CN102985357A - 用于处理含氚气体的膜反应器 - Google Patents

用于处理含氚气体的膜反应器 Download PDF

Info

Publication number
CN102985357A
CN102985357A CN2011800299893A CN201180029989A CN102985357A CN 102985357 A CN102985357 A CN 102985357A CN 2011800299893 A CN2011800299893 A CN 2011800299893A CN 201180029989 A CN201180029989 A CN 201180029989A CN 102985357 A CN102985357 A CN 102985357A
Authority
CN
China
Prior art keywords
infiltration
pipe
organ pipe
flange
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800299893A
Other languages
English (en)
Other versions
CN102985357B (zh
Inventor
西尔瓦诺·托斯蒂
尼古拉·吉雷利
法比奥·博尔戈尼奥尼
皮埃尔·特拉比克
阿莱西亚·圣图奇
卡琳·利热
法布里奇奥·马里尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA, Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of CN102985357A publication Critical patent/CN102985357A/zh
Application granted granted Critical
Publication of CN102985357B publication Critical patent/CN102985357B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/32Separation by chemical exchange by exchange between fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1893Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/13Use of sweep gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/34Energy carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0254Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种用于通过同位素-交换工艺从污染的气体混合物回收氚的设备,其特征在于其包含具有优选圆柱形状的由钢或其它适合的金属或玻璃制成的容器,称为“组件”(1),其含有至少一个由可选择性渗透氢及其同位素的金属或金属合金制成的渗透器管(T),其中所述管(T)以悬臂方式设置,其自由端是封闭的,进一步地提供用于在所述渗透器管(T)的自由端上施加轴向张力的装置和用于所述管(T)的自由端到相邻的组件(1)的端部法兰(FF)的电连接的装置。

Description

用于处理含氚气体的膜反应器
技术领域
本发明所述装置基本上由膜反应器构成,所述膜反应器使用了由钯银合金制成的管(渗透器管),其具有选择性地渗透氢及其同位素的性质。所述装置被设计用于实施从来自实验室和工厂的材料(所谓的“软性家务废物”,即,手套、纸张等)中回收氚的新工艺,其中,被氚污染的材料被处理。
在这里描述的膜反应器中,在来自“软性家务废物”除氚工艺的氚化气体流与冲洗氢气流之间以逆流进行同位素交换。本发明设想在基本构造中采用一端封闭的由钯合金制成的管(按照“指状”或“套管”设计)和由电流流通的焦耳效应而产生的热。特别地,提供了如下装置,其配备有能够同时在渗透器管上施加拉伸应力并且能够使电流流过以用于所述渗透器管本身的欧姆加热的装置。
从下面的详细说明并参考附图(其纯粹是对非限制性实施例和其优选的实施方案的图示)将会对本发明有更好的理解。
在所述附图中:
图1-4显示了根据现有技术的设备;
图5是根据本发明的一种膜反应器的纵向剖视图;
图6与前一幅相似,显示了一种变体,其在端部法兰上具有绝缘的电通路;
图7和8,其分别与前面的图5和6相似,是关于本发明的第二种实施方案,其设计了用于调节由弹簧施加到渗透器管上的张力的装置;并且
图9和10显示了本发明所述反应器的两个附图,分别用于端部法兰通过电绝缘衬垫连接的情况和使用绝缘电通路的情况。
1、所属领域状态
为了在核-热核反应堆的燃料循环研究应用[1,2]中从气体流中去除氚,已经提出了使用由钯银合金制成的渗透器管的膜反应器(PERMCAT)。在所述已知反应器的第一构造中,把氢气流送入可选择性渗透氢同位素的由钯银合金制成的管状膜,其中所述氢气流相对于含有氚和氚标记化合物(例如,氚化水和甲烷,此外还有CO、CO2以及惰性物质)的气体流是逆流的,其被送到位于反应器本身的壳体中的催化床层之上,如图1所示,其中氚由字母Q所指示。
所使用的Pd-Ag渗透器管具有0.100mm厚度的壁,其特征为高的长度-直径比(外径3.3mm和长度500mm)。通常,使用由钯合金制成的管的这种膜反应器存在与热循环和氢化/脱氢循环相关的缺点,其涉及到所述管本身的延长/收缩。如果所述变形被反应器组件阻止或妨碍,可以产生机械应力,包括环状的应力,会引起所述膜的迅速损坏,同时造成选择性的损失,并因此引起所述装置功能的损失。为了克服这些缺点,ENEA在过去研究了膜反应器的特别构造,在其中使用了薄壁的(0.050mm)渗透器管,其特征为更高的氢同位素渗透流量[3]。在该构造中,钯管通过两个金属伸缩软管以液密的方式被连接到反应器组件,所述金属伸缩软管能够补偿不同的变形并且此外,在安装步骤期间,通过拉伸所述金属伸缩软管焊接到反应器组件将钯管固定,并使用伸缩调整器将所述金属伸缩软管相对于其静止位置而方便地伸长(图2)。用这种方法,在操作条件下,所述管状膜受到与材料的构造和特征相适应的轴向拉伸应力。但是,由于与催化床层接触时的磨损或腐蚀,小的壁厚(0.050mm)可以导致缺损(小孔或裂纹)的形成。
在其它已知的应用中,例如同时用于除氚工艺和脱氢反应两者,已经研究了其中渗透器管仅仅在一端固定到反应器组件上的膜反应器;该构造被称为″指状″或″套管″构造。事实上,所述渗透器管在其一端是封闭的,同时一根较小的管***到其内腔中,作为供应或回收保留物的入口。例如,如图3所示的是膜组件的示意图,所述膜组件使用了指状构造的Pd-Ag渗透器管:透过所述膜的氢气由冲洗气体收集在反应器的壳中,同时通过***所述渗透器管内腔的小直径钢管而回收保留物(非透过气体)。
但是,这些已知的构造,特别是在渗透器管很长的情况中(即,其中要求高的除氚因子),存在渗透器管T与膜组件1的内壁接触和干扰的缺点,这是由于热循环和加氢循环所导致的管T本身所经历的变形而造成的。关于这一点,应参考图4,其中显示了在热循环和加氢循环的耐久试验前后由Pd-Ag合金制成的渗透器管。
最后,为了降低所需的电能并防止不必要的热工艺气体流,最近已经提出了由钯合金制成的欧姆加热渗透器管[4]。但是,这些装置要求通过所述反应器组件壁的特别的电通道,以及足够的用于渗透器管至电通道本身的柔性连接的***。
本发明的主要目的是通过提供如所附权利要求1所描述的膜反应器来克服上述的问题,其中设计了基本上圆柱形的容器,其被称为“组件”1,其优选由钢制成,但还可以由其它金属和其它材料制成:例如,对于实验室应用,玻璃(例如,硼硅酸耐热玻璃Pyrex)经常是优选的。
2、本发明概述
构成本发明主题的膜反应器包含至少一个由钯银合金制成渗透器管T(优选地具有23-25wt%的Ag),其壁厚为大约0.050mm-0.200mm。在管壁厚为大约0.050mm情况下,这些是由轧制和随后扩散焊接生产的薄壁管[5];在管壁厚为大约0.200mm情况下,这些是市售可得的管,其从大约100μm的厚度开始。
应当注意通常被用作渗透器管的合金是钯基合金,例如PdCu,但基于Ni、Nb、V、Ta、Ti也在研究之中。如前面所提到的,用于所述致密金属管状膜的实际厚度基本上包含在50-200μm的范围内。
所述渗透器管T被容纳在指状构造的组件1中,其中被送入内腔以及被送入外壳的两气体流以逆流运行。通过电流通路来实现直接欧姆加热,而将管T加热到大约等于300-400℃的工艺温度。
根据本发明的特别的特征,提供了一种应用于渗透器管T封闭端的特别装置,其基本上由优选的双金属弹簧M组成,所述双金属弹簧M具有两个非常不同的功能:
-向所述渗透器管T施加能够防止与所述膜组件1内壁接触和干扰的拉伸负荷,所述接触和干扰是因为渗透器管T经受由热循环和脱氢循环而导致的变形;和
-保证在渗透器管T的封闭自由端与膜组件1的外部之间的电连接,从而能够通过所述管本身的焦耳效应来加热。
在这里描述的示例性实施方式中,为了提供机械张力和电连接装置,已经研究了弹簧M的构造:
-由Inconel
Figure BPA00001656704700031
(一种主要基于48%-72%的镍和14%-29%铬的合金)制成的线,其能够在工作温度保证所要求的机械性能,也就是说,在其伸展时其拉伸负荷足够沿其纵轴呈直线引导所述渗透器管T;和
能够保证电流通路的银线,其具有低电阻从而防止弹簧M本身的加热并且限制由于渗透器管T上的欧姆效应而导致的加热。
特别地,银的机械刚度可以被认为是微不足道的。同样地,由于银线具有大得多的电导率,其特征为更低的电阻率和适当地大于Inconel线的横截面,通过所述Inconel的电流通路(以及相应的由焦耳效应而发生的加热)是无关紧要的。
图5和6是本发明的示意图,其中突出显示了两个变体的双金属弹簧M的细节:
a)通过使用法兰本身的密封垫圈(其由绝缘有机材料(硅氧烷、Viton、Vespel等)制成)和也是由绝缘材料制成的特别的衬套(其用于紧固所述法兰的螺栓),实现对膜组件1的端部法兰FF的电绝缘(图5);和
b)使用穿过膜组件1的端部法兰FF的绝缘电通路(图6)。
本发明的第二种实施方案,如图7和8所示,设计了用于调节由弹簧M施加到渗透器管T上的张力的装置。
在这里还图示了端部法兰的电绝缘(图7)和绝缘电通路的使用(图8)的两个案例。更具体地说,通过特意提供的调节杆的动作来调节由弹簧M施加的张力,所述调节杆最后以通过直接焊接-钎焊到端部法兰(图7)或者绝缘电通路(图8)的密封方式而被阻挡。
2.1双金属的弹簧的尺寸
对于所述试验,双金属的弹簧M的尺寸是基于渗透器管T在操作条件下在大约300-400℃的温度范围内的机械特性(屈服点)和电特性(电阻率)而制定的。特别地,例如,对于10mm直径的所述Pd-Ag管,要考虑不同的壁厚(0.050和0.200mm)和长度(250和500mm)值。
为了防止所述渗透器管在300-400℃的工作温度的任何过度变形(也被称为“蠕变”现象),要施加的拉伸负荷被固定为400℃温度下极限抗拉强度(UTS)的大约5%。由文献[6、7]所提供的数据,Pd-Ag合金(23-25wt%Ag)的计算UTS值是280MPa。因此,对于具有0.050和0.200mm壁厚的渗透器管,弹簧M施加到管T的拉伸负荷值(其被计算为所述UTS的大约5%)分别为20和80N。
在现有工作[8]已考虑的温度范围内和加氢条件下,Pd-Ag管长度变化百分比估计为大约1.5%,因此对于总长250mm的渗透器管来说,相应的长度绝对变化为大约4mm,而对于长度为500mm的管T来说,相应的长度绝对变化为大约8mm。
表I中是所述双金属弹簧M的Inconel部分的尺寸。匝数以如下的方式来计算:在工作条件下弹簧M长度的变化(“匝数”ד偏移”)比所述渗透器管T长度的绝对变化(作为热循环和加氢循环的结果)大10倍。用这种方法,可以合理地发现随渗透器管T的伸长/收缩而由弹簧M施加的张力负荷的变化基本上是微不足道的(即,是最初施加负荷的大约10%)。
表I
Figure BPA00001656704700051
考虑到所述银线具有与所述Inconel线相同的长度(即,所述银线和Inconel线被收卷在单个的线圈内以形成双金属弹簧),确定了所述双金属的弹簧M中银部分(其用于实现具有尽可能低的电阻的导电)的尺寸。此外应当考虑所述银部分的电阻要比所述渗透器管T的电阻足够地低:特别地,银线的电阻被固定为Pd-Ag管T电阻的10%,其是假设所述合金的电阻值为4x10-7Ωm来计算的。计算的Ag线的直径值当渗透器管T壁厚为0.050时大约为Ψ=1.5mm,且当渗透器管T壁厚为0.200mm时Ψ=3mm(见表II)。
表II
Figure BPA00001656704700052
反应器的实例
对于有关JET(欧洲联合环形加速器)的除氚***应用,反应器组件1被设计包含长度250mm,直径10mm,且壁厚0.050mm的Pd-Ag渗透器管T。在这种情况下,所述双金属弹簧M被构造为20匝直径1mm的Inconel线和厚度1.5mm的银线。图9和10代表了所述组件1的两个附图,分别对应于端部法兰通过电绝缘衬垫连接的情况(图9)和使用绝缘的电通路的情况(图10)。在两种情况下都设计使用用于调节张力的***,其通过特意提供的杆构成,根据情况,所述杆在安装操作结束时以密封方式(焊接-钎焊、惰性气体保护钨极焊等)而被直接固定到法兰FF末端,或者借助于绝缘的电通路而固定。
所述组件1还被设计使用热电偶用于探测在所述渗透器管中心部分附近的温度。
应当注意在这里描述的双金属弹簧M是一种可以以不同的方法实施的对象,条件是保证其双重功能,即,张力的施加和电的传导。
例如,除可能由收卷在同一个线圈中的两个单独的金属线(Inconel线和银线)制成之外,还可以通过提供两个不同的共轴弹簧,它们具有不同的直径不同的螺距等,且一个在另一个内部来加以实施,或者它可以构造为由特殊材料所制成的单个弹簧M,所述特殊材料在所指出的工作温度下兼具所要求的机械抗力和高的电导率特征。
应当注意上面描述的优选双金属的弹簧M是很重要的,其是为了保证所述渗透器管T的变形(随热循环和加氢循环的伸长和收缩)通过施加适当的张力而在轴向被引导。
应当注意这些装置(即,使用了由Pd-Ag合金制成的渗透器管T的膜反应器)的特别应用要求在所述Pd-Ag管T外部与所述膜组件1壳的内部之间具有很小的环隙,其中所述渗透器管是指状构造的,即,设置为悬臂的方式且其自由端封闭。事实上,这些装置运行效能的高水平用术语除氚因子来表示,即,输入和输出气体中氚浓度的比率,所述运行效能的高水平不仅显著地依赖于在催化床上发生的同位素交换反应的动力学,还依赖于主要通过所述管状膜壁和通过不同的气体薄膜的氢同位素渗透的动力学。
渗透的动力学反过来由对氢同位素材料传输的阻力来决定:在这种意义上讲,在所述渗透器管和组件壳之间的环隙的大厚度气体层的存在导致氢同位素的浓度梯度,其引起了对传输的阻力。
因此,为了得到高的除杂因子,恰恰需要尽可能地降低所述渗透器管T和组件1的壳之间的环隙。但是,在指状构造的情况下,并且由于热和脱氢循环,小尺寸的环隙可以引起渗透器管与膜组件1的内壁的接触和干扰。为此,对于根据本发明除氚工艺的专门应用并且更一般而言对于所有那些其中要求高动力学渗透的情况,一种能够以轴向方式引导所述渗透器管T的变形的***提供了特别的优越性,这是通过在所述渗透器管上施加足够的张力而得到的。
3、应用
形成本发明所述主题的装置已经被特别地设计用于来自加热室的气体流的除氚,所述加热室用于处理所谓的实验室“软性家务废物”即,手套、纸张等)。
更一般而言,本发明可被用于磁约束试验机(例如JET和ITER-国际热核实验性反应堆)的等离子体排放物的处理,或者用于所有使用由Pd-Ag合金制成的管状膜来分离气相氢同位素(H、D、T)的工艺,例如,气体流的净化(除氚)、同位素分离或富集工艺等。
但是,考虑到潜在的市场,最重要的应用是关于生产用于氢气净化的膜组件和用于通过脱氢反应生产超高纯度氢气的膜反应器。除了那些生产用于实验室使用的超高纯氢气的装置之外,这些应用可以针对那些在化学工业的特别领域(精细化学、药物领域)使用聚合类型燃料电池(PEM燃料电池)的***。
在所述不同的应用中,可以证明改变目前所描述对象的尺度(长度、直径、催化剂的类型和容量等)是必需的,同时也要提供含有许多渗透器管T的装置或提供许多串联或并行的膜组件1的组合。
最后,可以设想冲洗所述气体流的不同方式。
总之,用于供给所述膜的流(H2)可以通过小直径的钢管输送,并且保留物(富Q2流)的回收可以通过所述渗透器管来实施。同样送入内腔的流可以与送入所述组件壳的流相交换(即,H2/Q2流被送入反应器壳并且流CH4+CO+CO2+H2+H2O/CQ+CO+CO2+Q2+Q2O被送入渗透器管的内腔)。
此外,所述送入内腔并送入壳之中的气体流可以以逆流方式运行,或者以等同流(equicurrent)方式运行(即,以相同的方向横穿所述反应器)。
最后,可以设想所述渗透器管T内部或外部的催化剂的使用和位置。
4、参考文献
[1]M.Glugla,A.Perevezentsev,D.Niyongabo,R.D.Penzhorn,A.Bell,P.Hermann,APERMCAT Reactor for Impurity Processing in the JET Active Gas Handling System,Fusion Engineering and Design 49-50(2000)817-823
[2]B.Bornschein,M.Glugla,K.Gunther,R.Lasser,T.L.Le,K.H.Simon,S.elte,Tritiumtests with a technical Permcat for final clean-up of ITER exhaust gases.FusionEngineering and Design 69(2003)51-56
[3]S.Tosti,L.Bettinali,F.Marini,Dispositivo per la rimozione di trizio da correnti gassose,Italian Patent n.RM2005U000165(14.12.2005)
[4]S.Tosti,L.Bettinali,R.Borelli,D.Lecci,F.Marini,Dispositivo a membrana dipermeazione per la purificazione di idrogeno,Italian Patent n.RM2009U000143(15.09.2009)
[5]S.Tosti,L.Bettinali,D.Lecci,F.Marini,V.Violante,Method of bonding thin foils madeof metal alloys selectively permeable to hydrogen,particularly providing membranedevices,and apparatus for carrying out the same,European Patent EP 1184125 A1
[6]ASM Handbook,vol.2,Properties and Selection:Nonferrous Alloys andSpecial-Purpose Materials,ASM International 1990,ISBN 0-87170-378-5(v.2)
[7]http://www.platinummetalsreview.com
[8]S.Tosti,L.Bettinali,F.Borgognoni,D.K.Murdoch,Mechanical design of a PERMCATreactor module,Fusion Engineering and Design 82(2007)

Claims (7)

1.一种用于通过同位素交换工艺从污染的气体混合物回收氚的设备,其特征为所述设备包含优选圆柱形的由钢或其它适合的金属或玻璃制成的容器,称为“组件”(1),其含有至少一个由可选择性渗透氢及其同位素的金属或金属合金制成的渗透器管(T),其中所述管(T)以悬臂方式设置,其自由端是封闭的;进一步地提供用于在所述渗透器管(T)的自由端上施加轴向张力的装置和用于所述管(T)本身的自由端到相邻组件(1)的端部法兰(FF)的电连接的装置。
2.根据权利要求1所述的设备,其特征为:
-所述组件(1)在其两端通过密封法兰而封闭;
-所述管(T)由Pd-Ag合金制成并且通过钎焊或焊接到所述组件的第一法兰而被固定;
-所述渗透器管(T)在一端封闭,并且通过设置在所述渗透器本身内腔的,由钢或其它适合材料制成的指状构造的另外的小直径管而进行保留物的回收;
-所述由Pd-Ag制成的渗透器管(T)的封闭端通过弹簧(M)连接到组件(1)的第二法兰(FF),所述弹簧(M)被设计成能施加轴向张力并提供电流通路;和
-通过由电绝缘材料制成的衬垫以及由电绝缘材料制成用于螺栓的衬套而将所述第二法兰(FF)固定到组件上,所述螺栓用于紧固所述法兰。
3.根据权利要求1所述的设备,其特征为所述用于施加轴向张力并提供电流通路的装置是由通过绝缘的电通路连接到第二端部法兰(FF)的弹簧(M)而构成,所述法兰具有金属衬垫并且不要求具有由电绝缘材料制成的衬套。
4.根据权利要求2或权利要求3所述的设备,其特征为它还包括用于调节由弹簧(M)所施加张力的装置,该装置具有调节杆,其设计成能通过钎焊焊接以密封方式来被阻挡。
5.根据权利要求1所述的设备,其特征为所述渗透器管(T)由Pd-Ag金属合金制成的管组成。
6.根据权利要求1所述的设备,其特征为所述用于施加轴向张力并提供电流通路的装置通过Inconel
Figure FPA00001656704600011
/银制成的双金属弹簧(M)构成。
7.根据权利要求1所述的设备,其特征为所述用于施加轴向张力并提供电流通路的装置是这样构造的:
通过卷绕在同一螺旋上的两条不同材料的线而得到的弹簧(M);或者是
两个共轴的不同的弹簧:一个用于施加张力,并且另一个用于建立低电阻的电连接。
CN201180029989.3A 2010-06-16 2011-06-16 用于处理含氚气体的膜反应器 Expired - Fee Related CN102985357B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITRM2010A000330A IT1401192B1 (it) 2010-06-16 2010-06-16 Reattore a membrana per il trattamento di gas contenenti trizio
ITRM2010A000330 2010-06-16
PCT/IT2011/000205 WO2011158275A1 (en) 2010-06-16 2011-06-16 Membrane reactor for treating gases containing tritium

Publications (2)

Publication Number Publication Date
CN102985357A true CN102985357A (zh) 2013-03-20
CN102985357B CN102985357B (zh) 2015-06-10

Family

ID=43498621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180029989.3A Expired - Fee Related CN102985357B (zh) 2010-06-16 2011-06-16 用于处理含氚气体的膜反应器

Country Status (10)

Country Link
US (1) US8979984B2 (zh)
EP (1) EP2582618B1 (zh)
JP (1) JP5798187B2 (zh)
KR (1) KR101736530B1 (zh)
CN (1) CN102985357B (zh)
CA (1) CA2802208C (zh)
ES (1) ES2494265T3 (zh)
IT (1) IT1401192B1 (zh)
RU (1) RU2558888C2 (zh)
WO (1) WO2011158275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879312A (zh) * 2017-12-07 2018-04-06 中国工程物理研究院核物理与化学研究所 一种用于氢同位素交换的波纹状膜反应器装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580478B (zh) * 2012-03-20 2014-02-26 南京工业大学 一体式管式陶瓷透氧膜分离反应器
DE202012013304U1 (de) * 2012-09-27 2016-02-15 Mahnken & Partner GmbH Vorrichtung zur Gewinnung von Wasserstoff
WO2015072981A1 (en) 2013-11-13 2015-05-21 Savannah River Nuclear Solutions, Llc Decontamination of tritiated water
AU2016236944A1 (en) * 2015-03-24 2017-09-21 Arstroma Co., Ltd. Fluid separation apparatus comprising fluid separation membrane, and fluid separation membrane module
CA2941293A1 (en) * 2015-10-09 2017-04-09 Kurion, Inc. Advanced tritium system and advanced permeation system for separation of tritium from radioactive wastes
EP4141215A1 (en) * 2016-02-08 2023-03-01 Proton Technologies Inc. In-situ process to produce hydrogen from underground hydrocarbon reservoirs
CN105903349B (zh) * 2016-06-07 2017-06-27 中国工程物理研究院核物理与化学研究所 一种用于氢同位素分离的大面积钯膜装置
CN107469628B (zh) * 2017-09-21 2019-10-01 中国科学院上海应用物理研究所 一种去除熔盐中气态氚及其同位素的装置及方法
RU186241U1 (ru) * 2018-06-01 2019-01-14 Федеральное государственное бюджетное образовательное учреждение высшего образования - Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Контактное устройство для изотопного обмена газа с водой
US11058994B2 (en) 2019-01-18 2021-07-13 Savannah River National Solutions, LLC Tritium cleanup system and method
CN113578222A (zh) * 2021-07-12 2021-11-02 浙江大学 基于瞬时高温焦耳热法的纳米复合材料合成装置及制备方法和应用
US11697099B2 (en) * 2021-11-22 2023-07-11 Schneider Electric Systems Usa, Inc. Direct electrical heating of catalytic reactive system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1050890A (zh) * 1966-12-02
GB822694A (en) * 1957-07-30 1959-10-28 Engelhard Ind Inc Improvements in or relating to a hydrogen purifier
GB966122A (en) * 1962-04-17 1964-08-06 Johnson Matthey Co Ltd Improvements in and relating to the separation of hydrogen from gaseous mixtures containing hydrogen
GB1477131A (en) * 1971-02-22 1977-06-22 Commissariat Energie Atomique Method for fixing a tubular microporous barrier of cermic material to a metal end piece
US4315819A (en) * 1978-06-12 1982-02-16 Monsanto Company Hollow fiber permeator apparatus
CN1416946A (zh) * 2001-11-02 2003-05-14 中国科学院大连化学物理研究所 一种混合导体透氧膜反应器及其应用
WO2004041714A2 (en) * 2002-11-05 2004-05-21 Millennium Cell, Inc. Hydrogen generator
CN1906121A (zh) * 2003-11-14 2007-01-31 集成燃料电池技术公司 自控式气体发生器及其方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217332A (en) * 1976-06-17 1980-08-12 Engelhard Minerals & Chemicals Corporation Process for exchanging hydrogen isotopes between gaseous hydrogen and water
DE3121125C2 (de) * 1981-05-27 1986-04-10 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zum Abtrennen von Wasserstoff und/oder Deuterium und Tritium aus einem Inertgasstrom sowie Vorrichtung zur Durchführung des Verfahrens im Kühlgaskreislauf eines gasgekühlten Kernreaktors
DE3606317A1 (de) * 1986-02-27 1987-09-03 Kernforschungsz Karlsruhe Verfahren und vorrichtung zur dekontamination des abgases des brennstoffkreislaufs eines fusionsreaktors von tritium und/oder deuterium in chemisch gebundener form enthaltenden abgas-bestandteilen
JPS63175627A (ja) * 1987-01-14 1988-07-20 Toshiba Corp トリチウム回収装置
JPH07112923B2 (ja) * 1987-04-10 1995-12-06 日本原子力研究所 内管加圧型水素精製装置
FR2620262B1 (fr) * 1987-09-09 1989-11-17 Commissariat Energie Atomique Procede et installation de traitement de dechets organiques solides contamines par du tritium
JPH01189598A (ja) * 1988-01-25 1989-07-28 Toshiba Corp トリチウム回収装置
FR2685218B1 (fr) * 1991-12-19 1994-02-11 Institut Francais Petrole Epurateur d'hydrogene comprenant une embase en alliage de meme composition que celui des tubes.
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US6200541B1 (en) * 1997-10-28 2001-03-13 Bp Amoco Corporation Composite materials for membrane reactors
BR9914560A (pt) * 1998-10-14 2001-06-26 Ida Tech Llc Reformador de vapor, e, processo para produzir hidrogênio que contenha concentrações de monóxido de carbono e de dióxido de carbono abaixo de um nìvel mìnimo definido
IT1317878B1 (it) 2000-07-25 2003-07-15 Enea Ente Nuove Tec Procedimento di saldatura di lamine sottili di leghe metallicheselettivamente permeabili all'idrogeno, in particolare per la
US6558544B1 (en) * 2000-12-04 2003-05-06 Progressive Composite Technologies, Inc. Pressure vessels for holding cylindrical semipermeable membrane cartridges
JP3933907B2 (ja) * 2001-10-23 2007-06-20 日本碍子株式会社 ガス分離体固定構造体及びそれを用いたガス分離装置
AU2003224931A1 (en) * 2002-04-18 2003-11-03 Trustees Of Boston University Hydrogen separation using oxygen ion-electron mixed conducting membranes
RU2323157C2 (ru) * 2005-11-07 2008-04-27 Российская Федерация в лице Федерального агентства по атомной энергии Способ очистки гелия от примеси изотопов водорода
ITRM20050165U1 (it) 2005-12-14 2007-06-15 Enea Ente Nuove Tec Dispositivo per la rimozione di trizio da correnti gassose.
CN101522291B (zh) * 2006-09-29 2012-02-15 辛维特有限公司 用于提供防漏膜元件的方法以及防漏膜元件
ITRM20090143U1 (it) 2009-09-15 2011-03-16 Livio Bettinali Dispositivo a membrana di permeazione per la purificazione di idrogeno

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822694A (en) * 1957-07-30 1959-10-28 Engelhard Ind Inc Improvements in or relating to a hydrogen purifier
GB966122A (en) * 1962-04-17 1964-08-06 Johnson Matthey Co Ltd Improvements in and relating to the separation of hydrogen from gaseous mixtures containing hydrogen
GB1050890A (zh) * 1966-12-02
GB1477131A (en) * 1971-02-22 1977-06-22 Commissariat Energie Atomique Method for fixing a tubular microporous barrier of cermic material to a metal end piece
US4315819A (en) * 1978-06-12 1982-02-16 Monsanto Company Hollow fiber permeator apparatus
CN1416946A (zh) * 2001-11-02 2003-05-14 中国科学院大连化学物理研究所 一种混合导体透氧膜反应器及其应用
WO2004041714A2 (en) * 2002-11-05 2004-05-21 Millennium Cell, Inc. Hydrogen generator
CN1906121A (zh) * 2003-11-14 2007-01-31 集成燃料电池技术公司 自控式气体发生器及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSTI ETAL.: ""Mechanical design of a PERMCAT reactor module"", 《FUSION ENGINEERING AND DESIGH》, vol. 82, no. 2, 10 January 2007 (2007-01-10), pages 153 - 161, XP005826357, DOI: doi:10.1016/j.fusengdes.2006.08.003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879312A (zh) * 2017-12-07 2018-04-06 中国工程物理研究院核物理与化学研究所 一种用于氢同位素交换的波纹状膜反应器装置
CN107879312B (zh) * 2017-12-07 2021-04-06 中国工程物理研究院核物理与化学研究所 一种用于氢同位素交换的波纹状膜反应器装置

Also Published As

Publication number Publication date
RU2558888C2 (ru) 2015-08-10
CN102985357B (zh) 2015-06-10
EP2582618B1 (en) 2014-05-14
ES2494265T3 (es) 2014-09-15
ITRM20100330A1 (it) 2011-12-17
JP5798187B2 (ja) 2015-10-21
CA2802208A1 (en) 2011-12-22
CA2802208C (en) 2017-10-31
WO2011158275A8 (en) 2013-01-10
KR20130129823A (ko) 2013-11-29
IT1401192B1 (it) 2013-07-12
US20130108517A1 (en) 2013-05-02
KR101736530B1 (ko) 2017-05-16
RU2013100180A (ru) 2014-07-27
EP2582618A1 (en) 2013-04-24
JP2013536404A (ja) 2013-09-19
US8979984B2 (en) 2015-03-17
WO2011158275A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
CN102985357B (zh) 用于处理含氚气体的膜反应器
US9284651B2 (en) Apparatus for production of high purity carbon monoxide
US5366712A (en) Ceramic catalytic membrane reactor for the separation of hydrogen and/or isotopes thereof from fluid feeds
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
US6726893B2 (en) Hydrogen production by high-temperature water splitting using electron-conducting membranes
US3835019A (en) Combined electrolytic hydrogen gas separator and generator for gas chromatographic systems
US9169118B1 (en) Hydrogen gas separator system having a micro-channel construction with a tubular wire insert for retaining catalyst material
JP5921432B2 (ja) 水素分離膜モジュール及びこれを用いた水素分離方法
CN102947892B (zh) 用于软性场地废物除氚的方法及其设备
US20040098914A1 (en) Hydrogen production by high temperature water splitting using electron conducting membranes
US7972417B2 (en) Hydrogen gas separator system having a micro-channel construction for efficiently separating hydrogen gas from a mixed gas source
EP1871510B1 (en) System and method for efficiently separating hydrogen gas from a mixed gas source
Pozio et al. Pd–Ag hydrogen diffusion cathode for alkaline water electrolysers
Tosti 13 Pd-Based Membranes and Membrane Reactors for Hydrogen Production
JP2008273764A (ja) 選択透過膜型反応器を用いた水素の製造方法
Tosti et al. Design, manufacturing and testing of Pd-membranes and membrane reactors for detritiation processes
JP6619289B2 (ja) 水素分離モジュールとこれを用いた水素分離装置
Tosti Development and application of self-supported palladium membranes
Buckley et al. Hydrogen purifier.[palladium-silver tube purifier]
Rei A decade's study and developments of palladium membrane in Taiwan
CN105540541A (zh) 氢精制方法
ITRM20100066U1 (it) "dispositivo compatto a membrana metallica per la produzione di fluidi gassosi".

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150610

Termination date: 20200616

CF01 Termination of patent right due to non-payment of annual fee