CN102965105B - A kind of graphene-CuInS2 quantum dot composite and preparation method thereof - Google Patents

A kind of graphene-CuInS2 quantum dot composite and preparation method thereof Download PDF

Info

Publication number
CN102965105B
CN102965105B CN201210472353.2A CN201210472353A CN102965105B CN 102965105 B CN102965105 B CN 102965105B CN 201210472353 A CN201210472353 A CN 201210472353A CN 102965105 B CN102965105 B CN 102965105B
Authority
CN
China
Prior art keywords
graphene
cuins
quantum dot
quantum dots
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210472353.2A
Other languages
Chinese (zh)
Other versions
CN102965105A (en
Inventor
高锋
王命泰
岳文瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plasma Physics of CAS
Original Assignee
Institute of Plasma Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plasma Physics of CAS filed Critical Institute of Plasma Physics of CAS
Priority to CN201210472353.2A priority Critical patent/CN102965105B/en
Publication of CN102965105A publication Critical patent/CN102965105A/en
Application granted granted Critical
Publication of CN102965105B publication Critical patent/CN102965105B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯-CuInS2量子点复合物及其制备方法,利用环境友好的乙醇作为溶剂,通过溶剂热反应合成了由还原态氧化石墨烯和黄铜矿CuInS2量子点组成的复合物,CuInS2量子点尺寸为2-5nm,CuInS2量子点以单层分散于石墨烯片层上和在石墨烯片层表面聚集形成三维聚集体两种形式存在。所得复合物在有机溶剂中有很好的分散性能,且制备方法简单、环保、易宏量制备,将在光电材料、光伏材料、有机-无机复合材料等领域具有重要的应用价值。

The invention discloses a graphene-CuInS 2 quantum dot composite and a preparation method thereof, which is composed of reduced graphene oxide and chalcopyrite CuInS 2 quantum dots through solvothermal reaction by using environmentally friendly ethanol as a solvent The size of the composite, CuInS 2 quantum dots is 2-5nm, and the CuInS 2 quantum dots exist in two forms: single-layer dispersion on the graphene sheet and aggregation on the surface of the graphene sheet to form three-dimensional aggregates. The obtained composite has good dispersion performance in organic solvents, and the preparation method is simple, environmentally friendly, and easy to be prepared in large quantities, and will have important application value in the fields of optoelectronic materials, photovoltaic materials, organic-inorganic composite materials, and the like.

Description

一种石墨烯-CuInS2量子点复合物及其制备方法A kind of graphene-CuInS2 quantum dot composite and preparation method thereof

技术领域 technical field

本发明涉及纳米材料领域,确切地说是一种石墨烯-CuInS2量子点复合物及其制备方法。 The invention relates to the field of nanomaterials, in particular to a graphene- CuInS2 quantum dot composite and a preparation method thereof.

背景技术 Background technique

石墨烯是一种二维碳材料,其具有独特的性质,例如高热导率(~5000 Wm-1K-1)、高载流子迁移率(~200000 cm2V-1S-1)、高比表面积(~2630 m2g-1)、高稳定性以及良好的光学透射率等,在催化、传感、存储、生物医药和光伏等领域有重要的应用前景(Prog. Mater. Sci. 2011,56,1178-1271)。近年来,由石墨烯与无机纳米结构形成的复合物已引起人们的关注,在能量转换、储能及催化等领域表现出潜在的应用前景。例如,Guo等(Angew. Chem. Int. Ed. 2010, 49, 3014-3017)在导电玻璃上通过交替沉积氧化石墨烯和CdSe量子点纳米膜形成超晶格薄膜,作为量子点敏化太阳电池(QDSSC)的复合光电极;Wang等(Nanotechnology 2011, 22, 405401)以还原态氧化石墨烯片为衬基用水热方法生长ZnO纳米棒并对纳米棒进行刻蚀,合成了石墨烯-ZnO纳米管阵列复合物,将其作为聚合物基太阳电池的光电极;Chen等(Nanoscale 2012, 4, 441-443)通过在功能化氧化石墨烯片层上吸附量子点的方法,合成了氧化石墨烯-CdSe量子点复合物,用作QDSSC电池的宽谱响应光电极;Sathish 等(J. Power Sources 2012,217,85-91)用水热法合成了氧化石墨烯- Fe3O4纳米颗粒磁性复合物,其可用作高性能的锂离子电池阳极材料;Liu 等(J. Power Sources 2012, 217, 184-192)用微波辅助水热合成方法合成了还原态氧化石墨烯-Mn3O4纳米复合物,得到一种良好的超级电容器材料;Chen等(ACS Nano, 2010,4, 6425-6432)用原位水解TiCl4的方法制备了具有可见光催化性能的氧化石墨烯-TiO2纳米复合物。 Graphene is a two-dimensional carbon material with unique properties such as high thermal conductivity (~5000 Wm -1 K -1 ), high carrier mobility (~200000 cm 2 V -1 S -1 ), High specific surface area (~2630 m 2 g -1 ), high stability and good optical transmittance, etc., have important application prospects in the fields of catalysis, sensing, storage, biomedicine and photovoltaics (Prog. Mater. Sci. 2011, 56, 1178-1271). In recent years, the composites formed by graphene and inorganic nanostructures have attracted people's attention, showing potential application prospects in the fields of energy conversion, energy storage, and catalysis. For example, Guo et al. (Angew. Chem. Int. Ed. 2010, 49, 3014-3017) formed superlattice films by alternately depositing graphene oxide and CdSe quantum dot nanofilms on conductive glass as quantum dot sensitized solar cells (QDSSC) composite photoelectrode; Wang et al. (Nanotechnology 2011, 22, 405401) used reduced graphene oxide sheets as substrates to grow ZnO nanorods by hydrothermal method and etched the nanorods, and synthesized graphene-ZnO nanorods Tube array composites as photoelectrodes for polymer-based solar cells; Chen et al. (Nanoscale 2012, 4, 441-443) synthesized graphene oxide by adsorbing quantum dots on functionalized graphene oxide sheets -CdSe quantum dot composite, used as a broad-spectrum responsive photoelectrode for QDSSC cells; Sathish et al. (J. Power Sources 2012, 217, 85-91) synthesized graphene oxide-Fe 3 O 4 nanoparticle magnetic composite by hydrothermal method It can be used as a high-performance lithium-ion battery anode material; Liu et al. (J. Power Sources 2012, 217, 184-192) synthesized reduced graphene oxide-Mn 3 O 4 nanometers by microwave-assisted hydrothermal synthesis Graphene oxide-TiO 2 nanocomposites with visible photocatalytic performance were prepared by in situ hydrolysis of TiCl 4 by Chen et al. (ACS Nano, 2010, 4, 6425-6432) .

CuInS2的具有较窄的带隙(1.5 eV)(Chem. Mater. 2003, 15, 3142-3147)和较大的吸收系数较大(α? 105 cm-1) (Cryst. Growth Des. 2007, 7, 1547-1552),是一种理想的太阳电池材料(J. Mater. Chem. 2006, 16, 1597-1602, Nano Lett. 2006, 6, 1218-1223)。本发明中,我们用氧化石墨烯片层原位生长量子点并结合后续还原过程,得到一种石墨烯和CuInS2量子点组成的复合物。 CuInS 2 has a narrow band gap (1.5 eV) (Chem. Mater. 2003, 15, 3142-3147) and a large absorption coefficient (α? 10 5 cm -1 ) (Cryst. Growth Des. 2007 , 7, 1547-1552), is an ideal solar cell material (J. Mater. Chem. 2006, 16, 1597-1602, Nano Lett. 2006, 6, 1218-1223). In the present invention, we use graphene oxide sheets to grow quantum dots in situ and combine the subsequent reduction process to obtain a composite composed of graphene and CuInS2 quantum dots.

发明内容 Contents of the invention

本发明的目的是提供一种石墨烯-CuInS2量子点复合物及其制备方法。 The object of the present invention is to provide a kind of graphene-CuInS 2 quantum dot compound and preparation method thereof.

本发明是通过以下技术方案实现的: The present invention is achieved through the following technical solutions:

一种石墨烯-CuInS2量子点复合物:所述的石墨烯-CuInS2量子点复合物通过溶剂热法在高压釜中合成,由还原态氧化石墨烯和黄铜矿型CuInS2量子点组成,CuInS2量子点粒径为2-5 nm, CuInS2量子点以单层分散于石墨烯片层上和在石墨烯片层表面聚集形成三维聚集体两种形式存在,CuInS2量子点中Cu:In:S 的原子比为1:1.3:1.8。  A graphene- CuInS2 quantum dot composite : The graphene- CuInS2 quantum dot composite is synthesized in an autoclave by a solvothermal method, and consists of reduced graphene oxide and chalcopyrite-type CuInS2 quantum dots , the particle size of CuInS 2 quantum dots is 2-5 nm, CuInS 2 quantum dots exist in two forms: single-layer dispersion on graphene sheets and aggregation on the surface of graphene sheets to form three-dimensional aggregates, CuInS 2 quantum dots exist in two forms: The atomic ratio of :In:S is 1:1.3:1.8.

一种石墨烯-CuInS2量子点复合物的制备方法,:先将氧化石墨烯分散于乙醇中,然后将Cu(Ac)2·H2O、In(Ac)3、十八烷基胺和硫脲依次加入到氧化石墨烯的乙醇分散液中,在高压釜中于150-170 ℃下反应4-8小时,然后在75-85 ℃由水合肼还原,经离心分离、洗涤和干燥得到石墨烯-CuInS2量子点复合物;所述的氧化石墨烯和Cu(Ac)2·H2O的质量比为1:1-4,Cu(Ac)2·H2O、In(Ac)3、十八烷基胺表面活性剂和硫脲的摩尔比为1:1:12:4。 A preparation method of graphene-CuInS 2 quantum dot composites: first disperse graphene oxide in ethanol, then Cu(Ac) 2 ·H 2 O, In(Ac) 3 , octadecylamine and Thiourea is sequentially added to the ethanol dispersion of graphene oxide, reacted in an autoclave at 150-170 °C for 4-8 hours, and then reduced by hydrazine hydrate at 75-85 °C, centrifuged, washed and dried to obtain graphite ene-CuInS 2 quantum dot composite; the mass ratio of graphene oxide and Cu(Ac) 2 ·H 2 O is 1:1-4, Cu(Ac) 2 ·H 2 O, In(Ac) 3 , octadecylamine surfactant and thiourea in a molar ratio of 1:1:12:4.

本发明的优点是:利用溶剂热过程原位生长量子点的方法制备出石墨烯-CuInS2量子点复合物,CuInS2量子点粒径均一;制备所用溶剂为乙醇溶液,环境友好,无污染;本发明方法所用的设备简单(主要是高压釜和离心机)、操作简便,容易实现复合物的宏量合成;得到的复合物在有机溶剂中具有很好的分散性能,将在光电材料、光伏材料、有机-无机复合材料等领域具有重要的应用价值。 The advantages of the present invention are: the graphene- CuInS2 quantum dot composite is prepared by using the method of growing quantum dots in situ through a solvothermal process, and the particle size of the CuInS2 quantum dots is uniform; the solvent used for the preparation is an ethanol solution, which is environmentally friendly and pollution-free; The equipment used in the method of the present invention is simple (mainly autoclave and centrifuge), easy to operate, easy to realize the macro-synthesis of the compound; Materials, organic-inorganic composite materials and other fields have important application value.

附图说明 Description of drawings

图1是本发明所述的氧化石墨烯(GO)和还原态氧化石墨烯(rGO)的表征结果;其中,(a)GO的TEM照片、(b)水分散体系的光学照片(左边黄色为GO,右边黑色为rGO)、(c)XRD、(d)拉曼光谱。 Figure 1 is the characterization results of graphene oxide (GO) and reduced graphene oxide (rGO) according to the present invention; among them, (a) TEM photo of GO, (b) optical photo of water dispersion system (yellow on the left is GO, rGO in black on the right), (c) XRD, (d) Raman spectrum.

图2是本发明所述的石墨烯-CuInS2量子点复合物的XRD和拉曼光谱表征;其中,(a)XRD、(b)拉曼光谱。 Fig. 2 is the XRD and Raman spectrum characterization of the graphene-CuInS 2 quantum dot composite of the present invention; wherein, (a) XRD, (b) Raman spectrum.

图3是本发明所述的石墨烯-CuInS2量子点复合物的TEM(a)和HRTEM(b、c)表征;其中 (b)和(c)分别对应于(a)中的区间2和区间1。 Figure 3 is the TEM (a) and HRTEM (b, c) characterization of the graphene- CuInS2 quantum dot composite of the present invention; where (b) and (c) correspond to intervals 2 and 2 in (a) respectively. Interval 1.

图4是本发明所述的石墨烯-CuInS2量子点复合物的XPS表征;其中,(a)全谱、(b)Cu2p 谱、(c)In3d 谱、(d)S2p谱。 Figure 4 is the XPS characterization of the graphene-CuInS 2 quantum dot composite of the present invention; wherein, (a) full spectrum, (b) Cu2p spectrum, (c) In3d spectrum, (d) S2p spectrum.

图5是本发明所述的石墨烯-CuInS2量子点复合物在不同有机溶剂中的分散性(静置6小时后照相)。 Fig. 5 is the dispersibility of the graphene-CuInS 2 quantum dot composite of the present invention in different organic solvents (photographed after standing for 6 hours).

具体实施方式 Detailed ways

实施例1:氧化石墨烯和还原态氧化石墨烯的制备。 Embodiment 1: Preparation of graphene oxide and reduced graphene oxide.

将0.5克石墨和0.5克NaNO3加入到250毫升的烧杯中,并将烧杯置于0 ℃的冰水混合浴中,然后向其中加入23毫升的浓硫酸(95-98%),充分搅拌15分钟,得到黑色的悬浮液;向该悬浮液中加入4克KMnO4,然后在35℃下搅拌和反应2小时,得到绿色悬浮液,接着加入40毫升去离子水,在90℃下搅拌和反应1小时,得到棕黄色悬浮液;最后,向棕黄色悬浮液中加入5毫升H2O2;待反应液冷却至室温后,进行离心分离(12000 rpm, 10 分钟)和去离子水洗涤,产物于60 ℃下真空干燥24小时,得到氧化石墨烯(GO)。 Add 0.5 g of graphite and 0.5 g of NaNO3 into a 250 ml beaker, place the beaker in a mixed ice-water bath at 0 °C, then add 23 ml of concentrated sulfuric acid (95-98%) to it, and stir thoroughly for 15 minutes to obtain a black suspension; add 4 grams of KMnO 4 to the suspension, then stir and react at 35°C for 2 hours to obtain a green suspension, then add 40 ml of deionized water, stir and react at 90°C After 1 hour, a brownish-yellow suspension was obtained; finally, 5 ml of H 2 O 2 was added to the brownish-yellow suspension; After vacuum drying at 60 °C for 24 hours, graphene oxide (GO) was obtained.

将5毫克氧化石墨烯分散于60毫升去离子水中,得到黄色悬浮液,升温至80 oC后加入5 mL水合肼并静置2小时,得到黑色悬浮液,进行离心分离(9000 rpm, 10 分钟)和去离子水洗涤,产物于60 ℃下真空干燥24小时,得到还原态氧化石墨烯(rGO)。 Disperse 5 mg of graphene oxide in 60 ml of deionized water to obtain a yellow suspension. After raising the temperature to 80 o C, add 5 mL of hydrazine hydrate and let it stand for 2 hours to obtain a black suspension. Centrifuge (9000 rpm, 10 min ) and deionized water, and the product was vacuum-dried at 60 °C for 24 hours to obtain reduced graphene oxide (rGO).

氧化石墨烯还原前后的表征见附图1。透射电子显微镜(TEM)表明了氧化石墨烯的片层结构;光学照片表明了氧化石墨烯在水中分散后呈黄色,但还原后其水分散液为黑色;X-射线衍射(XRD)表明了氧化石墨烯的生成,及其还原前后具有不同的衍射峰;拉曼光谱表明了氧化石墨烯的生成,及其还原前后具有不同的 D(1343 cm-1)和G(1590 cm-1)峰比值。  The characterization of graphene oxide before and after reduction is shown in Figure 1. Transmission electron microscopy (TEM) shows the sheet structure of graphene oxide; optical photographs show that graphene oxide is yellow when dispersed in water, but its aqueous dispersion is black after reduction; X-ray diffraction (XRD) shows that oxidation The formation of graphene, and its different diffraction peaks before and after reduction; Raman spectrum shows the formation of graphene oxide, and its different peak ratios of D (1343 cm -1 ) and G (1590 cm -1 ) before and after reduction .

实施例2:石墨烯-CuInS2量子点复合物的制备 Embodiment 2: the preparation of graphene-CuInS 2 quantum dot composites

(2-1) 氧化石墨烯的制备:见实施实例1. (2-1) Preparation of graphene oxide: see implementation example 1.

(2-2) 石墨烯-CuInS2量子点复合物的制备: (2-2) Preparation of graphene- CuInS2 quantum dot composite:

在50毫升无水乙醇中加入5毫克氧化石墨烯,超声分散30分钟,得到棕黄色分散液,再加入10毫克Cu(Ac)2·H2O,超声分散5 min,分散液变为棕绿色;向棕绿色溶液中加入 14.6 毫克 In(Ac)3并超声分散10分钟,加入161.7毫克十八烷基胺并超声分散20 分钟,分散液变为棕蓝色,再加入15.2毫克硫脲,分散液立即变为棕黑色,搅拌20分钟。将黑色分散液转入到80 毫升含聚四氟乙烯内衬的高压釜中,于160 oC条件下反应6 小时;待反应釜自然冷却至室温后,将反应液转入烧杯,于水浴中加热至80 oC,加入5 mL水合肼并静置2小时以进一步还原氧化石墨烯;冷却至室温后,进行离心分离(9000 rpm, 10 分钟)和乙醇洗涤, 产物于60 ℃下真空干燥24小时,得到石墨烯-CuInS2量子点复合物。 Add 5 mg of graphene oxide to 50 ml of absolute ethanol, ultrasonically disperse for 30 minutes to obtain a brownish-yellow dispersion, then add 10 mg of Cu(Ac) 2 H 2 O, ultrasonically disperse for 5 min, and the dispersion turns brownish green ; Add 14.6 mg of In(Ac) to the brown-green solution and ultrasonically disperse for 10 minutes, add 161.7 mg of octadecylamine and ultrasonically disperse for 20 minutes, the dispersion becomes brownish blue, then add 15.2 mg of thiourea, and disperse The solution immediately turned brownish black and was stirred for 20 minutes. Transfer the black dispersion to an 80 ml autoclave lined with polytetrafluoroethylene, and react at 160 o C for 6 hours; after the reaction kettle is naturally cooled to room temperature, transfer the reaction solution to a beaker and place in a water bath Heat to 80 o C, add 5 mL of hydrazine hydrate and let it stand for 2 hours to further reduce graphene oxide; after cooling to room temperature, perform centrifugation (9000 rpm, 10 minutes) and wash with ethanol, and the product is vacuum-dried at 60 °C for 24 hours, a graphene- CuInS2 quantum dot composite was obtained.

(2-3)产物的表征: (2-3) Characterization of the product:

复合物表征见附图2-5。粉末XRD测试,表明了产物由还原态氧化石墨烯和黄铜矿型CuInS2(JCPDS #85-1575)组成;拉曼光谱表明了复合物中石墨烯的D和G峰比值大大减小,说明了CuInS2对石墨烯片层表面缺陷有很好的修复作用;TEM和高分辨TEM(HRTEM)表明, CuInS2量子点大小为2-5 nm,CuInS2量子点以单层分散于石墨烯片层上和在石墨烯片层表面聚集形成三维聚集体两种形式存在;光电子能谱(XPS)分析表明, CuInS2量子点中Cu:In:S 的原子比为1:1.3:1.8;光学照片表明,石墨烯-CuInS2量子点复合物在有机溶剂(如乙醇、氯仿和氯苯)中具有较好的分散稳定性。 The characterization of the complex is shown in Figure 2-5. Powder XRD test shows that the product is composed of reduced graphene oxide and chalcopyrite CuInS 2 (JCPDS #85-1575); Raman spectrum shows that the ratio of D and G peaks of graphene in the composite is greatly reduced, indicating that CuInS 2 has a good repairing effect on the surface defects of graphene sheets; TEM and high-resolution TEM (HRTEM) show that the size of CuInS 2 quantum dots is 2-5 nm, and CuInS 2 quantum dots are dispersed in graphene sheets in a single layer There are two forms of three-dimensional aggregates on the layer and on the surface of graphene sheets; photoelectron spectroscopy (XPS) analysis shows that the atomic ratio of Cu:In:S in CuInS 2 quantum dots is 1:1.3:1.8; optical photos It is shown that the graphene- CuInS2 quantum dot composite has good dispersion stability in organic solvents such as ethanol, chloroform and chlorobenzene.

Claims (1)

1.一种石墨烯-CuInS2量子点复合物,其特征在于:所述的石墨烯-CuInS2量子点复合物通过溶剂热法在高压釜中合成,由还原态氧化石墨烯和黄铜矿型CuInS2量子点组成,CuInS2量子点粒径为2-5 nm, CuInS2量子点以单层分散于石墨烯片层上和在石墨烯片层表面聚集形成三维聚集体两种形式存在,CuInS2量子点中Cu:In:S 的原子比为1:1.3:1.8; 1. a graphene- CuInS2 quantum dot compound, it is characterized in that: described graphene- CuInS2 quantum dot compound is synthesized in autoclave by solvothermal method, is made of reduced state graphene oxide and chalcopyrite CuInS 2 quantum dots are composed of CuInS 2 quantum dots, the particle size of CuInS 2 quantum dots is 2-5 nm, and CuInS 2 quantum dots exist in two forms: single-layer dispersion on graphene sheets and aggregation on the surface of graphene sheets to form three-dimensional aggregates. The atomic ratio of Cu:In:S in CuInS 2 quantum dots is 1:1.3:1.8; 所述的石墨烯-CuInS2量子点复合物的制备方法为:先将氧化石墨烯分散于乙醇中,然后将Cu(Ac)2·H2O、In(Ac)3、十八烷基胺和硫脲依次加入到氧化石墨烯的乙醇分散液中,在高压釜中于150-170 ℃下反应4-8小时,然后在75-85 ℃由水合肼还原,经离心分离、洗涤和干燥得到石墨烯-CuInS2量子点复合物;所述的氧化石墨烯和Cu(Ac)2·H2O的质量比为1:1-4,Cu(Ac)2·H2O、In(Ac)3、十八烷基胺表面活性剂和硫脲的摩尔比为1:1:12:4。 The preparation method of the graphene-CuInS 2 quantum dot composite is: first disperse the graphene oxide in ethanol, then add Cu(Ac) 2 ·H 2 O, In(Ac) 3 , octadecylamine Add thiourea and thiourea to the ethanol dispersion of graphene oxide in turn, react in an autoclave at 150-170°C for 4-8 hours, then reduce by hydrazine hydrate at 75-85°C, centrifuge, wash and dry to obtain Graphene-CuInS 2 quantum dot composite; the mass ratio of graphene oxide and Cu(Ac) 2 ·H 2 O is 1:1-4, Cu(Ac) 2 ·H 2 O, In(Ac) 3. The molar ratio of octadecylamine surfactant to thiourea is 1:1:12:4.
CN201210472353.2A 2012-11-21 2012-11-21 A kind of graphene-CuInS2 quantum dot composite and preparation method thereof Active CN102965105B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210472353.2A CN102965105B (en) 2012-11-21 2012-11-21 A kind of graphene-CuInS2 quantum dot composite and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210472353.2A CN102965105B (en) 2012-11-21 2012-11-21 A kind of graphene-CuInS2 quantum dot composite and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102965105A CN102965105A (en) 2013-03-13
CN102965105B true CN102965105B (en) 2014-12-03

Family

ID=47795542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210472353.2A Active CN102965105B (en) 2012-11-21 2012-11-21 A kind of graphene-CuInS2 quantum dot composite and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102965105B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361065B (en) * 2013-06-17 2016-01-20 南京邮电大学 CdSe quantum dot load Graphene with different-shape feature and uses thereof and preparation method
CN103412436B (en) * 2013-07-24 2015-09-30 北京京东方光电科技有限公司 The process for dispersing of a kind of color membrane substrates, LCDs and monochromatic quantum dot
KR101494868B1 (en) * 2013-11-19 2015-02-23 한화케미칼 주식회사 Method and apparatus for preparing functionalized graphene and functionalized graphene
CN103771495B (en) * 2013-12-24 2015-08-19 上海交通大学 Method for preparing graphene-copper-zinc-tin-sulfur nanocrystalline composites
CN104818504B (en) * 2015-04-09 2019-01-29 北京化工大学 A kind of preparation method of indium sulphur/Graphene composite thin film material
CN105295891A (en) * 2015-11-16 2016-02-03 深圳市华星光电技术有限公司 Preparation method of graphene-coated quantum dot composite spheres and graphene-coated quantum dot composite spheres
CN105895796A (en) * 2016-05-11 2016-08-24 深圳市芯华芯动力技术有限公司 Preparation method of CuGaX2/ multilayer nano graphene sheet composite material
CN107331835B (en) * 2017-06-08 2019-12-13 陕西科技大学 One-step solvothermal method for synthesizing three-dimensional graphene-coated cobalt carbonate quantum dot composite electrode material and method
CN107552072B (en) * 2017-10-23 2020-02-18 南昌航空大学 A graphene-CuInS2 nanocomposite photocatalyst
CN108187694B (en) * 2017-12-18 2020-02-21 江苏大学 A kind of CuInS2 quantum dot/rGO composite photocatalytic material and use
CN113213465A (en) * 2021-03-27 2021-08-06 邵阳学院 Single-layer graphene and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557002A (en) * 2011-11-29 2012-07-11 上海师范大学 Carbon nanotube/ternary chalcogenide semiconductor nano composite material and preparation method thereof
CN102627969A (en) * 2012-03-23 2012-08-08 上海师范大学 Multi-walled carbon nanotube/AgBiS2 semiconductor nanoparticle hybrid material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102178A2 (en) * 2009-03-06 2010-09-10 University Of Florida Research Foundation, Inc. Air stable organic-inorganic nanoparticles hybrid solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557002A (en) * 2011-11-29 2012-07-11 上海师范大学 Carbon nanotube/ternary chalcogenide semiconductor nano composite material and preparation method thereof
CN102627969A (en) * 2012-03-23 2012-08-08 上海师范大学 Multi-walled carbon nanotube/AgBiS2 semiconductor nanoparticle hybrid material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Danny Wei-Ping Pang等.Generalized syntheses of nanocrystal–graphene hybrids in high-boiling-point organic solvents.《Nanoscale》.2012,第4卷4562–4570. *
Generalized syntheses of nanocrystal–graphene hybrids in high-boiling-point organic solvents;Danny Wei-Ping Pang等;《Nanoscale》;20120516;第4卷;4562–4570 *

Also Published As

Publication number Publication date
CN102965105A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN102965105B (en) A kind of graphene-CuInS2 quantum dot composite and preparation method thereof
Li et al. Large-area, flexible broadband photodetector based on WS2 nanosheets films
CN103599769B (en) A ZnSn(OH)6 Nanocubic Particle/Graphene Sandwich Structure Composite Photocatalyst
CN103361044B (en) A preparation method of graphene oxide sheet-wrapped zinc oxide quantum dot core-shell structure
CN103265020B (en) Method for preparing graphene quantum dot powder on large scale
CN102602924B (en) Method for preparing bicolor graphene quantum dots through microwave radiation manner
CN101723436B (en) Self-assembly zinc oxide hollow sphere and preparation method thereof
Tavakoli et al. Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol
CN103872186B (en) FeS2The preparation method of film
CN102910615A (en) Preparation method of graphene oxide/iron disulfide composite nano particles
CN101844799A (en) Preparation method of hexagon stannic disulphide nano slice
CN102942165A (en) Graphene and ferrum diselenide composite material and method for preparing same
CN103801298A (en) Hydrothermal rapid synthesis method of graphene load nickel nanoparticle composite material
CN105562040B (en) A kind of preparation and application of BiOCl- (001)/GO nano composite photo-catalysts
CN106145064A (en) The Tellurobismuthite. nano material of a kind of different-shape and synthetic method thereof
Peng et al. Solution synthesis of CdIn2S4 nanocrystals and their photoelectrical application
CN105692581A (en) Preparation method of high-crystallization graphene quantum dots capable of replacing fullerene
CN103613120B (en) Synthesis of copper-zinc-tin-sulfur nanoparticles and method for compounding graphene by using copper-zinc-tin-sulfur nanoparticles
CN105366714A (en) Synthetic method of stannic oxide nanoflower array
Li et al. Preparation of heterostructured TiO 2/MoS 2 for efficient photocatalytic rhodamine B degradation
CN112158830B (en) Method for preparing graphene powder through hydrothermal reduction
CN102502792B (en) Preparation method of spherical SnS nanometer crystals
CN105692680B (en) A kind of nano composite material of hierarchy zinc oxide@graphenes and preparation method thereof
CN104692466B (en) A non-template method for preparing α-Fe2O3 hollow tubular nanofilms
CN104673316A (en) Tellurium-mercury-cadmium quantum dot/carbon nanotube nano composite material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 230001 no.181 Gucheng Road, shiyangang Township, Hefei City, Anhui Province

Patentee after: INSTITUTE OF PLASMA PHYSICS, CHINESE ACADEMY OF SCIENCES

Address before: 230031 Shushan Lake Road, Shushan District, Anhui, China, No. 350, No.

Patentee before: INSTITUTE OF PLASMA PHYSICS, CHINESE ACADEMY OF SCIENCES

CP02 Change in the address of a patent holder