CN103019160A - 基于云计算的冷水机管理控制***及方法 - Google Patents

基于云计算的冷水机管理控制***及方法 Download PDF

Info

Publication number
CN103019160A
CN103019160A CN2011102806517A CN201110280651A CN103019160A CN 103019160 A CN103019160 A CN 103019160A CN 2011102806517 A CN2011102806517 A CN 2011102806517A CN 201110280651 A CN201110280651 A CN 201110280651A CN 103019160 A CN103019160 A CN 103019160A
Authority
CN
China
Prior art keywords
water machine
cooling
cloud computing
management
described cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102806517A
Other languages
English (en)
Other versions
CN103019160B (zh
Inventor
姜永东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LONGDHUA (BEIJING) AUTOMATIC CONTROL TECHNOLOGY Co Ltd
Original Assignee
LONGDHUA (BEIJING) AUTOMATIC CONTROL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LONGDHUA (BEIJING) AUTOMATIC CONTROL TECHNOLOGY Co Ltd filed Critical LONGDHUA (BEIJING) AUTOMATIC CONTROL TECHNOLOGY Co Ltd
Priority to CN201110280651.7A priority Critical patent/CN103019160B/zh
Priority to PCT/CN2012/001124 priority patent/WO2013040854A1/zh
Publication of CN103019160A publication Critical patent/CN103019160A/zh
Application granted granted Critical
Publication of CN103019160B publication Critical patent/CN103019160B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0421Multiprocessor system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25057Configuration stored in distributed database for real time use
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25131Collect several parameters and transmit in block to control microprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明公开了一种基于云计算的冷水机管理控制***及方法,该***包括:物联网现场控制器,用于设定所述冷水机的正常运行参数并根据所述正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;物联网现场数据采集器,用于采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;云计算设备管理和控制平台,用于根据所述冷水机的实际运行参数和正常运行参数调整所述物联网现场控制器的管理和控制模式。所述方法利用该***实现。本发明能够兼容所有不同厂家的冷水机管理控制平台,在统一的平台下对很多个对象进行集中管理控制,从而实现设备运行状况的最优化配置。

Description

基于云计算的冷水机管理控制***及方法
技术领域
本发明涉及冷水机管理控制技术领域,尤其涉及一种基于云计算的冷水机管理控制***及方法。
背景技术
随着全世界范围内的冷水机(如离心式冷水机、活塞式冷水机、溴化锂冷水机和螺杆式冷水机)越来越多,对各种冷水机的管理控制越来越重要。
现有技术中的冷水机管理控制***,通常仅仅采用分析设备数量、设备的铭牌信息、设备的维修保养记录等手段,对各种设备做一个简单的信息汇总,而不能够用自动化手段采集设备实时运行数据和设计参数,特别是不能够做到对冷水机的各个零部件做运行数据和设计参数对比分析,无法查证和提前预知设备故障的出现时间节点,以及故障对设备造成的危害程度。
本发明人还发现现有技术的冷水机管理控制软件还存在以下问题:
1、***在处理大量历史数据时遇到处理速度不迅速、数据保护无法实现的问题;
2、***没有从设计因素、使用环境、使用习惯、人为因素、运行指标、管理体系、故障基准标杆、故障绩效、故障统计、运行优化等方面进行综合的设备和零部件运行数据统计、分析和管理控制,仅仅是将部分统计结果提供给用户,让用户自己根据统计结果去修正现场运行控制模式,从而无法实现设备运行的最优化配置。
云计算是近几年发展起来的网络技术,它是将计算任务分布在大量计算机构成的资源池上,使得各种应用***能够根据需要获取计算力、存储空间和各种软件服务。各大IT公司纷纷推出自己的基于云计算的平台服务,如谷歌(GOOGLE)、微软、雅虎、亚马逊(Amazon)等,总结起来云计算具有以下特点:
(1)超大规模。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器,“云”能赋予用户前所未有的计算能力。
(2)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具***置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出***的应用,同一个“云”可以同时支撑不同的应用运行。
(5)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6)按需服务。“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
(7)极其廉价。由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统***大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。
(8)物联网技术是云计算实现现场设备数据跨平台交换的可靠保障,其本质含义是“物与物相连、互通,及数据共享”。
(9)“物联网技术”的核心和基础仍然是“互联网技术”,是在互联网技术基础上的延伸和扩展的一种网络技术;其用户端延伸和扩展到了任何物品和物品之间,进行信息交换和通讯。因此,物联网技术的定义是:通过射频识别(RFID)、红外感应器、全球定位***、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术。
(10)物联网(Internet of Things)指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具备“内在智能”的传感器、移动终端、工业***、数控***、家庭智能设施、视频监控***等、和“外在使能”(Enabled)的,如贴上RFID的各种资产(Assets)、携带无线终端的个人与车辆等等“智能化物件或动物”或“智能尘埃”(Mote),通过各种无线和/或有线的长距离和/或短距离通讯网络实现互联互通(M2M)、应用大集成(GrandIntegration)、以及基于云计算的SaaS营运等模式,在内网(Intranet)、专网(Extranet)、和/或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面(集中展示的Cockpit Dashboard)等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。
发明内容
为了解决现有技术的上述问题,本发明的目的是提供一种基于云计算的冷水机管理控制***及方法,能够兼容所有不同厂家的冷水机管理控制平台,在一个统一的平台下对很多个对象集中进行设备运行管理控制,实现最大限度的运行优化管理、故障预知和网络化自动控制,从而实现运行状况的最优化配置,达到更好的运行效果。
为了实现上述目的,本发明提供了一种基于云计算的冷水机管理控制***,包括:
物联网现场控制器,用于设定所述冷水机的正常运行参数以及根据所述冷水机的正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;
物联网现场数据采集器,用于采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;
云计算设备管理和控制平台,用于根据所述冷水机的实际运行参数和正常运行参数调整所述物联网现场控制器的管理和控制模式。
作为优选,所述云计算设备管理和控制平台具体包括:
接收单元,用于接收所述物联网现场数据采集器采集到的所述冷水机的实际运行参数以及通过所述物联网现场控制器设定的所述冷水机的正常运行参数;
第一判断单元,用于判断所述冷水机的实际运行参数与正常运行参数是否匹配并生成判断结果;
运行模型生成单元,用于当所述第一判断单元的判断结果为匹配时根据所述冷水机的实际运行参数生成相应的运行模型;
运行模型数据库,用于存储所述冷水机的各种历史运行模型;
第二判断单元,用于判断所述生成的运行模型与所述运行模型数据库中对应的历史运行模型是否匹配并生成判断结果;
控制模式调整单元,用于当所述第一判断单元或所述第二判断单元的判断结果为不匹配时调整所述物联网现场控制器对所述冷水机的管理和控制模式。
作为优选,所述冷水机的实际运行参数包括实时运行参数和安全参数。其中,实时运行参数通常指物联网现场数据采集器直接采集的温度、湿度、风量、运行时间、频率等与设备的实际运行相关的参数,例如:所述冷水机的冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量等;安全参数包括故障和报警等情况下各个设备相关的参数,例如:所述冷水机的保护电流、保护电压、保护功率和电机安全转速等。
作为优选,所述运行模型数据库中对应的历史运行模型是指运行状况约束参数与所述生成的运行模型匹配的历史运行模型,所述运行状况约束参数包括所述冷水机的应用环境参数、设计参数、应用场所类型参数和实际运行类型参数中的一种或者其组合。运行模型数据库中存有各种符合行业标准(设计标准、厂家设备设计参数等)的历史运行模型,这些历史运行模型考虑了能耗标杆、效率标杆、绩效标杆等评价标准的,其运行模式相对来讲是最合理的。历史运行模型的建立通常受到所述冷水机的运行状况约束参数的制约,运行状况约束参数不同,对应的历史运行模型就不同。各个设备的应用环境参数包括地理位置、气象参数等,设备的设计参数包括设计运行参数、设计功率、测量范围、设计能效等,设备的应用场所类型参数包括商场、超市、酒店、办公楼、展览馆、机房、工业厂房、住宅、国家电网等类别。当然,还可以有其他运行状况约束参数,比如控制模式等。
为了实现上述目的,本发明还提供了一种基于云计算的冷水机管理控制方法,包括:
S11:根据设定的所述冷水机的正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;
S12:采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;
S13:在云计算设备管理和控制平台下根据所述冷水机的实际运行参数和正常运行参数调整对所述冷水机的管理和控制模式。
作为优选,所述S13步骤具体包括:
S131:判断所述冷水机的实际运行参数和正常运行参数是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S132步骤;
S132:根据所述冷水机的实际运行参数生成相应的运行模型;
S133:判断所述生成的运行模型与运行模型数据库中对应的历史运行模型是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S134步骤;
S134:保持对所述冷水机的管理和控制模式;
S135:调整对所述冷水机的管理和控制模式。
作为进一步地优选,执行所述S134步骤后,还包括S136步骤,将所述生成的运行模型加入到所述运行模型数据库中。
作为优选,所述运行模型数据库中对应的历史运行模型是指运行状况约束参数与所述生成的运行模型匹配的历史运行模型,所述运行状况约束参数包括所述冷水机的应用环境参数、设计参数、应用场所类型参数和实际运行类型参数中的一种或者其组合。
作为优选,所述冷水机的实际运行参数包括实时运行参数和安全参数。其中,实时运行参数通常指物联网现场数据采集器直接采集的温度、湿度、风量、运行时间、频率等与设备的实际运行相关的参数,例如:所述冷水机的冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量等;安全参数包括故障和报警等情况下各个设备相关的参数,例如:所述冷水机的保护电流、保护电压、保护功率和电机安全转速等。
作为优选,所述冷水机的正常运行参数和实际运行参数均通过无线INTERNET网、有线INTERNET网、GPRS、北斗***、GPS、3G网、4G网中的任一种传送给云计算设备管理和控制平台。
与现有技术相比,本发明的有益效果在于,本发明提供的冷水机管理控制***及方法能够兼容所有不同厂家的冷水机管理控制平台,在一个统一的平台下对很多个对象集中进行运行管理控制,实现最大限度的预知设备故障和网络化自动调节控制,从而实现设备运行状况的最优化配置,达到更好的设备管理和维护效果。
附图说明
图1是本发明实施例的基于云计算的冷水机管理控制***的结构示意图;
图2是本发明一个实施例的基于云计算的冷水机管理控制方法的流程图;
图3是本发明另一个实施例的基于云计算的冷水机管理控制方法的流程图。
具体实施方式
下面结合附图详细说明本发明的实施例。
如图1所示的本发明实施例的基于云计算的冷水机管理控制***的结构示意图,基于云计算的冷水机管理控制***包括:
物联网现场控制器11,用于设定冷水机10的正常运行参数以及根据冷水机10的正常运行参数对冷水机10的运行模式进行管理和控制,并将冷水机10的正常运行参数传输至云计算设备管理和控制平台13;物联网现场控制器11包括用户参数设定单元111,其用于设定冷水机10的正常运行参数,以及调整物联网现场控制器11对冷水机10的管理和控制模式;常用的物联网现场控制器11包括机组控制器、机组变频器、机组负荷调整控制器、机组电力柜、叶轮修正控制器、机组和电机振动修正控制器、机组运行状态自动记录仪、机组运行故障记录仪和机组能耗记录仪等。本实施例所采用的物联网现场控制器11是利用物联网技术研发的控制器,是具有唯一IP地址的冷水机运行数据分析控制器,与冷水机10能够一一对应。通过物联网现场控制器11设定的正常运行参数通过通讯网络传输到云计算设备管理和控制平台13,其中所述通讯网络可以是无线INTERNET网、有线INTERNET网、GPRS、北斗***、GPS、3G网或者更先进的下一代传输网络(4G)等。
物联网现场数据采集器12,用于采集冷水机10的实际运行参数并传送给云计算设备管理和控制平台13;冷水机10的实际运行参数包括实时运行参数和安全参数。其中,实时运行参数通常指物联网现场数据采集器12直接采集的温度、湿度、风量、运行时间、频率等与冷水机10的实际运行相关的参数,例如:冷水机10的冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量等;安全参数包括故障和报警等情况下各个与冷水机10相关的参数,例如:冷水机10的保护电流、保护电压、保护功率和电机安全转速等。物联网现场数据采集器12一般由各类带网络传输功能的传感器、数据统计和汇总单元、数据分析和上传单元等组成,完成数据的采集和初步统计分析功能,其实际数量是根据需要而设定的,可能有很多个物联网现场数据采集器12。本实施例所采用的物联网现场数据采集器12是利用物联网技术研发的数据采集器,是具有唯一IP地址的冷水机实际运行数据采集器,与冷水机10能够一一对应。物联网现场数据采集器12可以是各种冷媒和介质流量传感器、电机转速传感器、冷媒和介质压力传感器、液体泄漏率测量仪、加速度传感器、电机扭矩传感器、轴封漏油和漏水传感器、电量采集仪等。物联网现场数据采集器12采集到的冷水机10的实际运行参数通过通讯网络传输到云计算设备管理和控制平台13,其中所述通讯网络可以是无线INTERNET网、有线INTERNET网、GPRS、北斗***、GPS、3G网或者更先进的下一代传输网络(4G)等。
云计算设备管理和控制平台13,用于根据所述冷水机10的实际运行参数和正常运行参数调整所述物联网现场控制器11的管理和控制模式。调整的目的是实现冷水机10的最优化配置,降低故障率,减少维护成本,保证设备处于最佳运行状态等。本实施例的云计算设备管理和控制平台13具体包括:
接收单元131,用于接收物联网现场数据采集器12采集到的冷水机10的实际运行参数以及通过物联网现场控制器11设定的冷水机10的正常运行参数;
第一判断单元132,用于判断所述采集到的冷水机10的实际运行参数与所述设定的冷水机10的正常运行参数是否匹配并生成判断结果;
运行模型生成单元133,用于当第一判断单元132的判断结果为匹配时根据所述采集到的冷水机10的实际运行参数生成相应的运行模型;运行模型包括整体工况和运行工况等指标。
运行模型数据库130,用于存储冷水机10的各种历史运行模型;运行模型数据库130中存有各种符合行业标准(设计标准、厂家设备设计参数等)的冷水机历史运行模型以及被相关规范、标准等文件约定或承认的最优运行状态模型,这些历史运行模型是考虑了功能标杆、效率标杆、绩效标杆等评价标准的,其运行状态相对来讲是最合理的。
第二判断单元134,用于判断所述生成的运行模型与运行模型数据库中对应的历史运行模型是否匹配并生成判断结果;冷水机历史运行模型的建立通常受到运行状况约束参数的制约,运行状况约束参数不同,对应的冷水机历史运行模型就不同。所述运行状况约束参数包括所述各个设备的应用环境参数、设计参数、零配件设计参数、应用场所类型参数中的一种或者其组合以及与其他约束参数(如控制优化模式)的组合。各个设备的应用环境参数包括地理位置、气象参数等,设计参数包括运行状况、设计功率、测量范围、设计能效等,应用场所类型参数包括商场、超市、酒店、办公楼、展览馆、机房、工业厂房、住宅、国家电网等类型。用户通过运行状况约束参数设定单元14输入当前生成的运行模型的运行状况约束参数,然后根据这些运行状况约束参数在冷水机运行模型数据库130中找到对应的历史运行模型(即运行状况约束参数与所述生成的运行模型匹配的历史运行模型),再判断生成的运行模型与对应的历史运行模型是否匹配,如果不匹配说明设备运行不合理,需要调整。例如生成的运行模型单位时间设备振动加速度要求1000g(每秒平方),但是如果小于或大于设定值的10%以上,则可以推断此设备的运行状态不正常,要么发生共振,要么零配件出现过度磨损,或者偏心等,需要对设备进行调整。
控制模式调整单元135,用于当第一判断单元132或第二判断单元134的判断结果为不匹配时调整物联网现场控制器11对冷水机10的管理和控制模式。不匹配说明运行不符合要求,需要对管理和控制模式进行调整以保证设备正常运行,直到最佳运行点实现匹配为止,从而实现运行状况的最优化配置。当第一判断单元132的判断结果为不匹配时,说明运行状况无法达到用户设定的要求,需要直接进行调整;当第二判断单元134的判断结果为不匹配时,说明运行状况虽然能够达到用户设定要求,但还不是最优的,没有考虑功能标杆、效率标杆、绩效标杆等评价标准,有必要进行调整从而进一步优化运行状态。如果第二判断单元134的判断结果为匹配时,说明生成的运行模型是合理的符合要求的,则将所述生成的运行模型加入到运行模型数据库130中,丰富历史数据,为后续运行状况管理控制提供参考。
当然,云计算设备管理和控制平台13对物联网现场控制器11的管理和控制模式有很多种,上述实施例仅仅给出了其中的一种。
为了用户使用方便,本实施例的基于云计算的冷水机管理控制***可以做成直观的显示界面,用户只需要通过显示界面进行管理控制即可。
使用云计算设备管理和控制平台13进行设备管理控制的优势十分明显,云计算的规模性和可扩展性的特点使得超大规模运行状况集中控制可以实现,理论上讲可以实现全球范围内的任何种类的冷水机的管理控制,应用范围更广;云计算的虚拟化的特点使得各个用户进行运行状况管理控制时无需单独配置独立的运行状况管理控制平台,而是在“云”中按需获得,大大降低了成本;云计算的资源共享的特点使得整个控制平台内历史数据十分丰富,可以匹配最佳历史数据作为参考,从而实现能源的最优化配置。
如图2所示的本发明一个实施例的基于云计算的冷水机管理控制方法的流程图,该方法包括:
S11:根据设定的所述冷水机的正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;设定的正常运行参数通过通讯网络传输到云计算设备管理和控制平台,其中所述通讯网络可以是无线INTERNET网、有线INTERNET网、GPRS和3G网或者更先进的下一代传输网络等。
S12:采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;所述冷水机的实际运行参数包括实时运行参数和安全参数。其中,实时运行参数通常指直接采集的温度、湿度、风量、运行时间、频率等与冷水机的实际运行相关的参数,例如:冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量等;安全参数包括故障和报警等情况下各个与冷水机相关的参数,例如:冷水机的保护电流、保护电压、保护功率和电机安全转速等。一般采用由各类带网络传输功能的传感器、数据统计和汇总单元、数据分析和上传单元等组成的物联网现场数据采集器对实际运行参数进行采集,所述物联网现场数据采集器的实际数量是根据需要而设定的,例如冷媒和介质流量传感器、电机转速传感器、冷媒和介质压力传感器、液体泄漏率测量仪、加速度传感器、电机扭矩传感器、轴封漏油和漏水传感器、电量采集仪。采集到的冷水机的实际运行参数通过通讯网络传输到云计算设备管理和控制平台,其中通讯网络可以是无线INTERNET网、有线INTERNET网、GPRS和3G网或者更先进的下一代传输网络等。
S13:在云计算设备管理和控制平台下根据所述冷水机的实际运行参数和正常运行参数调整对所述冷水机的管理和控制模式。
由于使用了云计算设备管理和控制平台对冷水机的运行状况进行管理和控制,云计算的规模性和可扩展性的特点使得超大规模运行状况集中控制可以实现,理论上讲可以实现全球范围内的任何种类的冷水机的管理控制,应用范围更广;云计算的虚拟化的特点使得各个用户进行运行状况管理控制时无需单独配置独立的运行状况管理控制平台,而是在“云”中按需获得,大大降低了成本;云计算的资源共享的特点使得整个控制平台内历史数据十分丰富,可以匹配最佳历史数据作为参考,从而实现运行状况的最优化配置。
如图3所示的本发明另一个实施例的基于云计算的冷水机管理控制方法的流程图,该方法在图2所示的基于云计算的冷水机管理控制方法的基础上,所述S13步骤具体包括:
S131:判断所述冷水机的实际运行参数和正常运行参数是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S132步骤;
S132:根据所述冷水机的实际运行参数生成相应的运行模型;
S133:判断所述生成的运行模型与运行模型数据库中对应的历史运行模型是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S134步骤;
S134:保持对所述冷水机的管理和控制模式;
S135:调整对所述冷水机的管理和控制模式。
作为本实施例的一种优选方案,执行所述S134步骤后,还包括S136步骤,将所述生成的运行模型加入到所述运行模型数据库中,丰富历史数据,为后续运行状况管理控制提供参考。
更加详细的介绍请参考上述基于云计算的冷水机管理控制***实施例中的表述。
所述运行模型数据库中对应的历史运行模型是指运行状况约束参数与所述生成的运行模型匹配的历史运行模型,所述运行状况约束参数包括所述冷水机的应用环境参数、设计参数、应用场所类型参数和实际运行类型参数中的一种或者其组合。运行模型数据库中存有各种符合行业标准(设计标准、厂家设备设计参数等)的历史运行模型,这些历史运行模型考虑了能耗标杆、效率标杆、绩效标杆等评价标准的,其运行模式相对来讲是最合理的。历史运行模型的建立通常受到所述冷水机的运行状况约束参数的制约,运行状况约束参数不同,对应的历史运行模型就不同。各个设备的应用环境参数包括地理位置、气象参数等,设备的设计参数包括设计运行参数、设计功率、测量范围、设计能效等,设备的应用场所类型参数包括商场、超市、酒店、办公楼、展览馆、机房、工业厂房、住宅、国家电网等类别。当然,还可以有其他运行状况约束参数,比如控制模式等。
所述冷水机的实际运行参数通过无线INTERNET网、有线INTERNET网、GPRS、GPS、北斗***、3G和更先进的下一代传输网络4G网中的任一种传送给云计算设备管理和控制平台。
本实施例的方法在图2所示的基于云计算的冷水机管理控制方法的基础上,具体给出了一种在云计算设备管理和控制平台下如何调整所述物联网现场控制器的管理和控制模式的方法,其充分利用了云计算设备管理和控制平台历史数据丰富的特点,进一步优化了运行模型。
下面用建筑中常见的冷水机组运行管理和控制方式做实际功能说明:
在机组的运行管理要求中,运行中冷水机组冷却水、和冷冻水进出参数应在如下范围:
冷冻水进出水压差0.1-0.15Mpa、进出水温差4-5℃、冷却水的进出水压差在0.1-0.15Mpa之间;
冷却水的进出水温差4-5℃,冷却水出水温度小于47°F(8.5℃)、,冷却冷冻水***最大压力不得超过1.3Mpa,冷却水的***最大压力不得1超过0.4Mpa。
当制冷机运转正常后,可通过不同物联网数据采集仪采集到冷水机组的运行数据,并与数据库中做相应比较并判断是否符合下列正常的运行要求:
(1)油箱温度应在140-150°F之间,否则将做温度预警,并将报警信息自动在云计算设施设备管理和控制平台的相应环节显示,联动相应设备的并通过相应的物联网控制仪做相应的温度调节和控制。
(2)轴承回油温度应在150-175°F之间,当物联网数据采集仪采集到轴承回油温度正常时,云计算设施设备管理和控制平台将会发出控制信号使相应的物联网控制仪将油加热器停止加热,当轴承回油温度的回油温度地域正常值时,云计算设施设备管理和控制平台将会发出控制信号使相应的物联网控制仪开启相应的油加热器。
(3)控制中心油压表显示的读数,差压应在138-172kpa之间。当物联网数据采集仪采集到差压过小时,云计算设施设备管理和控制平台则会发出差压过小的几种可能和相对应的自动化管路和控制措施:管路泄露,应对措施:自动查漏、堵漏;
储油箱油量不足,应对措施;自动加油,;
油泵转速过低,应对措施:调节油泵转速增加、;
有水泄露至油箱,(应对措施:更换油)、;
油品质过差,应对措施:换油。
而当云计算设施设备管理和控制平台判断物联网油压采集仪数据过高时,则会发出差压过大的几种可能和相对应的自动化管路和控制措施:
管路堵塞,应对措施:--自动贯通管路);
储油箱油量过满,应对措施:--自动泄油到合理);
油泵转速过高,应对措施:--调节油泵转速降低)。
其他的参数的控制类似于油压的控制,当参数值经过云计算设施设备管理和控制平台判断后,一旦超出正常范围,则通过后台数据库直接给出相应的自动化管理和控制命令,使现场物联网控制仪做相应的控制和调节。其中,需要通过监测的其他参数如下:
(64)冷凝器的压力因其主机的设计条件而有所不同,范围一般在0-76kpa之间。
(5)冷凝器的出水温度在大部分的应用情况中,水温一般不得低于65°F。
(6)蒸发器的压力亦因主机的设计条件而有所不同,其范围一般在-51至-18hg真空度之间。
(7)蒸发器的进水温度不得高于32℃,禁止高于38℃,出水温度因主机的设计条件而有所不同,“舒适性”空调水温一般设定在9--7℃,不得低于5℃,蒸发温度5-2℃,不得低于0℃。
(8)不凝空气排除器压力之数值应在蒸发器及冷凝器压力的一半之处。
其他安全性保护---措施,保护性停机:当物联网现场数据采集仪的数据经过云计算设施设备管理和控制平台分析后,当发现制冷机组运行中出现蒸发压力过低、油箱油压过、冷冻水出水温度过低、电压过低、冷却水缺水、冷冻水缺水、主电机温度过高、冷凝压力过高、排气温度过高等故障、云计算设施设备管理和控制平台都会通过网络做报警并发出命令给现场物联网控制仪实现自动停机。故障自动处理并消除后,才可以复位开机。
另外,发生故障时的此类数据同时进入历史数据库模型,作为下一次分析参考值。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由附加的权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (10)

1.一种基于云计算的冷水机管理控制***,其特征在于,包括:
物联网现场控制器,用于设定所述冷水机的正常运行参数以及根据所述冷水机的正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;
物联网现场数据采集器,用于采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;
云计算设备管理和控制平台,用于根据所述冷水机的实际运行参数和正常运行参数调整所述物联网现场控制器的管理和控制模式。
2.根据权利要求1所述的基于云计算的冷水机管理控制***,其特征在于,所述云计算设备管理和控制平台具体包括:
接收单元,用于接收所述物联网现场数据采集器采集到的所述冷水机的实际运行参数以及通过所述物联网现场控制器设定的所述冷水机的正常运行参数;
第一判断单元,用于判断所述冷水机的实际运行参数与正常运行参数是否匹配并生成判断结果;
运行模型生成单元,用于当所述第一判断单元的判断结果为匹配时根据所述冷水机的实际运行参数生成相应的运行模型;
运行模型数据库,用于存储所述冷水机的各种历史运行模型;
第二判断单元,用于判断所述生成的运行模型与所述运行模型数据库中对应的历史运行模型是否匹配并生成判断结果;
控制模式调整单元,用于当所述第一判断单元或所述第二判断单元的判断结果为不匹配时调整所述物联网现场控制器对所述冷水机的管理和控制模式。
3.根据权利要求1或2所述的基于云计算的冷水机管理控制***,其特征在于,所述冷水机的实际运行参数包括实时运行参数和安全参数;所述实时运行参数包括所述冷水机的冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量;所述安全参数包括所述冷水机的保护电流、保护电压、保护功率和电机安全转速。
4.根据权利要求2所述的基于云计算的冷水机管理控制***,其特征在于,所述运行模型数据库中对应的历史运行模型是指运行状况约束参数与所述生成的运行模型匹配的历史运行模型,所述运行状况约束参数包括所述冷水机的应用环境参数、设计参数、应用场所类型参数和实际运行类型参数中的一种或者其组合。
5.一种基于云计算的冷水机管理控制方法,其特征在于,包括:
S11:根据设定的所述冷水机的正常运行参数对所述冷水机的运行模式进行管理和控制,并将所述冷水机的正常运行参数传输至云计算设备管理和控制平台;
S12:采集所述冷水机的实际运行参数并传送给云计算设备管理和控制平台;
S13:在云计算设备管理和控制平台下根据所述冷水机的实际运行参数和正常运行参数调整对所述冷水机的管理和控制模式。
6.根据权利要求5所述的基于云计算的冷水机管理控制方法,其特征在于,所述S13步骤具体包括:
S131:判断所述冷水机的实际运行参数和正常运行参数是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S132步骤;
S132:根据所述冷水机的实际运行参数生成相应的运行模型;
S133:判断所述生成的运行模型与运行模型数据库中对应的历史运行模型是否匹配;如果不匹配,执行S135步骤,如果匹配,执行S134步骤;
S134:保持对所述冷水机的管理和控制模式;
S135:调整对所述冷水机的管理和控制模式。
7.根据权利要求6所述的基于云计算的冷水机管理控制方法,其特征在于,执行所述S134步骤后,还包括S136步骤,将所述生成的运行模型加入到所述运行模型数据库中。
8.根据权利要求6所述的基于云计算的冷水机管理控制方法,其特征在于,所述运行模型数据库中对应的历史运行模型是指运行状况约束参数与所述生成的运行模型匹配的历史运行模型,所述运行状况约束参数包括所述冷水机的应用环境参数、设计参数、应用场所类型参数和实际运行类型参数中的一种或者其组合。
9.根据权利要求5或6所述的基于云计算的冷水机管理控制方法,其特征在于,所述冷水机的实际运行参数包括实时运行参数和安全参数;所述实时运行参数包括所述冷水机的冷媒和介质流量、电机转速、冷媒和介质压力、液体泄漏率、振动加速度、电机扭矩和用电量;所述安全参数包括所述冷水机的保护电流、保护电压、保护功率和电机安全转速。
10.根据权利要求5或6所述的基于云计算的冷水机管理控制方法,其特征在于,所述冷水机的正常运行参数和实际运行参数均通过无线INTERNET网、有线INTERNET网、GPRS、北斗***、GPS、3G网、4G网中的任一种传送给云计算设备管理和控制平台。
CN201110280651.7A 2011-09-20 2011-09-20 基于云计算的冷水机管理控制***及方法 Expired - Fee Related CN103019160B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110280651.7A CN103019160B (zh) 2011-09-20 2011-09-20 基于云计算的冷水机管理控制***及方法
PCT/CN2012/001124 WO2013040854A1 (zh) 2011-09-20 2012-08-22 基于云计算的冷水机管理控制***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110280651.7A CN103019160B (zh) 2011-09-20 2011-09-20 基于云计算的冷水机管理控制***及方法

Publications (2)

Publication Number Publication Date
CN103019160A true CN103019160A (zh) 2013-04-03
CN103019160B CN103019160B (zh) 2016-03-02

Family

ID=47913810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110280651.7A Expired - Fee Related CN103019160B (zh) 2011-09-20 2011-09-20 基于云计算的冷水机管理控制***及方法

Country Status (2)

Country Link
CN (1) CN103019160B (zh)
WO (1) WO2013040854A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556190A (zh) * 2016-11-30 2017-04-05 深圳汇通智能化科技有限公司 基于云计算的冷水机管理控制***
CN109539457A (zh) * 2018-10-29 2019-03-29 花静霞 一种基于深度学习的冷水机房控制方法
CN111350945A (zh) * 2018-12-24 2020-06-30 无锡热能在线科技有限公司 一种***管道介质泄露的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11936489B2 (en) 2021-02-02 2024-03-19 True Manufacturing Co., Inc. Systems, methods, and appliances that enable regional control of refrigeration appliances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201765486U (zh) * 2010-03-05 2011-03-16 姜永东 基于云计算的设备监控***
CN201765488U (zh) * 2010-04-27 2011-03-16 姜永东 基于云计算的机动车监控***
CN201812187U (zh) * 2010-03-05 2011-04-27 姜永东 基于云计算的电子信息***机房能源管理控制***
CN202257235U (zh) * 2011-09-20 2012-05-30 朗德华信(北京)自控技术有限公司 基于云计算的冷水机管理控制***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2633001A (en) * 2000-01-07 2001-07-24 Invensys Controls Plc Building control
US8204717B2 (en) * 2009-04-01 2012-06-19 Honeywell International Inc. Cloud computing as a basis for equipment health monitoring service
CN201830289U (zh) * 2009-11-09 2011-05-11 深圳市同洲电子股份有限公司 基于机顶盒的家庭云计算***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201765486U (zh) * 2010-03-05 2011-03-16 姜永东 基于云计算的设备监控***
CN201812187U (zh) * 2010-03-05 2011-04-27 姜永东 基于云计算的电子信息***机房能源管理控制***
CN201765488U (zh) * 2010-04-27 2011-03-16 姜永东 基于云计算的机动车监控***
CN202257235U (zh) * 2011-09-20 2012-05-30 朗德华信(北京)自控技术有限公司 基于云计算的冷水机管理控制***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556190A (zh) * 2016-11-30 2017-04-05 深圳汇通智能化科技有限公司 基于云计算的冷水机管理控制***
CN109539457A (zh) * 2018-10-29 2019-03-29 花静霞 一种基于深度学习的冷水机房控制方法
CN111350945A (zh) * 2018-12-24 2020-06-30 无锡热能在线科技有限公司 一种***管道介质泄露的检测方法

Also Published As

Publication number Publication date
WO2013040854A1 (zh) 2013-03-28
CN103019160B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN103019158A (zh) 基于云计算的绿色建筑设施设备管理控制***及方法
CN103016321A (zh) 基于云计算的水泵管理控制***及方法
CN202257235U (zh) 基于云计算的冷水机管理控制***
CN105446328B (zh) 发电机组远程故障诊断和健康监测***及数据捕获方法
CN202267864U (zh) 基于云计算的发电机组管理控制***
CN103016171A (zh) 基于云计算的发电机组管理控制***及方法
US20120166115A1 (en) Platform, system and method for energy profiling
US11920811B2 (en) Performance parameterization of process equipment and systems
CN103019161A (zh) 基于云计算的空气处理设备管理控制***及方法
CN104122876A (zh) 空气压缩机物联网监控***
CN202267861U (zh) 基于云计算的电梯设备管理控制***
CN102549869A (zh) 响应负载监测***和方法
CN104246636A (zh) 用于离心式压缩机的实时性能降级报告的方法和***
WO2021082478A1 (zh) 空调***能耗预测方法及装置
CN202284531U (zh) 基于云计算的水泵管理控制***
CN103019159A (zh) 基于云计算的电梯设备管理控制***及方法
CN103019160B (zh) 基于云计算的冷水机管理控制***及方法
CN104179707B (zh) 空气压缩***的控制方法及***
CN106403188A (zh) 一种空调维护方法及其维护装置
CN102236344B (zh) 基于云计算的机动车能源管理***及方法
CN110320503B (zh) 一种x波段天气雷达标准输出控制器***
CN202267863U (zh) 基于云计算的绿色建筑设施设备管理控制***
CN202267862U (zh) 基于云计算的空气处理设备管理控制***
CN113847943A (zh) 一种智慧水务多功能集成测试环境
Ferreira et al. Predictive maintenance of home appliances: Focus on washing machines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160302

Termination date: 20180920

CF01 Termination of patent right due to non-payment of annual fee