的修改全部是相同类型的,因为该方法给出最好的颜色偏移改善。如果第一情况下应用于原色子像素的修改的类型不是全都相同,例如对于红色和蓝色子像素选择两个可能输出值中的较大值,而对于绿色子像素选择两个可能输出值中的较小值,则后续对于非原色子像素的修改会较小。对非原色子像素的较小修改带来颜色偏移校正的较小改善。
当前实施例的处理流不同于示例实施例。图19示出了针对当前实施例的处理流。该图仅示出了四个输入,但是必须注意***不限于4个。
例如,图20示出了具有一个红色、一个绿色、一个蓝色和一个白色子像素的像素类型为1的输入像素的情况下的处理流,其中子像素的数据值分别等于200、160、120和120。在该处理的第一步骤,向红色、绿色和蓝色子像素应用修改。在第二步骤,计算得到的白色子像素的所需亮度值。最后,在第三步骤,向像素应用进一步修改,就好像第二步骤产生了负的白色子像素亮度(这是不可能的)一样。该处理流示出了对于红色、绿色、蓝色和白色子像素,输出图像数据值分别是235、194、126和0。
图21示出了具有一个红色、一个绿色、一个蓝色和一个白色子像素的像素类型为2的输入像素的情况下的处理流,其中子像素的数据值分别等于200、160、120和120。在该处理的第一步骤,向红色、绿色和蓝色子像素应用修改。在第二步骤,计算得到的白色子像素的所需亮度值。不需要第三步骤,因为白色子像素的亮度非零。该处理流示出了对于红色、绿色、蓝色和白色子像素,输出图像数据值分别是115、0、0和194。
虽然前述实施例确保无亮度分辨率损失,但是在许多情况下,没有保持单独像素的色度。因此,得到的图像遭受色度分辨率损失。然而,必须注意,相比于亮度,人眼对于色度较不敏感。因此,尽管得到的图像仍会遭受颜色伪像,但是像素对仅遭受色度分辨率损失而无亮度分辨率损失是有利的。
在另一实施例中,向单个多原色像素的子像素应用修改后的数据值,以使像素的亮度和色度净变化为零。这通过如下实现:修改子像素,以确保一个或更多个子像素的亮度变化被一个或更多个剩余子像素的亮度变化精确地平衡。在应用该修改方法时,可以确保像素的亮度和色度净变化为零。对于具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色显示器的特定情况,将亮度从红色、绿色和蓝色子像素转移至白色子像素,反之亦然。对于具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色显示器的特定情况,将亮度从红色和绿色子像素转移至黄色子像素,反之亦然。在该实施例中,没有必要沿彼此相反的方向修改来自像素对的对应子像素的数据值,并且可以独立于其他所有像素来考虑每个像素。
对于具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色显示器的特定情况,对于蓝色子像素,像素内不发生亮度转移,因此对于蓝色子像素具有中间灰度数据值的一些像素来说,仍然会发生随角度的颜色偏移。为防止这一问题,可以向相邻像素对的蓝色子像素应用修改后的数据值。进行该修改,使得像素对的平均在轴亮度未改变。然而,在这种情况下,单独像素的亮度和色度净变化不再为零。然而,由于对于蓝色,眼睛具有最小密度的感受器,所以只有蓝色通道具有亮度分辨率损失是有利的。因此,蓝色的亮度分辨率损失是在轴观看者难以觉察的。
例如,图22的(a)示出了具有一个红色、一个绿色、一个蓝色和一个白色子像素的多原色子像素,每个子像素的数据值在图中示出。可以对像素应用修改,其中将亮度从红色、绿色和蓝色子像素转移至白色子像素。得到的像素的亮度和色度净变化为零。该示例也示出了可以将亮度从白色子像素转移至红色、绿色和蓝色子像素,同样确保了得到的像素的亮度和色度净变化为零。
在另一示例中,图22的(b)示出了具有一个红色、一个绿色、一个蓝色和一个黄色子像素的多原色子像素,每个子像素的数据值在图中示出。可以对像素应用修改,其中将亮度从红色和绿色子像素转移至黄色子像素。得到的像素的亮度和色度净变化为零。该示例也示出了可以将亮度从黄色子像素转移至红色和绿色子像素,同样确保了得到的像素的亮度和色度净变化为零。
更优的是使用对所需修改数据值进行识别的计算,而非使用LUT,来实施当前实施例。图23示出了针对当前实施例的处理流。该图仅示出了四个输入,但是必须注意***不限于4个。
可以向上述实施例应用US 20100156774中描述的帧反转驱动方法。在该情况下,对于每一帧,改变应用于具体子像素的修改的类型,即,亮度增加或亮度减小,以便利用子像素的驱动极性的变化来调整施加至该子像素的数据值的变化。当在需要LUT的处理中实施该驱动方法时,LUT的输出值应该计算为考虑到LC的切换速度。该帧反转驱动方法的优点在于,在两帧的时间段上,无亮度或色度分辨率损失可见。这是在将该方案应用于一些亮度和/或色度分辨率损失可见的实施例中时才有的益处。
US 20100156774指出了上述帧反转驱动方法遭受dc平衡问题,这导致图像粘连(sticking)。该专利指出可以通过针对每两个图像帧,而非每一帧,来反转空间图案(对于该空间图案,为每个输入数据值选择两个输出数据值),避免该问题。该方法的缺点在于对于输出数据值的全周期,需要四个帧,对于典型的60Hz刷新显示器,输出图像周期的频率是15Hz,并且可能观察到闪烁。该专利指出刷新速率为120Hz和240Hz的显示器正变得更加普及,因此在这种情况下上述解决方案将变得更加适用。然而,120Hz和240Hz刷新显示器的缺点在于,相比于60Hz刷新显示器,功耗更高。因此,有利的是使用如下方案:图像刷新速率是60Hz并且施加的电压的极性的刷新速率是30Hz,或者更一般地,施加的电压的极性的刷新速率是图像刷新速率的一半。对抗图像粘连问题的另一可能方案可以是适用四帧周期,其中从帧1开始,每2帧反转一半像素,并从帧2开始,每2帧反转另一半像素。图28示出了该方案。这些方案确保了良好的dc平衡,并也可以应用于RGB面板。
当将帧反转方法应用于第一示例实施例时,重要的是确保没有例如条带效应(banding)、闪烁或双向影线(crosshatching)等伪像可见。当一行或一列的所有亮子像素具有一个极性,并且相邻行或列的所有亮子像素具有另一极性时,条带效应可见。这对于修改图案和极性图案的特定组合是可能发生的,图24和25中给出了条带效应可见的两个示例。前述示例是针对2行点反转极性图案和120Hz刷新速率的RGBY多原色面板。图24中单行水平条带效应可见,图25中两行水平条带效应可见。当一帧的所有亮子像素具有一个极性,并且下一帧的所有亮子像素具有另一极性时,闪烁可见。这对于修改图案和极性图案的特定组合是可能发生的;图26中给出了示例。该示例针对2行点反转极性图案和120Hz刷新速率的RGBY多原色面板。当特定修改图案应用于运动的平滑或均匀图像时,双向影线可见。图27示出了修改图案的示例,当按照每一帧一个像素,图像水平运动时,该修改图案可能导致平滑图像区域中可见的双向影线。上述示例针对2行点反转极性图案、120Hz刷新速率和60Hz极性图案刷新速率的RGBY多原色面板。
图28、29和33中给出了不会导致例如条带效应、闪烁或双向影线等任何伪像的修改图案和极性图案的具体组合。图28所示示例针对2行点反转极性图案和120Hz刷新速率的RGBY多原色面板。图29所示示例针对2行点反转极性图案、120Hz刷新速率和60Hz极性图案刷新速率的RGBY多原色面板。图33所示示例针对2行2点反转极性图案、120Hz刷新速率和60Hz极性图案刷新速率的RGBY多原色面板。上述示例针对RGBY多原色面板,但是这些用于获得无伪像图像的实施例的使用不限于RGBY多原色面板。
US 20100156774中描述的颜色伪像防止方法也可以应用于遭受颜色伪像问题的上述实施例。该方法防止对应用修改时会导致颜色伪像的像素进行任何修改。上述方法的主要缺点在于,对于已被防止修改的像素而言,没有实现任何颜色偏移改善。因此,对于相同数据值的相邻像素,其中一个像素被应用了颜色伪像防止方法,而另一个像素未被应用颜色伪像防止方法,这些相邻像素对于离轴观看者而言看起来不是相同的。这不是期望的效果。
在一些情况下,可以防止颜色伪像,同时仍然实现颜色偏移改善。从图8、16和19所示处理流图得到的修改后的数据值全都可能导致颜色伪像。可以通过将图23所示方法仅应用于导致颜色伪像的像素,来防止这些伪像。图23所示方法确保了像素的亮度和色度净变化为零,从而确保了无颜色伪像可见。图30示出了用于针对一些有问题像素,检测和防止颜色伪像,同时仍然实现颜色偏移改善的方法。在第一种情况下,计算原始图像的相邻像素的相同子像素之间数据值的绝对值差。然后根据图8、16和19所示处理流图之一,向所有像素应用修改。如果先前计算的数据值的绝对值差小于阈值,则像素对中的两个像素均不会造成颜色伪像,并且方法可以继续至下一像素对。如果先前计算的数据值的绝对值差大于阈值,则基于修改后的子像素数据值,执行第二计算。图31给出了第二计算的示例。计算相邻的修改后像素的亮子像素之间数据值的绝对值差,并计算相邻的修改后像素的暗子像素之间数据值的绝对值差。如果两个计算结果之一大于阈值,则将像素对返回至其原始值,并向像素对应用根据图23中处理流图的修改。
在另一实施例中,可以通过针对每个像素,相对于角度,保持特定颜色空间中的位置或减小位置改变,来消除或减小颜色偏移。这可以在例如CIEXYZ或CIELAB颜色空间中执行。选择相对于角度保持位置最佳的子像素值的组合。该方法也可以按照多种不同方式来实现。
对于显示器中的每个像素,可以在向显示器输入图像数据时,执行计算,以选择相对于角度保持位置最佳的子像素数据值的最佳组合。为了按照视频速率进行槽,该计算必须快,然而,要考虑的子像素数据值组合的数目可能是有阻碍的。更加实际的是根据输入至显示器的数据值,针对每个子像素数据值组合,预先计算在轴颜色空间位置并将这些结果存储在LUT中以用于稍后检索。然而,同样由于子像素数据值组合的数目,存储这种LUT所需的存储器可能带来限制。图32的(a)和(b)中分别示出了这些可能实现方式的处理流。甚至更加实际的是执行计算,其中针对输入至面板的每个子像素数据值集合,计算可用在轴条件等色体的集合,并且从该集合中选择带来最小位置变化的条件等色体。该计算条件等色体的方法可以类似于US 20100277498A1中描述的计算方法。如果在颜色空间中对于所计算的可用条件等色体值允许特定量的容差,则对于每个子像素数据值组合,可获得增大的条件等色体集合。这可以意味着可以找到具有更小的随角度的位置变化的条件等色体。可以根据每个条件等色体在空间中基于输入数据的理想位置与实际位置之间的欧氏距离,来指定容差程度。这种颜色差测量对于多种颜色空间是已知的,例如在CIELAB颜色空间中的ΔE计算。
ΔE = ( L 1 - L 2 ) 2 + ( a 1 - a 2 ) 2 + ( b 1 - b 2 ) 2
相比于输入数据的亮度值,可以为色度数据值指定更宽的容差程度。对于产生更大数目的条件等色体,从中选择最优条件等色体以供输出而言,也有利的是考虑到针对两个或更多个像素的组的条件等色体,其具有的平均亮度和色度在输入图像中该相同组的平均亮度和色度的给定容差内。还有用的是考虑针对像素组的条件等色体,其具有的像素组的平均色度在输入图像数据中该组的平均色度的给定容差内,并且每个单独像素的平均亮度在输入图像数据中相同像素的单独亮度值的不同的给定容差内。这样,可以牺牲输出图像的色度分辨率,以允许具有较小的角度观看变化的条件等色体,同时保持输出图像的亮度分辨率。
如果没有任何可用条件等色体产生可接受的随角度的位置变化,则可以选择最佳的可用条件等色体,同时可以存储目标和输出条件等色体颜色值之间的差,以在误差扩散类型处理中包括在针对下一(例如相邻)像素的计算中。
虽然参照特定实施例示出了和描述了本发明,但是对于本领域技术人员而言,基于本说明书和附图的阅读和理解,可以想到等同变型和修改。特别是对于上述元件执行的多种功能(部件、组件、器件、组成等),在未特别指出的情况下,用于描述这些元件的术语(包括对“装置”的引用)旨在对应于执行所述元件的指定功能的任何元件(即,功能上等同),即使在结构上不等同于本文所述本发明实施例中执行该功能的所述结构。此外,虽然仅关于一个或更多个实施例描述了本发明的具体特征,但是对于任何给定或具体应用,如果期望和有利,则这种特征可以与其他实施例的一个或更多个特征相组合。
产业实用性
本发明可以提供一种具有改进的离轴显示质量的显示器,无在轴显示质量的任何显著劣化。本发明的显示方法或本发明的控制电路或显示器可以用在对于在轴和离轴观看者两者都期望良好显示质量的任何应用中。
结论
本发明提供了一种减少多原色LCD中随视角的颜色偏移的优化方法。例如硬件***子像素结构等现有方法的缺陷在于要添加像素电子器件并且该方法不适用于高分辨率、小面积显示器;软件***子像素结构也具有局限性,图像遭受亮度分辨率的显著损失以及颜色伪像。本发明针对这些缺点。
本发明第一方面提供了一种处理图像以供显示的方法,该方法包括:获得构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:沿彼此相反的方向修改来自像素对的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
可以从外部源获得包括至少四个子像素颜色分量的像素数据-例如,可以向显示设备提供包括至少四个子像素颜色分量的像素数据。然而,本发明不要求从外部源获得至少四个子像素颜色分量的像素数据。如已知的,在许多多原色显示器中,显示控制电子装置只接受RGB数据,并且使用色域映射算法或一些其他计算来产生针对附加子像素的数据-以及本发明可以应用于例如此类显示器、以及其中显示控制电子装置的输入已经包括4或更多通道(例如分离的R、G、B和W通道)的显示器。
由于像素对中一个像素的亮度和/或色度变化应该与另一像素的亮度和/或色度变化相等且相反,所以像素对的总体亮度和色度变化应该是零。然而,作为子像素颜色分量数据值的修改的结果,单独像素的亮度和/或色度会改变(虽然存在四个(或更多个)子像素意味着像素的亮度变化通常小于现有技术校正方法应用于常规RGB显示器时的亮度变化)。
像素对可以是帧中彼此在空间上靠近的两个像素,使得观看者的眼睛可以将两个像素的亮度平均。这两个像素可以是帧中的相邻像素,然而本发明不限于相邻像素。在该实施例中,本发明优选地应用于帧中的每个像素对。
备选地,像素对可以具有彼此相同的空间位置,但是出现在两个不同但连续的帧中。同样,由于两个像素出现在连续帧中,所以观看者的眼睛可以将两个像素的亮度平均。在该实施例中,本发明优选地应用于由帧的像素和下一帧的对应像素形成的每个像素对。
如已知的,术语“多原色显示器”涉及一种显示器,除了三原色的像素或子像素之外,还包括至少一个其他颜色的像素或子像素。本文中,至少一个其他颜色的像素或子像素称为“非原色”像素或子像素,并且三原色的像素或子像素称为“原色”像素或子像素。
作为示例,一组“多颜色显示器”除了红色、绿色和蓝色像素或子像素之外还包括至少一个其他颜色的像素或子像素-这种显示器可以称为“RGBX”显示器,其中“X”指示除了红、绿和蓝之外,还存在至少一个其他颜色的像素或子像素。多原色显示器的具体示例是除了红色、绿色和蓝色像素或子像素之外还包括白色像素或子像素的显示器(称为RGBW显示器),或者除了红色、绿色和蓝色像素或子像素之外还包括黄色像素或子像素的显示器(称为RGBY显示器)。原理上,本发明也可以应用于CMYX多原色显示器。
指定“沿彼此相反的方向”修改两个像素的对应子像素的数据值,这指示了改变一个子像素的数据值,以增加该子像素的亮度(即,向子像素提供修改后的数据值,相比于提供未修改的数据值,这产生了更大的子像素亮度),而改变对应子像素的数据值,以减小该子像素的亮度(即,向子像素提供修改后的数据值,相比于提供未修改的数据值,这产生了更低的子像素亮度)。因此,根据本发明,对于像素对中一个像素的一种颜色的子像素的数据值以及该像素对的另一像素的该颜色的子像素的数据值,沿相反方向进行修改(注意,像素对可以是来自一帧的彼此在空间上靠近的两个像素,或者可以是来自连续帧的两个像素)。优选地,修改两个子像素的数据值,使得像素对中一个像素的一种颜色的子像素的亮度增加在幅度上近似等于(从在轴观看者看来)该像素对的另一像素的该颜色的子像素的亮度减小-即,使得两个子像素的各自修改后数据值所产生的亮度的平均值等于未修改的数据值原本会产生的亮度。(数据值“所产生”的亮度是在向子像素提供该数据值时获得的显示器的该子像素的亮度。)
当使用来自一帧的在空间上彼此靠近的两个像素来应用本发明时,两个像素可以在同一像素列中,或者可以在同一像素行中。
注意,本发明方法对于像素对而言不产生总体亮度和色度变化,并且也不产生观看者感知的图像的任何显著变化,但是可能带来像素对的单独像素的亮度和/或色度变化。因此,该方法可以包括:修改像素中子像素的数据值,对于显示面板的在轴观看者,最小化像素的总体亮度的变化,例如按照一种方法修改子像素的数据值,使得相比于修改子像素数据值的其他可能方法,该方法提供像素总体亮度的更小变化。优选地,该方法包括修改像素中子像素的数据值,使得对于显示面板的在轴观看者,像素的总体亮度看起来实质上未改变(这典型地要求像素的总体亮度改变不多于大约1%)。这些特征最小化像素对中单独像素的亮度变化,因此确保对于在轴观看者而言仅存在很少或不存在图像质量损失,同时向离轴观看者提供更好的图像质量。
该方法可以包括:沿相反方向修改像素的至少一个子像素的数据值以及该像素的至少另一子像素的数据值。这对于针对显示面板的在轴观看者而言最小化像素的总体亮度变化是有效的。
该方法还包括:对于像素对,修改像素对中对应子像素的数据值,以针对显示面板的在轴观看者而言最小化像素对中每个像素的总体亮度变化。附加地或备选地,该方法可以包括:对于多个像素对,逐个像素对地修改像素对中对应子像素的数据值,以针对显示面板的在轴观看者而言最小化像素对中每个像素的总体亮度变化。在修改数据值的已知方法中,向图像的所有像素对的数据值施加相同的修改图案,这对于最小化显示器的总体亮度变化是有效的。然而,即使在这些现有技术方法中可以最小化显示器的总体亮度变化,单独像素的亮度仍然存在显著的总体变化。因此,在该实施例中,对于像素对分离地(即,逐个像素对地)确定数据值的修改,而不是向所有像素对的数据值施加相同修改-即,可以根据一种修改方案来修改第一像素对中的对应子像素的数据值,以最小化第一像素对中每个像素的总体亮度变化,而按照不同的第二修改方案来修改第二像素对中对应子像素的数据值,以最小化第二像素对中每个像素的总体亮度变化。这样,可以不同方式来修改一个像素对的数据值以及另一个像素对的数据值,以针对所有像素对,最小化(优选地,消除)像素对中每个像素的总体亮度变化-同时仍然确保对于在轴观看者而言,显示器的总体亮度变化保持为零。原理上可以针对图像中的每个像素对来分离地确定数据值的修改。
备选地,该方法可以包括,对于多个像素对,按照针对第一像素对和第二像素对相同的方式,逐个像素对地修改像素对中对应的第一子像素的数据值,并修改像素对中对应第二子像素的数据值。在一些情况下,优选地从一个像素对到另一像素对,对于一些子像素的数据值的修改相同,特别是对亮度做出最大贡献的子像素(即绿色和白色/黄色子像素),同时允许其他子像素的数据值的修改从一个像素对到另一像素对发生改变。
当本发明应用于RGBW显示器时,该方法可以包括针对像素对,修改所述像素对中对应子像素的数据值,以便对于显示面板的在轴观看者而言最小化像素对的总体色度变化。一般而言,在根据本发明沿彼此相反方向修改像素对中对应子像素的数据值的方面和实施例中,单独像素可能显示总体色度变化。然而,在RGBW显示器中,可以修改像素对中对应子像素的数据值,使得单独像素显示出很少或无总体色度变化。这进一步确保了对于在轴观看者而言很少的图像质量损失或无图像质量损失。
该方法可以包括:修改原色子像素和非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反。这对于最小化像素对总体亮度变化是有效的。
该方法可以包括:对于像素对的第一像素,沿相反方向修改原色子像素的数据值和非原色子像素的数据值。该方法可以包括:对于像素对的第二像素,沿相反方向修改原色子像素的数据值和非原色子像素的数据值,并且包括沿相反方向修改像素对的第一像素的原色子像素的数据值和像素对的第二像素的原色子像素的数据值。
修改数据值可以包括:对于至少一个子像素分量,将每个数据值映射到至少两个修改数据值。
修改值产生的亮度的平均亮度可以等于未修改值产生的亮度。
该方法可以包括将所述至少两个修改数据值存储在查找表中。
该方法还可以包括向多原色显示面板输出修改后的子像素颜色分量数据值。例如,该方法可以在例如源极驱动器(例如,图1的源极驱动器IC,可以与显示面板分离,然而备选地也可以是显示面板的一部分)或图1的控制ASIC等控制电路中执行,控制电路将修改后的子像素颜色分量数据值提供给多原色显示面板。备选地,该方法可以在多原色显示面板自身中执行,例如通过像素内电路(in-pixel circuitry)来执行。
像素对的两个像素可以在空间上彼此靠近。备选地,像素对的第一像素可以出现在第一帧中,像素对的第二像素可以出现在第二帧中,第一和第二帧是连续帧。(对于修改针对像素对的数据值的本发明的所有方面和实施例而已,均如此。)
作为另一备选,像素对的第一像素可以出现在第一组帧中,像素对的第二像素可以出现在第二组帧中,第一和第二组帧是连续帧组(包括两个或更多个帧)。同样,由于两个像素出现在连续帧组中,所以观看者的眼睛可以将两个像素的亮度平均。
如果像素对出现在两个不同但连续的帧中或者两个不同但连续的帧组中,可以利用子像素的驱动极性的变化来调整子像素的数据值的变化。已知例如液晶材料等一些显示器材料优选地以交替的驱动极性来驱动,以确保不会在材料上施加净dc电压-因此,当本发明应用于使用这种材料的显示器(例如液晶显示器)时,优选地利用子像素的相应驱动极性的变化来调整子像素的数据值的变化,以确保不施加净dc电压。(例如,如果在施加正驱动电压时,始终将子像素驱动为具有的亮度比其未修改数据值所产生的亮度大,并在施加负驱动电压时,始终将子像素驱动为具有的亮度比其未修改数据值所产生的亮度小,则可能导致子像素上的净dc电压。)图28示出了用子像素的驱动极性的变化调整其数据值的变化的一个示例。在帧1和2中将第一列第一行的子像素驱动为具有的亮度比其未修改数据值所产生的亮度大,并且在帧1中以+ve极性进行驱动,在帧2中以-ve极性进行驱动,使得帧1和2中没有施加净dc电压。类似地,在帧3和4中该子像素上也没有净dc电压施加。由于在帧3和4中将子像素驱动为具有的亮度比其未修改数据值所产生的亮度小,并且在帧4中以+ve极性进行驱动,在帧4中以-ve极性进行驱动,所以在帧1到4期间该子像素上没有净dc电压施加。
在像素对的第一像素出现在第一组帧中,像素对的第二像素出现在第二组帧中的实施例中,一个子像素的数据值变化的定时可以不同于另一子像素的数据值变化的定时。不要求每个子像素的数据值变化都发生在相同帧的结束处。例如,在图28的示例中,在帧1和2中将第一列第一行的子像素驱动为具有的亮度比其未修改数据值所产生的亮度大,并且在帧3和4中将该子像素驱动为具有的亮度比其未修改数据值所产生的亮度小;然而,在帧2和3中将第二列第一行的子像素驱动为具有的亮度比其未修改数据值所产生的亮度大,并且在帧1和4中将该子像素驱动为具有的亮度比其未修改数据值所产生的亮度小。即,第一列第一行的子像素的数据值变化的定时(在帧2和4的结束处)不同于第二列第一行的子像素的数据值变化的定时(在帧1和3的结束处)。
本发明第二方面提供了一种处理图像以供显示的方法,该方法包括:获得构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
该方法可以包括:修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体色度变化与非原色子像素的总体色度变化近似相等且相反,从而对于在轴观看者,像素的总体色度实质上未改变。
该方法可以包括:检测图像区域中是否存在高空间分辨率特征;以及,如果是,减少或阻止对所述图像区域中像素的子像素颜色分量数据值的修改。向图像的高空间分辨率区域应用本发明方法可能引起颜色伪像,特别是在运动图像中。减少对这种区域中像素的子像素颜色分量数据值的修改的强度,或者不对这种区域中像素的子像素颜色分量数据值进行修改,这可以减少或消除产生颜色伪像的风险。
该方法可以包括:对于图像中的像素对,计算该像素对的条件等色体,所述条件等色体的平均亮度和色度与该像素对的未修改数据值相同,并且所述条件等色体的个体亮度与未修改数据值相同;以及基于所计算的所述条件等色体的离轴亮度和色度,选择所述条件等色体之一。如上所述,条件等色体是产生相同的总体亮度和色度的数据值的集合,对于像素对的未修改数据值集合,可以计算提供相同的总体亮度和色度(在某一误差限制内)并且提供相同的个体亮度(同样,在某一误差限制内)的条件等色体。然后可以选择提供最佳离轴亮度和色度的条件等色体,从而最小化离轴观看者感知的图像变化。
本发明第三方面提供了一种处理图像以供显示的方法,该方法包括:获得构成了图像的像素数据,每个像素数据包括具有相应数据值的至少三个子像素颜色分量;针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;以及输出修改后的子像素颜色分量数据值,以供显示面板显示;其中该方法包括:沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度看起来实质上未改变;以及该方法包括:对于像素对,修改像素对中对应子像素的数据值,以便对于显示面板的在轴观看者,最小化像素对的总体亮度的变化。针对像素对分离地(即,逐个像素对地)确定数据值的修改的上述优点也适用于常规三色显示器。
本发明第四方面提供了一种用于显示器的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
本发明第五方面提供了一种用于多原色显示面板的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
本发明第六方面提供了一种用于显示器的控制电路,控制电路配置为执行第一、第二或第三方面的方法。
本发明第七方面提供了一种显示器,包括第四或第五方面的控制电路以及多原色显示面板,控制电路配置为在使用中向多原色显示面板输出经修改的子像素颜色分量数据值。
本发明第八方面提供了一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;
其中显示面板配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
本发明第九方面提供了一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
针对每个像素数据,修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
本发明第十方面提供了一种包含指令的计算机可读介质,当由处理器执行时,指令引起处理器执行第一或第二方面的方法。
根据本发明,提供的方法包括:接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;针对每个像素数据,修改子像素颜色分量数据值;以及输出经修改的图像数据以供LCD显示。
根据具体方面,修改步骤包括:将至少一个子像素颜色分量的每个数据值映射到至少两个修改数据值,所述至少两个修改数据值以复用方式在LCD上显示,并对在轴观看者展现与所述至少一个子像素颜色分量数据值的亮度相等或成比例的亮度。
对于另一方面,执行修改步骤,以最小化图像中每个像素的亮度的净变化。这通过如下来实现:为每个子像素选择所述至少两个修改数据值之一,使得一个或更多个子像素的亮度变化近似相等地由一个或更多个剩余子像素的亮度变化来平衡。
类似地,对于另一方面,执行修改步骤,以最小化图像中每个像素的色度的净变化。这通过如下来实现:为每个原色子像素选择所述至少两个修改数据值之一,使得原色子像素的色度变化近似相等地由一个或更多个非原色子像素的色度变化来平衡。
根据再一方面,按照时间复用方式或空间复用方式,经由对应像素在LCD上显示所述至少两个修改数据值。
根据又一方面,映射步骤包括:使用至少一个LUT将子像素颜色分量数据值映射到至少两个修改数据值。
根据再一方面,提供了一种创建LUT的方法。该方法包括针对多组输入像素数据中的每一组,用输出像素数据填充LUT,该填充步骤包括:为显示设备确定可用在轴/离轴亮度点的集合;考虑覆盖了在轴亮度值的全部范围并且具有不同的相应离轴亮度特性的一行或更多行;沿每一行选择多个可用亮度点,其中执行该选择,以减小至少部分地依据点与相关行之间距离的误差函数;以及基于产生所选亮度点所需的像素数据,填充LUT。
在另一方面,经由计算机软件来执行该方法。提供一种存储在计算机可读介质上的计算机程序,当由计算机执行时,计算机程序实施一种用于减小多原色LCD中与视角相关的颜色偏移的方法。该方法包括:接收构成了图像的像素数据,每个像素数据包括具有相应数据值的多个子像素颜色分量;修改子像素颜色分量数据值;以及输出修改值。
备选地,根据另一方面,一种用于减小多原色LCD中与视角相关的颜色偏移的设备。该设备包括:输入,用于接收构成了图像的像素数据,每个像素数据包括具有相应数据值的多个子像素颜色分量;修改部,修改子像素颜色分量数据值;以及输出,用于输出修改数据值。
根据另一方面,该方法包括对多个像素数据滤波以检测和修改接收图像中的特征,从而避免由于修改子像素颜色分量数据值而导致的不期望的显示结果。
本发明还具有附加的有益效果,即改进了多原色LCD的运动模糊性能。

Claims (30)

1.一种处理图像以供显示的方法,该方法包括:获得构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:沿彼此相反的方向修改来自像素对的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
2.根据权利要求1所述的方法,包括:修改像素中子像素的数据值,以对于显示面板的在轴观看者,最小化该像素的总体亮度变化。
3.根据权利要求2所述的方法,包括:修改像素中子像素的数据值,以对于显示面板的在轴观看者,该像素的总体亮度看起来实质上未改变。
4.根据权利要求2或3所述的方法,包括:沿相反方向,修改像素中至少一个子像素的数据值和该像素中至少另一子像素的数据值。
5.根据权利要求1、2或3所述的方法,包括:对于像素对,修改像素对中对应子像素的数据值,以对于显示面板的在轴观看者,最小化该像素对的每个像素的总体亮度变化。
6.根据权利要求1、2或3所述的方法,包括:对于多个像素对,逐个像素对地修改像素对中对应子像素的数据值,以对于显示面板的在轴观看者,最小化像素对的每个像素的总体亮度变化。
7.根据权利要求1、2或3所述的方法,包括:对于多个像素对,按照对于第一像素对和第二像素对相同的方式,逐个像素对地修改像素对中对应第一子像素的数据值,并修改像素对中对应第二子像素的数据值。
8.根据权利要求1、2或3所述的方法,其中显示器是RGBW显示器,该方法包括:对于像素对,修改像素对中对应子像素的数据值,以对于显示面板的在轴观看者,最小化该像素对的每个像素的总体色度变化。
9.根据权利要求1、2或3所述的方法,包括:修改原色子像素和非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反。
10.根据权利要求9所述的方法,包括:对于像素对中的第一像素,沿相反方向修改原色子像素的数据值和非原色子像素的数据值。
11.根据权利要求10所述的方法,包括:对于像素对中的第二像素,沿相反方向修改原色子像素的数据值和非原色子像素的数据值,并且该方法包括:沿相反方向修改像素对中第二像素的原色子像素的数据值和像素对中第一像素的非原色子像素的数据值。
12.根据权利要求1、2、3、10或11所述的方法,其中修改数据值包括对于至少一个子像素分量,将每个数据值映射到至少两个修改数据值。
13.根据权利要求12所述的方法,其中修改值产生的亮度的平均亮度等于未修改值产生的亮度。
14.根据权利要求12所述的方法,包括:将所述至少两个修改数据值存储在查找表中。
15.根据权利要求1、2、3、10、11、13或14所述的方法,包括:向多原色显示面板输出修改后的子像素颜色分量数据值。
16.根据权利要求1、2、3、10、11、13或14所述的方法,其中像素对的两个像素在空间上彼此靠近。
17.根据权利要求1所述的方法,其中像素对的第一像素出现在第一帧中,像素对的第二像素出现在第二帧中,第一和第二帧是连续帧。
18.根据权利要求1所述的方法,其中像素对的第一像素出现在第一组帧中,像素对的第二像素出现在第二组帧中,第一和第二组帧是连续帧组。
19.根据权利要求17或18所述的方法,其中利用子像素的驱动极性的变化来调整子像素的数据值的变化。
20.根据权利要求18所述的方法,其中一个子像素的数据值变化的定时不同于另一子像素的数据值变化的定时。
21.一种处理图像以供显示的方法,该方法包括:接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及修改子像素颜色分量数据值中的一个或更多个;其中该方法包括:修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
22.根据权利要求21所述的方法,其中该方法包括:修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体色度变化与非原色子像素的总体色度变化近似相等且相反,从而对于在轴观看者,像素的总体色度实质上未改变。
23.根据权利要求1、2、3、10、11、13、14、17、18、20、21或22所述的方法,包括:检测图像区域中是否存在高空间分辨率特征;以及,如果是,减少或阻止对所述图像区域中像素的子像素颜色分量数据值的修改。
24.根据权利要求22所述的方法,包括:对于图像中的像素对,计算该像素对的条件等色体,所述条件等色体的平均亮度和色度与该像素对的未修改数据值相同,并且所述条件等色体的个体亮度与未修改数据值相同;以及基于所计算的所述条件等色体的离轴亮度和色度,选择所述条件等色体之一。
25.一种用于显示器的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
26.一种用于多原色显示面板的控制电路,控制电路配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
27.一种显示器,包括根据权利要求25或26所述的控制电路、以及多原色显示面板,控制电路配置为在使用中向多原色显示面板输出经修改的子像素颜色分量数据值。
28.一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中显示面板配置为沿彼此相反的方向修改来自像素的对应子像素的数据值,使得对于显示面板的在轴观看者,显示面板的总体亮度以及感知的图像看起来实质上未改变。
29.一种多原色显示面板,配置为
接收构成了图像的像素数据,每个像素数据包括具有相应数据值的至少四个子像素颜色分量;以及
修改子像素颜色分量数据值中的一个或更多个;
其中控制电路配置为修改像素的原色子像素的数据值和该像素的非原色子像素的数据值,使得原色子像素的总体亮度变化与非原色子像素的总体亮度变化近似相等且相反,从而对于在轴观看者,像素的总体亮度以及感知的图像看起来实质上未改变。
30.一种包含指令的计算机可读介质,当由处理器执行时,指令引起处理器执行根据权利要求1、2、3、10、11、13、14、17、18、20、21、22或24所述的方法。
CN201210377780.2A 2011-10-06 2012-10-08 图像处理方法、控制电路、面板和显示器 Expired - Fee Related CN103035191B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1117276.4A GB2495317A (en) 2011-10-06 2011-10-06 Image processing method for reduced colour shift in multi-primary LCDs
GB1117276.4 2011-10-06

Publications (2)

Publication Number Publication Date
CN103035191A true CN103035191A (zh) 2013-04-10
CN103035191B CN103035191B (zh) 2015-08-05

Family

ID=45035269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210377780.2A Expired - Fee Related CN103035191B (zh) 2011-10-06 2012-10-08 图像处理方法、控制电路、面板和显示器

Country Status (4)

Country Link
US (1) US9262977B2 (zh)
JP (2) JP2013083976A (zh)
CN (1) CN103035191B (zh)
GB (1) GB2495317A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015089920A1 (zh) * 2013-12-20 2015-06-25 深圳市华星光电技术有限公司 一种液晶显示面板的色偏补偿方法及***
CN104851398A (zh) * 2015-03-10 2015-08-19 友达光电股份有限公司 显示器的图像处理方法
WO2016173006A1 (zh) * 2015-04-29 2016-11-03 深圳市华星光电技术有限公司 一种液晶面板及其驱动方法
CN106601200A (zh) * 2016-12-08 2017-04-26 深圳市华星光电技术有限公司 一种显示面板的驱动方法、驱动装置以及显示设备
US9734749B2 (en) 2014-12-17 2017-08-15 Shenzhen China Star Optoelectronics Technology Co., Ltd. Image display method, image display device and display apparatus for pentile display panel
CN108877698A (zh) * 2017-05-08 2018-11-23 北京小米移动软件有限公司 一种显示图像的方法和装置
CN109074786A (zh) * 2016-04-15 2018-12-21 三星电子株式会社 显示装置及其控制方法
CN109313793A (zh) * 2016-01-18 2019-02-05 维弗施福特有限责任公司 评估并降低电子显示器的近视源性效应
CN112530344A (zh) * 2020-12-01 2021-03-19 Tcl华星光电技术有限公司 显示面板及其驱动方法
CN116863861A (zh) * 2023-09-05 2023-10-10 欣瑞华微电子(上海)有限公司 基于非显性点判断的图像处理方法、设备及可读存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495317A (en) * 2011-10-06 2013-04-10 Sharp Kk Image processing method for reduced colour shift in multi-primary LCDs
US9183800B2 (en) * 2013-07-22 2015-11-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal device and the driven method thereof
US9653015B2 (en) * 2014-07-25 2017-05-16 Darwin Hu Display devices with high resolution and spatial density modulation architecture
KR20150069748A (ko) * 2013-12-16 2015-06-24 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
CN103714791B (zh) * 2013-12-20 2015-12-30 武汉精立电子技术有限公司 LCD屏Gamma-Flicker综合矫正仪
KR102306598B1 (ko) * 2014-07-31 2021-09-30 삼성디스플레이 주식회사 표시 장치
CN104900203B (zh) * 2015-06-11 2017-05-17 深圳市华星光电技术有限公司 液晶面板及其驱动方法
KR102485685B1 (ko) * 2015-12-11 2023-01-09 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
KR102636867B1 (ko) * 2016-12-15 2024-02-19 엘지전자 주식회사 디지털 사이니지 및 그 제어 방법
JP2019095513A (ja) * 2017-11-20 2019-06-20 シナプティクス インコーポレイテッド 表示ドライバ、表示装置及びサブピクセルレンダリング処理方法
CN108182883B (zh) * 2018-01-31 2020-06-19 厦门天马微电子有限公司 一种显示面板及显示装置
US10621930B2 (en) * 2018-02-13 2020-04-14 Himax Technologies Limited Image processing method and image processing device for reducing color shift
US10796651B2 (en) * 2018-09-13 2020-10-06 Chongqing Hkc Optoelectronics Technology Co., Ltd. Driving method and device of display panel, and display device
CN109739461B (zh) * 2019-01-02 2020-09-29 合肥京东方光电科技有限公司 触控显示面板的驱动方法及可读性存储介质
CN109817147B (zh) * 2019-03-18 2021-01-15 京东方科技集团股份有限公司 显示面板及其显示方法、显示设备及计算机可读存储介质
CN112951147B (zh) * 2019-12-09 2022-06-10 深圳Tcl新技术有限公司 一种显示器色度视角修正方法、智能终端及存储介质
CN113380204B (zh) * 2020-03-10 2022-08-12 咸阳彩虹光电科技有限公司 改善视角色偏的方法、装置及显示面板
CN114627837B (zh) * 2022-05-13 2022-09-02 惠科股份有限公司 显示装置的驱动方法和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146893A1 (en) * 2002-01-30 2003-08-07 Daiichi Sawabe Liquid crystal display device
CN1487495A (zh) * 2002-08-22 2004-04-07 ������������ʽ���� 图像显示装置、图像显示方法以及图像显示程序
WO2007116589A1 (ja) * 2006-04-10 2007-10-18 Sharp Kabushiki Kaisha 画像表示装置、画像表示装置の駆動方法、駆動プログラム、およびコンピュータ読み取り可能な記録媒体
CN101176108A (zh) * 2005-05-20 2008-05-07 克雷沃耶提公司 具有条件等色滤波的多基色子像素着色

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840460A (en) * 1987-11-13 1989-06-20 Honeywell Inc. Apparatus and method for providing a gray scale capability in a liquid crystal display unit
JP3943605B2 (ja) 1993-10-08 2007-07-11 株式会社東芝 多階調表示装置
TW294807B (zh) 1993-10-08 1997-01-01 Toshiba Co Ltd
JP3202450B2 (ja) * 1993-10-20 2001-08-27 日本電気株式会社 液晶表示装置
JP3426723B2 (ja) 1994-08-30 2003-07-14 富士通ディスプレイテクノロジーズ株式会社 液晶表示装置及びその駆動方式
KR0149297B1 (ko) * 1995-07-12 1998-12-15 김광호 액정 표시 장치 및 그 구동 방법
US6801220B2 (en) * 2001-01-26 2004-10-05 International Business Machines Corporation Method and apparatus for adjusting subpixel intensity values based upon luminance characteristics of the subpixels for improved viewing angle characteristics of liquid crystal displays
JP4342200B2 (ja) * 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
KR100914201B1 (ko) * 2002-12-30 2009-08-27 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
US8502762B2 (en) * 2003-03-31 2013-08-06 Sharp Kabushiki Kaisha Image processing method and liquid-crystal display device using the same
JP4459685B2 (ja) * 2004-03-31 2010-04-28 富士通株式会社 液晶表示装置
KR20060089831A (ko) * 2005-02-04 2006-08-09 삼성전자주식회사 표시 장치의 구동 장치
GB2457106A (en) * 2008-03-04 2009-08-05 Sharp Kk LCD device with luminance variations perceivable only by off-axis viewers
US8508449B2 (en) 2008-12-18 2013-08-13 Sharp Corporation Adaptive image processing method and apparatus for reduced colour shift in LCDs
RU2012127360A (ru) * 2009-12-01 2014-01-10 ТиПи ВИЖН ХОЛДИНГ Б.В. Устройство отображения с множеством основных цветов
GB2495317A (en) * 2011-10-06 2013-04-10 Sharp Kk Image processing method for reduced colour shift in multi-primary LCDs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146893A1 (en) * 2002-01-30 2003-08-07 Daiichi Sawabe Liquid crystal display device
CN1487495A (zh) * 2002-08-22 2004-04-07 ������������ʽ���� 图像显示装置、图像显示方法以及图像显示程序
CN101176108A (zh) * 2005-05-20 2008-05-07 克雷沃耶提公司 具有条件等色滤波的多基色子像素着色
WO2007116589A1 (ja) * 2006-04-10 2007-10-18 Sharp Kabushiki Kaisha 画像表示装置、画像表示装置の駆動方法、駆動プログラム、およびコンピュータ読み取り可能な記録媒体

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536587B (en) * 2013-12-20 2020-10-28 Shenzhen China Star Optoelect Color cast compensation method and system for liquid crystal display panel
GB2536587A (en) * 2013-12-20 2016-09-21 Shenzhen China Star Optoelect Colour cast compensation method and system for liquid crystal display panel
WO2015089920A1 (zh) * 2013-12-20 2015-06-25 深圳市华星光电技术有限公司 一种液晶显示面板的色偏补偿方法及***
US9734749B2 (en) 2014-12-17 2017-08-15 Shenzhen China Star Optoelectronics Technology Co., Ltd. Image display method, image display device and display apparatus for pentile display panel
CN104851398A (zh) * 2015-03-10 2015-08-19 友达光电股份有限公司 显示器的图像处理方法
US9728160B2 (en) 2015-03-10 2017-08-08 Au Optronics Corp. Image processing method of a display for reducing color shift
CN104851398B (zh) * 2015-03-10 2018-08-10 友达光电股份有限公司 显示器的图像处理方法
WO2016173006A1 (zh) * 2015-04-29 2016-11-03 深圳市华星光电技术有限公司 一种液晶面板及其驱动方法
CN109313793A (zh) * 2016-01-18 2019-02-05 维弗施福特有限责任公司 评估并降低电子显示器的近视源性效应
CN109074786B (zh) * 2016-04-15 2021-10-26 三星电子株式会社 显示装置及其控制方法
CN109074786A (zh) * 2016-04-15 2018-12-21 三星电子株式会社 显示装置及其控制方法
CN106601200A (zh) * 2016-12-08 2017-04-26 深圳市华星光电技术有限公司 一种显示面板的驱动方法、驱动装置以及显示设备
US10302977B2 (en) 2016-12-08 2019-05-28 Shenzhen China Star Optoelectronics Technology Co., Ltd. Driving methods of display panels, driving devices, and display devices
CN108877698A (zh) * 2017-05-08 2018-11-23 北京小米移动软件有限公司 一种显示图像的方法和装置
CN112530344A (zh) * 2020-12-01 2021-03-19 Tcl华星光电技术有限公司 显示面板及其驱动方法
CN116863861A (zh) * 2023-09-05 2023-10-10 欣瑞华微电子(上海)有限公司 基于非显性点判断的图像处理方法、设备及可读存储介质
CN116863861B (zh) * 2023-09-05 2023-11-24 欣瑞华微电子(上海)有限公司 基于非显性点判断的图像处理方法、设备及可读存储介质

Also Published As

Publication number Publication date
GB2495317A (en) 2013-04-10
US9262977B2 (en) 2016-02-16
JP2013083976A (ja) 2013-05-09
JP2015045876A (ja) 2015-03-12
US20130088528A1 (en) 2013-04-11
JP5863925B2 (ja) 2016-02-17
CN103035191B (zh) 2015-08-05
GB201117276D0 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN103035191B (zh) 图像处理方法、控制电路、面板和显示器
US8508449B2 (en) Adaptive image processing method and apparatus for reduced colour shift in LCDs
TWI476753B (zh) 處理用於顯示於包含多原色圖像顯示面板之顯示裝置之圖像資料之方法
TWI567709B (zh) 顯示面板
KR101115046B1 (ko) 화상표시장치 및 화상표시방법
US9947257B2 (en) Pixel layout and display with varying area and/or luminance capability of same type sub-pixels in different composite pixels
US20140118423A1 (en) Liquid crystal display apparatus
JP4756176B2 (ja) 液晶ディスプレイ駆動装置及びその方法
JP2006349952A (ja) 画像表示装置及び方法
KR20110036670A (ko) 화상 표시 장치 및 그 구동 방법
US7843473B2 (en) Matrix display with gamma correction based on gamma characteristics pairs and different input transmittance level
CN102741736A (zh) 显示设备
KR102385576B1 (ko) 디스플레이 구동 장치 및 서브픽셀 구동 방법
US20090189925A1 (en) Liquid crystal display and driving method thereof
CN100437736C (zh) 图像显示设备和图像显示方法
US20180114505A1 (en) Display device and a method of driving thereof
JP6648261B2 (ja) 画像データの処理方法、画素データの生成方法、および表示装置
WO2015019617A1 (en) Device and method for processing image data for privacy and wide-view using error diffusion
JP2009093055A (ja) 液晶表示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150805

Termination date: 20201008