CN102907156A - 用于上行链路控制和上行链路数据信号的单独的资源划分管理 - Google Patents

用于上行链路控制和上行链路数据信号的单独的资源划分管理 Download PDF

Info

Publication number
CN102907156A
CN102907156A CN2011800177504A CN201180017750A CN102907156A CN 102907156 A CN102907156 A CN 102907156A CN 2011800177504 A CN2011800177504 A CN 2011800177504A CN 201180017750 A CN201180017750 A CN 201180017750A CN 102907156 A CN102907156 A CN 102907156A
Authority
CN
China
Prior art keywords
scheduling
resource
divided
data
transmission frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800177504A
Other languages
English (en)
Other versions
CN102907156B (zh
Inventor
W·陈
P·加尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN102907156A publication Critical patent/CN102907156A/zh
Application granted granted Critical
Publication of CN102907156B publication Critical patent/CN102907156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文提供了关于用于控制传输和数据传输的单独的资源划分管理的传输管理。演进型节点B(eNB)生成用于传输流的单独的资源划分调度,其中,第一调度(703)用于数据传输,而第二调度(704)用于控制信号传输。这两个单独的方案可以具有不同的周期或者不同子帧类型的分配,它们有益于数据传输或控制传输,或者允许数据和控制二者的协调。eNB可以在定期的***信息消息中广播不同的调度,其中,由这些eNB服务的UE将根据适当的资源划分调度来配置数据传输和控制信号传输。

Description

用于上行链路控制和上行链路数据信号的单独的资源划分管理
相关申请的交叉引用
本申请要求于2010年4月8日提交的、题目为“APPARATUS ANDMETHOD FOR SEPARATE RESOURCE PARTIONING MANAGEMENT FOR UPLINKCONTROL AND UPLINK DATA SIGNALS”的美国临时专利申请No.61/322,228的优先权,该临时申请的全部内容以引用方式明确地并入本文。
技术领域
概括地说,本发明的各个方面涉及无线通信***,具体地说,涉及用于上行链路控制和上行链路数据信号的单独的资源划分管理。
背景技术
无线通信网络被广泛地部署以提供各种通信服务,例如语音、视频、分组数据、消息、广播等等。这些无线网络可以是能够通过共享可用的网络资源来支持多个用户的多址网络。通常是多址网络的此类网络通过共享可用的网络资源来支持多个用户的通信。这种网络的一个示例是通用陆地无线接入网络(UTRAN)。UTRAN是被定义为通用移动电信***(UMTS)的一部分的无线接入网络(RAN),即第三代合作伙伴计划(3GPP)所支持的第三代(3G)移动电话技术。多址网络形式的示例包括码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络和单载波FDMA(SC-FDMA)网络。
无线通信网络可以包括能够支持多个用户设备(UE)的通信的多个基站或节点B。UE可以通过下行链路和上行链路来与基站进行通信。下行链路(或前向链路)是指从基站到UE的通信链路,上行链路(或反向链路)是指从UE到基站的通信链路。
基站可以在下行链路上向UE发送数据和控制信息,和/或可以在上行链路上从UE接收数据和控制信息。在下行链路上,来自基站的传输可能受到由于来自相邻基站的传输或者来自其它无线射频(RF)发射机的传输所造成的干扰。在上行链路上,来自UE的传输可能受到来自与相邻基站进行通信的其它UE的上行链路传输或者来自其它无线RF发射机的干扰。这种干扰可能降低下行链路和上行链路二者上的性能。
随着对移动宽带接入的需求持续增加,干扰和拥塞网络的可能性随着更多的UE接入远程无线通信网络以及正在社区中部署更多的短程无线***而增加。研究和开发继续改进UMTS技术,以不仅满足不断增加的对移动宽带接入的需求,而且改进和提高在移动通信方面的用户体验。
发明内容
本发明的各个方面与传输管理有关,其中,所述传输管理提供了用于控制传输和数据传输的单独的资源划分管理。基站生成用于传输流的两个单独的资源划分调度,其中,第一调度用于数据传输,而第二调度用于控制信号传输。这两个单独的方案可以具有不同的周期或者不同子帧类型的分配,它们有益于数据传输或控制传输,或者允许数据和控制二者的协调。基站可以在定期的***信息消息中广播不同的调度。由这些基站服务的UE将根据适当的资源划分调度来对其数据传输和控制信号传输进行配置。
在本发明的一个方面,一种用于无线通信的方法包括:生成用于至少一个UL控制信号的第一资源划分调度;生成用于至少一个UL数据信号的第二资源划分调度,所述第一资源划分和所述第二资源划分适用于相同的传输帧结构;向UE发送所述第一资源划分调度和所述第二资源划分调度;以及从所述UE接收传输帧,所述传输帧取决于所述第一资源划分和所述第二资源划分。
在本发明的一个方面,一种用于无线通信的方法包括生成一种用于无线通信的方法,其包括:从服务小区接收控制资源划分调度;从所述服务小区接收数据资源划分调度;以及发送信号,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
在本发明的另外方面,一种被配置用于无线通信的基站包括:用于生成用于至少一个UL控制信号的第一资源划分调度的模块;用于生成用于至少一个UL数据信号的第二资源划分调度的模块,所述第一资源划分和所述第二资源划分适用于相同的传输帧结构;用于向UE发送所述第一资源划分调度和所述第二资源划分调度的模块;以及用于从所述UE接收传输帧的模块,其中,所述传输帧取决于所述第一资源划分和所述第二资源划分。
在本发明的另外方面,一种被配置用于无线通信的UE包括:用于从服务小区接收控制资源划分调度的模块;用于从所述服务小区接收数据资源划分调度的模块;以及用于发送信号的模块,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
在本发明的另外方面,一种计算机程序产品具有其上记录有程序代码的计算机可读介质。该程序代码包括:用于生成用于至少一个UL控制信号的第一资源划分调度的代码;用于生成用于至少一个UL数据信号的第二资源划分调度的代码,所述第一资源划分调度和所述第二资源划分调度适用于相同的传输帧结构;用于向UE发送所述第一资源划分调度和所述第二资源划分调度的代码;以及用于从所述UE接收传输帧的代码,其中,所述传输帧取决于所述第一资源划分和所述第二资源划分。
在本发明的另外方面,一种计算机程序产品具有其上记录有程序代码的计算机可读介质。该程序代码包括:用于从服务小区接收控制资源划分调度的代码;用于从所述服务小区接收数据资源划分调度的代码;以及用于发送信号的代码,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
在本发明的另外方面,一种基站包括至少一个处理器和耦合到所述处理器的存储器。所述处理器被配置为:生成用于至少一个UL控制信号的第一资源划分调度;生成用于至少一个UL数据信号的第二资源划分调度,其中,所述第一资源划分和所述第二资源划分适用于相同的传输帧结构;向UE发送所述第一资源划分调度和所述第二资源划分调度;以及从所述UE接收传输帧,所述传输帧取决于所述第一资源划分和所述第二资源划分。
在本发明的另外方面,一种UE包括至少一个处理器和耦合到所述处理器的存储器。所述处理器被配置为:从服务小区接收控制资源划分调度;从所述服务小区接收数据资源划分调度;以及发送信号,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
附图说明
图1是概念地示出了移动通信***的示例的框图。
图2是概念地示出了移动通信***中的下行链路帧结构的示例的框图。
图3是概念地示出了上行链路LTE/-A通信中的示例性帧结构的框图。
图4是概念地示出了根据本发明的一个方面的异构网络中的时分复用的(TDM)划分的框图。
图5是概念地示出了根据本发明的一个方面所配置的基站/eNB和UE的设计的框图。
图6示出了用于UL控制和UL数据的单独的资源划分管理的示例。
图7A是示出了根据本发明的一个方面具有向其应用的双重资源划分调度的传输流的框图。
图7B是示出了根据本发明的另一个方面具有双重资源划分调度的传输流的框图。
图7C是示出了根据本发明的另一个方面具有双重资源划分调度的传输流的框图。
图8是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
图9是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
图10是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
图11是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
具体实施方式
下面结合附图阐述的详细描述旨在作为各种配置的描述,而不期望代表可以实现本文所描述的构思的仅有配置。详细描述包括具体细节,以便提供对各个构思的全面理解。然而,对本领域技术人员显而易见的是,没有这些具体的细节也可以实现这些构思。在一些例子中,以框图的形式显示了众所周知的结构和部件以避免模糊这些构思。
本文所描述的技术可以用于各种无线通信网络,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其它网络。术语“网络”和“***”通常可以交互使用。CDMA网络可以实施诸如通用陆地无线接入(UTRA)、电信工业协会(TIA)的CDMA等的无线技术。UTRA技术包括宽带CDMA(WCDMA)和CDMA的其它变形。CDMA
Figure BDA00002227000900052
技术包括来自电子工业联合会(EIA)和TIA的IS-2000标准、IS-95标准和IS-856标准。TDMA网络可以实现诸如全球移动通信***(GSM)等的无线技术。OFDMA网络可以实现诸如演进型UTRA(E-UTRA)、超移动宽带(UMB)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、闪速-OFDMA等的无线技术。UTRA技术和E-UTRA技术是通用移动电信***(UMTS)的一部分。3GPP长期演进(LTE)和改进的LTE(LTE-A)是UMTS的采用E-UTRA的较新版本。在来自名称为“第三代合作伙伴计划”(3GPP)的组织的文档中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在来自名称为“第三代合作伙伴计划2”(3GPP2)的组织的文档中描述了和UMB。本文所描述的技术可以用于上面提到的无线网络和无线接入技术以及其它无线网络和无线接入技术。为了清楚起见,下面针对LTE或LTE-A(或者,其统称为“LTE/-A”)来描述这些技术的某些方面,并且在下面的大部分描述中使用这种LTE/-A术语。
图1示出了一种用于通信的无线网络100,其可以是LTE-A网络。无线网络100包括多个演进型节点B(eNB)110和其它网络实体。eNB可以是与UE进行通信的站,并且还可以称为基站、节点B、接入点等等。每一个eNB 110可以为特定的地理区域提供通信覆盖。在3GPP中,根据使用术语“小区”的上下文,术语“小区”可以指代eNB的特定地理覆盖区域和/或服务该覆盖区域的eNB子***。
eNB可以为宏小区、微微小区、毫微微小区和/或其它类型的小区提供通信覆盖。通常,宏小区覆盖相对较大的地理区域(例如,半径为几千米),并且可以允许向网络供应商订购了服务的UE的非限制接入。微微小区通常将覆盖相对较小的地理区域,并且可以允许向网络供应商订购了服务的UE的非限制接入。毫微微小区通常也将覆盖相对较小的地理区域(例如,家庭),并且除了非限制接入以外,还可以提供与该毫微微小区相关联的UE(例如,封闭用户组(CSG)中的UE、家庭中的用户的UE等)的限制接入。宏小区的eNB可以称为宏eNB。微微小区的eNB可以称为微微eNB。此外,毫微微小区的eNB可以称为毫微微eNB或家庭eNB。在图1所示的示例中,eNB 110a、110b和110c分别是宏小区102a、102b和102c的宏eNB。eNB 110x是微微小区102x的微微eNB。此外,eNB 110y和110z分别是毫微微小区102y和102z的毫微微eNB。eNB可以支持一个或多个(例如,两个、三个、四个等等)小区。
无线网络100可以支持同步操作或异步操作。对于同步操作而言,eNB可以具有类似的帧时序,并且来自不同eNB的传输可以在时间上近似地对准。对于异步操作而言,eNB可以具有不同的帧时序,并且来自不同eNB的传输可以在时间上不对准。
网络控制器130可以耦合到一组eNB,并且为这些eNB提供协调和控制。网络控制器130可以通过回程132来与eNB 110进行通信。eNB 110还可以通过无线回程134或有线回程136来例如直接地或间接地彼此通信。
UE 120分布在整个无线网络100中,并且每个UE可以是固定的或移动的。UE还可以称为终端、移动站、用户单元、站等等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话、无线本地环路(WLL)站等等。UE能够与宏eNB、微微eNB、毫微微eNB等等进行通信。在图1中,带双箭头的实线表示UE与服务eNB之间的期望传输,所述服务eNB是被指定为通过下行链路和/或上行链路来对UE进行服务的eNB。带双箭头的虚线指示UE与eNB之间的干扰传输。
LTE/-A在下行链路上使用正交频分复用(OFDM),在上行链路上使用单载波频分复用(SC-FDM)。OFDM和SC-FDM将***带宽划分成多个(K个)正交的子载波,其中,这些正交的子载波通常还称为音调、频段等等。可以使用数据对每一个子载波进行调制。通常,在频域使用OFDM来发送调制符号,在时域使用SC-FDM来发送调制符号。相邻子载波之间的间隔可以是固定的,并且子载波的总数(K)可以取决于***带宽。例如,针对相应的***带宽1.25、2.5、5、10或20兆赫兹(MHz),K可以分别等于128、256、512、1024或2048。此外,还可以将***带宽划分成子带。例如,一个子带可以覆盖1.08MHz,并且针对相应的***带宽1.25、2.5、5、10或20MHz,分别存在1、2、4、8或16个子带。
图2示出了在LTE/-A中使用的下行链路帧结构。可以将下行链路的传输时间轴划分成以无线帧为单位。每一个无线帧可以具有预定的持续时间(例如,10毫秒(ms)),并且可以划分成具有索引0到9的10个子帧。每一个子帧可以包括两个时隙。因此,每一个无线帧可以包括索引为0到19的20个时隙。每一个时隙可以包括L个符号周期,例如,对于标准循环前缀而言的7个符号周期(如图2中所示)或者对于扩展循环前缀而言的6个符号周期。可以向每一个子帧中的2L个符号周期分配索引0到2L-1。可以将可用的时间频率资源划分成资源块。每一个资源块可以覆盖一个时隙中的N个子载波(例如,12个子载波)。
在LTE/-A中,eNB可以为eNB中的每一个小区发送主同步信号(PSS)和辅同步信号(SSS)。可以分别在具有标准循环前缀的每个无线帧的子帧0和5中的每一个子帧中的符号周期6和5内发送主同步信号和辅同步信号,如图2所示。UE可以使用这些同步信号来进行小区检测和小区捕获。eNB可以在子帧0的时隙1中的符号周期0到3内发送物理广播信道(PBCH)。PBCH可以携带某些***信息。
eNB可以在每一个子帧的第一符号周期中发送物理控制格式指示符信道(PCFICH),如图2中所示。PCFICH可以传送用于控制信道的符号周期的数量(M),其中M可以等于1、2或3,并可以随着子帧而变化。此外,对于例如具有小于10个资源块的小***带宽而言,M还可以等于4。在图2所示的示例中,M=3。eNB可以在每一个子帧的前M个符号周期中发送物理HARQ指示符信道(PHICH)和物理下行链路控制信道(PDCCH)。在图2所示的示例中,PDCCH和PHICH还被包含在前三个符号周期中。PHICH可以携带用于支持混合自动重传(HARQ)的信息。PDCCH可以携带关于针对UE的资源分配的信息以及针对下行链路信道的控制信息。eNB可以在每一个子帧的剩余符号周期中发送物理下行链路共享信道(PDSCH)。PDSCH可以携带被调度以在下行链路上进行数据传输的UE的数据。
除在每一个子帧的控制段(即,每一个子帧的第一符号周期)中发送PHICH和PDCCH之外,LTE-A还可以在每一个子帧的数据部分中发送这些面向控制的信道。如图2中所示,这些使用数据区域的新的控制设计,例如,中继物理下行链路控制信道(R-PDCCH),被包含在每一个子帧的偏后的符号周期中。此外,中继物理HARQ指示符信道(R-PHICH)也可以包含在每一个子帧的偏后的符号周期中。R-PDCCH是使用数据区域的新型的控制信道,其中,所述数据区域最初是在半双工中继操作的背景下形成的。与占据一个子帧中的前几个控制符号的传统的PDCCH和PHICH不同,R-PDCCH和R-PHICH被映射到最初被指定为数据区域的资源单元(RE)。新的控制信道可以采用频分复用(FDM)、时分复用(TDM)或者FDM和TDM的组合的形式。
eNB可以在由该eNB使用的***带宽的中心1.08MHz中发送PSS、SSS和PBCH。eNB可以在发送PCFICH和PHICH的每一个符号周期中在整个***带宽上发送这些信道。eNB可以在***带宽的某些部分中,向UE组发送PDCCH。eNB可以在***带宽的特定部分中,向特定的UE发送PDSCH。eNB可以以广播方式向所有UE发送PSS、SSS、PBCH、PCFICH和PHICH,可以以单播方式向特定的UE发送PDCCH,并且还可以以单播方式向特定的UE发送PDSCH。
UE可以位于多个eNB的覆盖范围内。可以选择这些eNB中的一个eNB来服务该UE。可以根据诸如接收功率、路径损耗、信噪比(SNR)等的各种标准来选择服务eNB。
图3是概念地示出了上行链路长期演进(LTE/-A)通信中的示例性帧结构300的框图。可以将上行链路的可用资源块(RB)划分成数据段和控制段。控制段可以形成于***带宽的两个边界处,并且可以具有可配置的大小。可以将控制段中的资源块分配给UE以传输控制信息。数据段可以包括未包含在控制段中的所有资源块。图3中的设计使得数据段包括连续子载波,这可以允许向单个UE分配该数据段中的所有连续子载波。
可以向UE分配控制段中的资源块,以便向eNB发送控制信息。还可以向UE分配数据段中的资源块,以便向eNode B发送数据。UE可以在控制段中的所分配的资源块310a和310b上、在物理上行链路控制信道(PUCCH)中发送控制信息。UE可以在数据段中的所分配的资源块320a和320b上、在物理上行链路共享信道(PUSCH)中仅发送数据或者发送数据和控制信息二者。上行链路传输可以跨越子帧的两个时隙,并可以在频率中跳变,如图3所示。
返回参照图1,无线网络100使用eNB 110的不同集合(即,宏eNB、微微eNB和毫微微eNB),来提高每个单位面积的***的频谱效率。由于无线网络100使用这些不同的eNB来实现其频谱覆盖,因此无线网络100还可以称为异构网络。宏eNB 110a-c通常由无线网络100的供应商进行认真地规划和布置。宏eNB 110a-c通常以较高的功率电平(例如,5W-40W)进行发射。可以以相对未规划的方式来部署通常以基本上较低的功率电平(例如,100mW-2W)进行发射的微微eNB 110x,以便消除由宏eNB 110a-c提供的覆盖区域中的覆盖空洞,并提高热点区域(hot spot)中的容量。但是,通常独立于无线网络100进行部署的毫微微eNB 110y-z可以被并入无线网络100的覆盖区域中,其中,如果管理者对毫微微eNB 110y-z授权,则毫微微eNB 110y-z作为无线网络100的潜在接入点,或者毫微微eNB110y-z至少作为可以与无线网络100的其它eNB 110进行通信以便执行资源协调和干扰管理的协调的活动的且感知(aware)的eNB。通常,毫微微eNB 110y-z还以远低于宏eNB 110a-c的功率电平的功率电平(例如,100mW-2W)来进行发射。
在诸如无线网络100等的异构网络的操作中,每一个UE通常由具有更好的信号质量的eNB 110来服务,而将从其它eNB 110接收的不期望的信号视为干扰。虽然这种操作原则可能导致显著次优的性能,但在无线网络100中,通过使用eNB 110之间的智能资源协调、更好的服务器选择策略和用于高效干扰管理的更先进的技术,可以实现网络性能的提高。
当与诸如宏eNB 110a-c等的宏eNB相比时,诸如微微eNB 110x等的微微eNB具有远远更低的发射功率的特征。微微eNB通常也将以自组的方式被放置在诸如无线网络100等的网络的附近。由于这种未规划的部署,因此可以期望诸如无线网络100等的具有微微eNB布置的无线网络拥有具有较低的信号干扰条件的较大区域,这有利于用于去往覆盖区域或小区的边缘上的UE(“小区-边缘”UE)的控制信道传输的更具有挑战的RF环境。此外,宏eNB 110a-c与微微eNB 110x的发射功率电平之间的潜在的较大差别(例如,约20dB)意味着在混合部署中,微微eNB 110x的下行链路覆盖区域将远小于宏eNB 110a-c的下行链路覆盖区域。
然而,在上行链路的情况下,上行链路信号的信号强度由UE进行控制,因此当上行链路信号由任意类型的eNB 110进行接收时,上行链路信号的信号强度将是类似的。在eNB 110的上行链路覆盖区域是大致相同或类似的情况下,将根据信道增益来确定上行链路的切换边界。这可能导致下行链路切换边界与上行链路切换边界之间的不匹配。与下行链路的切换边界与上行链路的切换边界被更加密切配合的、仅具有宏eNB的同构网络相比,在没有另外的网络容纳的情况下,这种不匹配将使得在无线网络100中进行服务器选择或UE到eNB的关联更加困难。
如果服务器选择主要是基于下行链路接收信号的强度,则将显著地减少诸如无线网络100等的异构网络的混合eNB部署的有用性。这是因为诸如宏eNB 110a-c等的较高功率的宏eNB的较大覆盖区域限制了使用诸如微微eNB 110x等的微微eNB来对小区覆盖范围进行***的益处,这是因为宏eNB 110a-c的较高的下行链路接收信号的强度将引起所有可用的UE的关注,而由于微微eNB 110x的较弱的下行链路传输功率使其可能不能服务任何UE。此外,宏eNB 110a-c将可能不具有足够的资源来高效地服务这些UE。因此,无线网络100将尝试通过扩展微微eNB 110x的覆盖区域,来有效地平衡宏eNB 110a-c与微微eNB 110x之间的负载。这种构思被称作范围扩大。
无线网络100通过改变用于确定服务器选择的方式来实现这种范围扩大。服务器选择更多地是基于下行链路信号的质量,而不是基于下行链路接收信号的强度。在一个这种基于质量的确定中,服务器选择可以是基于对给UE提供最小路径损耗的eNB的确定。此外,无线网络100在宏eNB110a-c与微微eNB 110x之间等同地提供固定的资源划分。然而,即使实现了这种有效的负载平衡,也应当针对由诸如微微eNB 110x等的微微eNB服务的UE,减轻来自宏eNB 110a-c的下行链路干扰。这可以通过各种方法来实现,其包括UE处的干扰消除,eNB 110之间的资源协调等等。
在诸如无线网络100等的使用范围扩大的异构网络中,为了在存在从诸如宏eNB 110a-c等的较高功率的eNB发送的较强下行链路信号的情况下,使UE能够从诸如微微eNB 110x等的较低功率的eNB获得服务,微微eNB 110x参加与这些宏eNB 110a-c中引起主要干扰的宏eNB的控制信道和数据信道干扰协调。可以使用用于干扰协调的多种不同技术来管理干扰。例如,小区间干扰协调(ICIC)可以用于减少来自同信道部署中的小区的干扰。一种ICIC机制是自适应资源划分。自适应资源划分向某些eNB分配子帧。在分配给第一eNB的子帧中,相邻eNB不进行发送。因此,减少了由第一eNB服务的UE所遭受的干扰。可以在上行链路信道和下行链路信道二者上执行子帧分配。
例如,在下面三种类型的子帧之间分配上行链路传输和下行链路传输中的子帧:受保护子帧(U子帧)、禁止子帧(N子帧)和灵活子帧(X子帧)。将受保护子帧分配给第一eNB以专门由第一eNB使用。根据不存在来自相邻eNB的干扰,还可以将受保护子帧称为“干净的”子帧。禁止子帧是分配给相邻eNB的子帧,并且禁止第一eNB在这些禁止子帧期间发送数据。例如,第一eNB的禁止子帧可以与第二干扰的eNB的受保护子帧相对应。因此,第一eNB是在第一eNB的受保护子帧期间发送数据的唯一eNB。公共子帧可以用于多个eNB的数据传输。由于来自其它eNB的干扰的可能性,因此还将公共子帧称为“不干净的”子帧。
每一周期静态地分配至少一个受保护子帧。在一些情况下,只有一个受保护子帧是被静态地分配的。例如,如果周期是8毫秒,则可以在每一个8毫秒期间,向eNB静态地分配一个受保护子帧。其它的子帧可以被动态地分配。
自适应资源划分信息(ARPI)使得非静态分配的子帧能够被动态地分配。可以对受保护子帧、禁止子帧或公共子帧中的任何一个子帧进行动态分配(分别为AU子帧、AN子帧和AX子帧)。动态分配可以例如每隔一百毫秒或更短的时间进行快速地改变。
异构网络可以具有不同功率类型的eNB。例如,可以以递减的功率类型来将三种功率类型定义为宏eNB、微微eNB和毫微微eNB。当宏eNB、微微eNB和毫微微eNB处于同信道部署中时,宏eNB(侵略方eNB)的功率谱密度(PSD)可能大于微微eNB和毫微微eNB(受害方eNB)的PSD,从而对微微eNB和毫微微eNB产生较大量的干扰。可以使用受保护子帧来减少或尽量减少对微微eNB和毫微微eNB的干扰。也即是说,可以针对受害方eNB来调度受保护子帧,以与侵略方eNB上的禁止子帧相一致。
图4是示出了根据本发明的一个方面的异构网络中的时分复用(TDM)划分的框图。框图的第一行示出了针对毫微微eNB的子帧分配,框图的第二行示出了针对宏eNB的子帧分配。这些eNB中的每一个eNB具有静态的受保护子帧,在该静态的受保护子帧期间,另一个eNB具有静态的禁止子帧。例如,毫微微eNB在子帧0中具有受保护子帧(U子帧),其与子帧0中的禁止子帧(N子帧)相对应。同样地,宏eNB在子帧7中具有受保护子帧(U子帧),其与子帧7中的禁止子帧(N子帧)相对应。将子帧1-6动态地分配为受保护子帧(AU)、禁止子帧(AN)和灵活子帧(AX)中的任意一种。在子帧5和6中的动态分配的灵活子帧(AX)期间,毫微微eNB和宏eNB都可以发送数据。
受保护子帧(例如,U/AU子帧)具有减少的干扰和较高的信道质量,这是因为禁止侵略方eNB进行发送。禁止子帧(例如,N/AN子帧)不具有数据传输,以使受害方eNB能够在低干扰电平的情况下发送数据。灵活子帧(例如,X/AX子帧)具有取决于正在发送数据的相邻eNB的数量的信道质量。例如,如果相邻eNB正在灵活子帧上发送数据,则灵活子帧的信道质量可能比受保护子帧的信道质量低。对于受到侵略方eNB较强影响的扩展边界区域(EBA)UE而言,灵活子帧上的信道质量还可能更低。EBAUE可以属于第一eNB,而且可以位于第二eNB的覆盖区域之中。例如,正在与在毫微微eNB覆盖范围的范围上限附近的宏eNB进行通信的UE是EBAUE。
在诸如无线网络100等的异构网络的部署中,UE可以在显性干扰(dominant interference)情况下进行操作,在显性干扰情况下,UE可能观测到来自一个或多个干扰eNB的较高干扰。显性干扰情况可能由于受限关联而发生。例如,在图1中,UE 120y可能与毫微微eNB 110y接近,并且可能具有针对eNB 110y的较高接收功率。然而,由于受限关联,UE 120y可能不能接入毫微微eNB 110y,并且然后可能连接到宏eNB 110c(如图1中所示)或者连接到也具有较低的接收功率的毫微微eNB 110z(图1中未示出)。然后,UE 120y可能在下行链路上观测到来自毫微微eNB 110y的较高干扰,并且还可能在上行链路上对eNB 110y造成较高干扰。通过使用协调的干扰管理,eNB 110c和毫微微eNB 110y可以通过回程134进行通信以对资源进行协商。在该协商中,毫微微eNB 110y同意在其信道资源中的一个信道资源上停止传输,使得UE 120y将不会遭受与其通过相同信道与eNB110c进行通信时遭受的干扰一样多的、来自毫微微eNB 110y的干扰。
在这种显性干扰情况下,除了在UE处观测到的信号功率的差别之外,这些UE还可能观测到下行链路信号的时序延迟,甚至是在同步***中观测到下行链路信号的时序延迟,这是由于这些UE与多个eNB之间的不同的距离。根据推定,同步***中的eNB在整个***中是同步的。然而,例如,考虑到与宏eNB相距5km的UE,从该宏eNB接收的任何下行链路信号的传播延迟将被延迟约16.67μs(5km÷3x 108,即光速‘c’)。将来自宏eNB的下行链路信号与来自更接近的毫微微eNB的下行链路信号进行比较,时序差将接近生存时间(TTL)误差的水平。
此外,该时序差可能影响UE处的干扰消除。干扰消除通常使用相同信号的多个版本的组合之间的互相关属性。通过将相同信号的多个拷贝进行组合,可以更加容易地识别干扰,这是因为虽然可能在信号的每一个拷贝上存在干扰,但是干扰可能不在相同的位置处。通过使用组合的信号的互相关,可以确定实际的信号部分,并且将实际的信号部分与干扰区分开,从而使得干扰被消除。
图5示出了基站/eNB 110和UE 120的设计的框图,其中,基站/eNB 110和UE 120可以是图1中的一个基站/eNB和一个UE。对于受限关联情况而言,eNB 110可以是图1中的宏eNB 110c,UE 120可以是UE 120y。eNB 110也可以是某些其它类型的基站。eNB 110可以配备有天线534a到534t,UE120可以配备有天线552a到552r。
在eNB 110处,发射处理器520可以从数据源512接收数据,从控制器/处理器540接收控制信息。控制信息可以针对PBCH、PCFICH、PHICH、PDCCH等。数据可以针对PDSCH等。发射处理器520可以对数据和控制信息进行处理(例如,编码和符号映射),以分别获得数据符号和控制符号。发射处理器520还可以生成例如针对PSS、SSS和特定于小区的参考信号的参考符号。发射(TX)多输入多输出(MIMO)处理器530可以视情况对这些数据符号、控制符号和/或参考符号执行空间处理(例如,预编码),并可以向调制器(MOD)532a到532t提供输出符号流。每一个调制器532可以(例如,针对OFDM等)处理相应的输出符号流,以获得输出采样流。每一个调制器532可以进一步处理(例如,转换成模拟、放大、滤波和上变频)输出采样流,以获得下行链路信号。来自调制器532a到532t的下行链路信号可以分别通过天线534a到534t进行发送。
在UE 120处,天线552a到552r可以从eNB 110接收下行链路信号,并可以分别将接收的信号提供给解调器(DEMOD)554a到554r。每一个解调器554可以调节(例如,滤波、放大、下变频和数字化)相应的接收信号,以获得输入采样。每一个解调器554可以(例如,针对OFDM等)进一步处理这些输入采样,以获得接收的符号。MIMO检测器556可以从所有解调器554a到554r获得接收的符号,视情况对接收的符号执行MIMO检测,并提供检测的符号。接收处理器558可以处理(例如,解调、解交织和解码)检测的符号,向数据宿560提供针对UE 120的解码后的数据,并向控制器/处理器580提供解码后的控制信息。
在上行链路上,在UE 120处,发射处理器564可以(例如,针对PUSCH)接收并处理来自数据源562的数据并且(例如,针对PUCCH)接收并处理来自控制器/处理器580的控制信息。发射处理器564还可以生成针对参考信号的参考符号。来自发射处理器564的符号可以视情况由TX MIMO处理器566进行预编码,(例如,针对SC-FDM等)由解调器554a到554r进行进一步处理,并发送到eNB 110。在eNB 110处,来自UE 120的上行链路信号可以由天线534进行接收,由调制器532进行处理,视情况由MIMO检测器536进行检测,并由接收处理器538进行进一步处理,以获得由UE120发送的解码后的数据和控制信息。处理器538可以向数据宿539提供解码后的数据,并向控制器/处理器540提供解码后的控制信息。
控制器/处理器540和580可以分别指导eNB 110和UE 120处的操作。控制器/处理器540和/或eNB 110处的其它处理器和模块可以执行或指导用于本文所描述的技术的各种过程的实现。控制器/处理器580和/或UE 120处的其它处理器和模块也可以执行或指导图8和图9中所示的功能框、和/或用于本文所描述的技术的过程的实现。存储器542和582可以分别存储用于eNB 110和UE 120的数据和程序代码。调度器544可以调度UE以在下行链路和/或上行链路上进行数据传输,其包括建立资源划分调度或者用于小区覆盖区域的调度。
为了更好地保护控制和/或数据传输免受不可抵抗的干扰影响(例如,在下行链路、上行链路或两个方向上),例如通过在不同的节点功率类型之间的资源划分来执行干扰管理是有利的,如前所述。在一个示例中,针对上行链路(UL)的基于时域(时分双工(TDD))的资源划分,将三种UL子帧类型定义为:可用的“U”子帧,其中,对于给定的小区而言,该子帧通常不受到来自不同类型的小区的干扰;不可用的“N”子帧,其中,给定小区通常不使用该子帧,以避免对于不同类型的小区的过度干扰;以及灵活的“X”子帧,其中,该子帧可根据eNB实现来灵活地使用。
在一个示例中,了解子帧类型的管理的UE通常可以在“U”子帧中进行发送,以实现最佳保护。这些UE还应当至少在尽力而为的基础上,避免使用“N”子帧来进行发送,以避免造成过度干扰。根据给定小区的决策,这些UE可以使用或者可以不使用“X”子帧。换言之,示例可以是期望最常使用“U”子帧,期望最少使用或者从不使用“N”子帧,以及可以使用或者可以不使用“X”子帧。
在另一个示例中,上行链路混合自动重传请求(H-ARQ)操作是同步的,并且遵循固定的时序关系。具体而言,针对频分双工(FDD)***,指定固定的8ms H-ARQ往返时间(RTT),其包括两个部分:(1)PDCCH或PHICH与PUSCH传输之间的固定的4ms;以及(2)PUSCH传输与下一个PDCCH或者下一个PHICH之间的另一个固定的4ms。在一个方面,对于LTE-A而言,虽然可以改变这种基于8ms的H-ARQ RTT,但尽可能维持相同的8ms H-ARQ RTT仍然是优选的。
在另一个方面,根据UL H-ARQ操作,特别是为了向后兼容,针对UL的基于8ms周期的资源划分是期望的。例如,可以将针对两种功率类型的UL资源划分配置为针对第一类型的[U,X,X,X,N,X,X,X]和针对第二类型的[N,X,X,X,U,X,X,X],其中,每一种类型遵循8ms周期,并且这两种类型具有互补的“U”子帧配置和“N”子帧配置。
使用与8ms周期不完全兼容的周期,来对一些UL控制信号进行设计。在这里,对“兼容性”进行定义,使得在给定针对控制信号所定义的周期的情况下,可以保证该控制信号的传输完全地包含在诸如“U”子帧等的受保护子帧类型中。具体而言,对于周期的信道质量指示符/预编码矩阵指示符(CQI/PMI)报告而言,周期可以是2、5、10、20、40、80、160、32、64、128ms,其中,5、10、20ms与8ms周期不兼容。对于周期的秩指示符(RI)报告而言,周期可以是CQI的整数倍,其中,该整数可以取1、2、4、8、16、32的值。对于CQI周期与整数倍的某些组合而言,由此产生的RI周期也可能与基于8ms的资源划分不兼容。调度请求(SR)可以配置有1、2、5、10、20、40、80ms的周期,其中,5、10、20ms与8ms周期不兼容。对于半持久的调度而言,ACK/NAK资源可以由更高的网络层来半静态地配置,并且可以具有10、20、32、40、64、80、128、160、320、640ms的周期,其中10、20ms与8ms周期不兼容。在另一个示例中,IP语音(VoIP)服务通常使用20ms周期。
在另一个方面,基于8ms的UL资源划分与一些UL控制信号的一些周期的不兼容可能使一些控制信号被迫使用更大的周期,这可能具有负面的性能影响。例如,较慢的CQI报告可能影响下行链路性能;较大的SR周期可能导致较慢的UL响应。具有不兼容的周期配置的控制信号还可能导致实际较大的周期和/或不期望的UL传输。例如,如果配置了5ms CQI周期,并且如果在基于8ms的资源划分中仅有一个“U”子帧,则实际上,CQI报告周期是40ms。对于不了解子帧类型管理的传统UE而言,80%(8ms对40ms)的CQI传输是“不期望的”传输,并且可能不必要地造成UL干扰。随后,本发明公开了一种用于解决不兼容问题的解决方案。
在一个示例中,单独的资源划分管理可以用于UL控制和UL数据。具体而言,对于UL PUSCH和动态ACK/NAK传输而言,定义了第一资源划分管理,而对于周期的CQI/PMI/RI、SR和半持久调度(SPS)ACK/NAK而言,定义了第二资源划分管理。
在一个方面,资源划分管理可以采用周期、子帧类型的分类等形式。例如,第一资源划分是基于8ms的,而第二资源划分是基于10ms的。图6示出了具有用于UL控制和UL数据的示例性的单独的资源划分管理调度的子帧600。在该示例中,第一资源划分604包括针对PUSCH 603和动态ACK/NAK区域602的传输的分配。第二资源划分605包括针对PUCCH区域601的分配。第一资源划分604是基于与第二资源划分605的周期不同的周期。例如,第一资源划分604可以是基于8ms周期,而第二资源划分605可以是基于10ms周期。
对动态ACK/NACK区域602进行配置,使得当没有发送的SPSACK/NACK消息时,其可以由数据区域、PUSCH区域603重新使用。因此,在没有SPS ACK/NACK消息的当前传输时,PUSCH区域603可以使用额外的资源块,从而增加该子帧上的数据带宽。
在另一个方面,目前公开的资源划分管理范例可以包括以下特征中的一些特征。例如,还可以根据第一资源划分604来对SPS ACK/NAK进行分类。第二资源划分605还可以是第一资源划分的超集。例如,第一资源划分604可以是基于8ms周期,而第二资源划分605可以是基于40ms周期(位图),其中,40ms是8ms和10ms的最小公倍数。例如,还可以在与第一资源划分604相同的***信息块(SIB)中潜在地广播第二资源划分605的周期。
在另一个示例中,第一资源划分604和第二资源划分605可以具有相同的周期,但是具有不同子帧类型的不同分类。例如,由于不同的节点上的负载考量,因此,例如针对UL数据,每隔8ms仅配置了一个“U”子帧,而针对UL控制,在相同的8ms周期的情况下,可以配置一个以上的“U”子帧,以便允许低延迟CQI报告。
图7A是根据本发明的一个方面示出了具有向其应用的双重资源划分调度的传输流700的框图。传输流700具有所应用的用于数据的第一资源划分调度701和用于控制信号的第二资源划分调度702。第一资源划分调度701和第二资源划分调度702中的每一个的周期是相同的。然而,在两个调度之间,子帧类型分配是不同的。例如,在第一资源划分调度701中,在子帧0处调度可用的“U”子帧来进行数据传输,而在用于控制信号的第二资源划分调度702中调度不可用的“N”子帧。同样地,在第二资源划分调度702中,在子帧4和6中调度两个可用的“U”子帧,而在第一资源划分调度中,针对子帧4调度不可用的子帧“N”,并且在子帧6中调度灵活的“X”。如上所述,具有被调度用于控制信号的多个“U”子帧的配置允许低延迟CQI报告。
图7B是根据本发明的另一个方面示出了具有双重资源划分调度的传输流70的框图。所示的传输流70在控制区域704与数据区域703之间被划分。第一资源划分调度应用于控制区域704,第二资源划分调度应用于数据区域703,如具有单独的子帧分类方案的每一个区域的每一个子帧所示。除了应用于控制区域704和数据区域703的单独的资源划分调度之外,控制区域704还具有10ms的周期,而数据区域703还具有8ms的周期。在子帧0/8处,向数据区域703分配不可用的“N”子帧,其表示用于数据区域703的新帧的第一子帧,并且向控制区域704分配可用的“U”子帧,其表示针对控制区域704所示出的第一帧的第九子帧。
图7C是根据本发明的另一个方面示出了具有双重资源划分调度的传输流71的框图。所示的传输流71是使用控制区域704和数据区域703来进行划分的,此外,还示出了动态ACK/NACK区域705。如同传输流70(图7B)一样,传输流71的ACK/NACK信号并不经常被发送。因此,动态ACK/NACK区域705并不常用。例如,在子帧2/2中,在控制区域704的动态ACK/NACK区域705中发送ACK/NACK信号,而在子帧3/3中,在控制区域704中不发送ACK/NACK信号。当不发送ACK/NACK信号时,数据区域703可以对控制区域704的动态ACK/NACK区域705进行利用(reclaim),以便发送更多的数据。因此,动态ACK/NACK区域705是灵活的区域,其容纳ACK/NACK信号的调度,并且当不存在ACK/NACK信号时,允许在数据区域703中实现增加的数据传输。
从eNB的角度来看,在操作中,在被服务的小区中生成并广播单独的资源划分调度。图8是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
在方框800,eNB生成用于至少一个UL控制信号的第一资源划分调度。在方框801,生成用于至少一个UL数据信号的第二资源划分调度,其中,第一资源划分和第二资源划分适用于相同的传输帧结构。所选择的周期可以是不同的或者类似的。例如,第一周期可以是基于10ms,而第二周期是基于8ms,或者反之亦然。所选择的周期可以与所发送的信息的优选周期相互关联。如上所述,不同类型的信息受益于或者受限于不同的周期,并且可以以适当的周期在适当的划分上进行发送。在一个示例中,在LTE/-A帧中,可以在标准控制区域和数据区域之间对这些划分进行区分。但是,本发明并不受此限制。此外,还可以对这些划分进行分割(divide),以提供动态或半持久的ACK/NACK划分。
在方框802,向UE发送第一资源划分调度和第二资源划分调度。例如,这些划分调度可以位于SIB传输中。或者,该调度可以位于可替换的SIB、MIB中,或者位于另一个控制传输结构中。
然后,在方框803,eNB从UE接收传输帧,其中所述传输帧是根据第一资源划分调度和第二资源划分调度来配置的。例如,该帧结构可以遵循LTE/-A中的上行链路结构或者另一种上行链路传输方案,如上所述被划分。
从UE的角度来看,UE监测***信息的正常***广播。图9是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。
在方框900,UE从服务小区接收控制资源划分调度。在方框901,UE从服务小区接收数据资源划分调度。在方框902,UE通过使用两种接收的调度来发送信号,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。如上所述,针对所述控制划分和数据划分的调度信息可以位于SIB传输中。或者,该调度可以位于可替换的SIB、MIB中,或者位于另一种控制传输中。
在一种配置中,被配置用于无线通信的UE 120包括:用于从服务小区接收控制资源划分调度的模块;用于从所述服务小区接收数据资源划分调度的模块;以及用于发送信号的模块,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。在一个方面,前面提到的模块可以是被配置以执行通过前面提到的模块详述的功能的处理器、控制器/处理器580、存储器582、接收处理器558、MIMO检测器556、解调器554a和天线552a。
图10是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。在方框1000,将在UE天线上接收的信号解码成控制资源划分调度和数据资源划分调度。例如,参照图5的UE 120,在天线552a-552r上接收信号。然后,这些信号由解调器554a-554r进行解调。MIMO检测器556对经空间处理的、解调的信号组合成该信号中的编码的信息。接收处理器558对该信息进行解码,将这些资源划分调度传送到控制器/处理器540以进行进一步的控制处理,然后将其存储在存储器582中,而UE 120仍然处于遭受这些资源划分的覆盖区域中。因此,UE接收用于控制信号的资源划分调度和用于数据信号的另一个资源划分调度。
在方框1001,UE通过使用控制资源划分调度和数据资源划分调度,将其数据和控制信息组合成相应的帧结构以进行传输。例如,当准备发送数据源562中的数据,并且控制器/处理器580具有诸如信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)、调度请求(SR)等的用于传输的控制信号时,将数据和控制信息连同资源调度一起输入发射处理器564中,以便在传输帧中排列该数据和控制信息。发射处理器564对传输信息进行编码。然后,编码后的信息由发射MIMO处理器566进行空间处理,并且然后由调制器554a-554r进行调制。然后,通过天线552a-552r通过空中发送该调制信号。因此,UE生成信号以进行传输,其中,控制信号是根据控制资源划分调度来排列的,并且数据信号是根据数据资源划分调度来排列的。
在另一种结构中,被配置用于无线通信的eNB 110包括:用于生成用于至少一个上行链路(UL)控制信号的第一资源划分调度的模块;用于生成用于至少一个UL数据信号的第二资源划分调度的模块,所述第一资源划分和所述第二资源划分适用于相同的传输帧结构;用于向UE发送所述第一资源划分调度和所述第二资源划分调度的模块;以及用于从所述UE接收传输帧的模块,所述传输帧取决于所述第一资源划分和所述第二资源划分。在一个方面,前面提到的模块可以是被配置以执行通过前面提到的模块详述的功能的处理器、控制器/处理器540、调度器544、存储器542、发射处理器520、发射MIMO处理器530、调制器532a和天线534a。在另一个方面,前面提到的模块可以是被配置以执行通过前面提到的模块详述的功能的模块或任何装置。
图11是示出了被执行以实现本发明的一个方面的示例性方框的功能框图。在方框1100,与关于数据传输的周期相比,来对被分配给控制度量的周期进行分析。例如,参照图5的eNB 110,控制器/处理器540对保存在存储器542中的所分配的周期进行存取。
在方框1101,基站根据这些周期的分析,生成用于控制传输和数据传输的资源划分调度。例如,eNB 110的调度器544使用由控制器/处理器540执行的周期的检查,并且生成用于数据传输和控制传输的、不会降低上行链路性能的资源划分调度。因此,基站根据小区中的周期的分析,生成针对相同的小区覆盖区域的一个以上资源划分调度。
在方框1102,向UE发送这些资源划分调度。控制器/处理器540向发射处理器520通信地发送这些资源划分调度。发射处理器520对该信息进行编码,其后,在调制器532a-532t处的调制之前,发射MIMO处理器530执行空间处理。然后,通过天线534a-534t通过空中发送所调制的信号。
在方框1103,将在基站天线上接收的信号解码成根据多个资源划分调度所配置的上行链路传输帧结构。例如,天线534a-534t接收从UE发送的信号。这些信号由解调器532a-532t进行解调。MIMO检测器536将经空间处理的信号组合成该信号中的编码的信息。接收处理器538对该信息进行解码,将数据传送到数据宿539,并将控制信息传送到控制器/处理器540以进行进一步的控制处理。因此,根据所述资源划分调度中的一个资源划分调度,在由eNB 110接收的帧中发送数据,并且根据另一个资源划分调度,在该帧中发送控制信息。因此,基站从UE接收传输帧,其中,该传输帧是根据这些资源划分调度来配置的。
本领域普通技术人员应当理解的是,信息和信号可以使用多种不同的技术和方法中的任意一种来表示。例如,在贯穿上面的描述中提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。
图8和图9中的功能框和模块可以包括处理器、电子设备、硬件设备、电子组件、逻辑电路、存储器、软件代码、固件代码等等或者其任意组合。
本领域普通技术人员还应当清楚的是,结合本文的公开内容所描述的各种示例性的逻辑框、模块、电路和算法步骤可以实现成电子硬件、计算机软件或二者的组合。为了清楚地表示硬件和软件之间的这种可交换性,上面对各种示例性的部件、框、模块、电路和步骤均围绕其功能进行了总体描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个***所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为引起与本发明的保护范围的偏离。
使用被设计为执行本文所描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件部件或者其任意组合,可以实现或执行结合本文的公开内容所描述的各种示例性的逻辑框、模块和电路。通用处理器可以是微处理器,或者,该处理器也可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合,或者任何其它此种结构。
结合本文的公开内容所描述的方法或算法的步骤可直接体现在硬件、由处理器执行的软件模块或两者的组合中。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者在本领域中公知的任何其它形式的存储介质中。可以将示例性的存储介质耦合到处理器,从而使该处理器能够从该存储介质读取信息,并且可向该存储介质写入信息。或者,存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该ASIC可以位于用户终端中。或者,处理器和存储介质也可以作为分立部件存在于用户终端中。
在一个或多个示例性设计中,所描述的功能可以实现在硬件、软件、固件或者其任意组合中。如果实现在软件中,则可以将这些功能作为一个或多个指令或代码存储或发送到计算机可读介质上。计算机可读介质包括计算机存储介质和通信介质二者,其中通信介质包括便于从一个位置向另一个位置传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。举例而言且非限制地,这种计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码模块并能够由通用计算机或专用计算机、或者通用或专用处理器进行存取的任何其它介质。此外,可以将任何连接适当地称作计算机可读介质。举例而言,如果软件是使用同轴电缆、光纤电缆、双绞线、数字用户线(DSL)或者诸如红外线、无线和微波等的无线技术,从网站、服务器或其它远程源发送的,则所述同轴电缆、光纤电缆、双绞线、DSL或者诸如红外线、无线和微波等的无线技术包括在所述介质的定义中。本文使用的磁盘和光盘包括压缩光盘(CD)、激光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘用激光光学地复制数据。上面各项的组合也应包括在计算机可读介质的范围内。
本发明的以上描述被提供,以使本领域的任何技术人员能够实现或使用本发明。对于本领域技术人员而言,本发明的各种修改都是显而易见的,并且本文定义的总体原理也可以在不脱离本发明的精神或保护范围的基础上适用于其它变形。因此,本发明并不限于本文所描述的实施例和设计,而是与符合本文公开的原则和新颖特征的最广范围相一致。

Claims (60)

1.一种用于无线通信的方法,包括:
生成用于至少一个上行链路(UL)控制信号的第一资源划分调度;
生成用于至少一个UL数据信号的第二资源划分调度,所述第一资源划分调度和所述第二资源划分调度适用于相同的传输帧结构;
向用户设备(UE)发送所述第一资源划分调度和所述第二资源划分调度;以及
从所述UE接收传输帧,所述传输帧取决于所述第一资源划分调度和所述第二资源划分调度。
2.根据权利要求1所述的方法,其中,所述第一资源划分调度是基于第一周期,所述第二资源划分调度是基于与所述第一周期不同的第二周期。
3.根据权利要求2所述的方法,其中,所述第一周期和所述第二周期互为倍数关系。
4.根据权利要求1所述的方法,其中,所述第一资源划分调度使用第一子帧类型的分配配置,所述第二资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
5.根据权利要求4所述的方法,其中,所述第一资源划分和所述第二资源划分具有相同的周期。
6.根据权利要求1所述的方法,还包括:
在***信息块(SIB)消息中广播所述第一资源划分和所述第二资源划分的调度。
7.根据权利要求1所述的方法,还包括:
将所述第一资源划分和所述第二资源划分适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其被保留在所述传输帧结构中的每一个传输帧结构的第一频率边缘和第二频率边缘处;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述第一频率边缘和所述第二频率边缘中的每一个频率边缘处的所述半持久的控制区域之间保留的第三RB集合。
8.根据权利要求7所述的方法,其中,当不发送动态控制信号时,所述动态控制区域可以用于数据传输。
9.一种用于无线通信的方法,包括:
从服务小区接收控制资源划分调度;
从所述服务小区接收数据资源划分调度;以及
发送信号,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
10.根据权利要求9所述的方法,其中,所述控制资源划分调度是基于第一周期,所述数据资源划分调度是基于与所述第一周期不同的第二周期。
11.根据权利要求10所述的方法,其中,所述第一周期和所述第二周期互为倍数关系。
12.根据权利要求9所述的方法,其中,所述控制资源划分调度使用第一子帧类型的分配配置,所述数据资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
13.根据权利要求12所述的方法,其中,所述控制资源划分调度和所述数据资源划分调度具有相同的周期。
14.根据权利要求9所述的方法,其中,所述控制资源划分调度和所述数据资源划分调度是在相同的***信息块(SIB)消息中被接收的。
15.根据权利要求9所述的方法,其中,将所述控制资源划分调度和所述数据资源划分调度适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其具有在所述传输帧结构中的每一个传输帧结构的起始边缘和终止边缘上保留的第一资源块(RB)集合;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述起始边缘与所述终止边缘中的每一个边缘处的所述半持久的控制区域之间保留的第三RB集合。
16.根据权利要求15所述的方法,其中,所述控制信号包括半持久的控制信号和动态控制信号中的一个或多个。
17.根据权利要求16所述的方法,
其中,所述发送所述控制信号的步骤包括:
在所述半持久的控制区域中发送所述半持久的控制信号;
当存在所述动态控制信号时,在所述动态控制区域中发送所述动态控制信号;以及
其中,所述发送所述数据信号的步骤包括:
在所述数据区域中发送所述数据信号。
18.根据权利要求17所述的方法,其中,当不存在所述动态控制信号时,所述发送所述数据信号的步骤还包括:
在所述动态控制区域中发送所述数据信号。
19.一种被配置用于无线通信的基站,包括:
用于生成用于至少一个上行链路(UL)控制信号的第一资源划分调度的模块;
用于生成用于至少一个UL数据信号的第二资源划分调度的模块,所述第一资源划分调度和所述第二资源划分调度适用于相同的传输帧结构;
用于向用户设备(UE)发送所述第一资源划分调度和所述第二资源划分调度的模块;以及
用于从所述UE接收传输帧的模块,其中,所述传输帧取决于所述第一资源划分调度和所述第二资源划分调度。
20.根据权利要求19所述的基站,其中,所述第一资源划分调度是基于第一周期,所述第二资源划分调度是基于与所述第一周期不同的第二周期。
21.根据权利要求20所述的基站,其中,所述第一周期和所述第二周期互为倍数关系。
22.根据权利要求19所述的基站,其中,所述第一资源划分调度使用第一子帧类型的分配配置,所述第二资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
23.根据权利要求22所述的基站,其中,所述第一资源划分和所述第二资源划分具有相同的周期。
24.根据权利要求19所述的基站,还包括:
用于在***信息块(SIB)消息中广播所述第一资源划分和所述第二资源划分的调度的模块。
25.根据权利要求19所述的基站,还包括:
用于将所述第一资源划分和所述第二资源划分适用的传输帧结构分成三个区域的模块,其中,所述三个区域包括:
半持久的控制区域,其被保留在所述传输帧结构中的每一个传输帧结构的第一频率边缘和第二频率边缘处;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述第一频率边缘和所述第二频率边缘中的每一个频率边缘处的所述半持久的控制区域之间保留的第三RB集合。
26.根据权利要求25所述的基站,其中,当不发送动态控制信号时,所述动态控制区域可以用于数据传输。
27.一种被配置用于无线通信的用户设备(UE),包括:
用于从服务小区接收控制资源划分调度的模块;
用于从所述服务小区接收数据资源划分调度的模块;以及
用于发送信号的模块,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
28.根据权利要求27所述的UE,其中,所述控制资源划分调度是基于第一周期,所述数据资源划分调度是基于与所述第一周期不同的第二周期。
29.根据权利要求28所述的UE,其中,所述第一周期和所述第二周期互为倍数关系。
30.根据权利要求27所述的UE,其中,所述控制资源划分调度使用第一子帧类型的分配配置,所述数据资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
31.根据权利要求30所述的UE,其中,所述控制资源划分调度和所述数据资源划分调度具有相同的周期。
32.根据权利要求27所述的UE,其中,所述控制资源划分调度和所述数据资源划分调度是在相同的***信息块(SIB)消息中被接收的。
33.根据权利要求27所述的UE,其中,将所述控制资源划分调度和所述数据资源划分调度适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其具有在所述传输帧结构中的每一个传输帧结构的起始边缘和终止边缘上保留的第一资源块(RB)集合;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述起始边缘与所述终止边缘中的每一个边缘处的所述半持久的控制区域之间保留的第三RB集合。
34.根据权利要求33所述的UE,其中,所述控制信号包括半持久的控制信号和动态控制信号中的一个或多个。
35.根据权利要求34所述的UE,
其中,所述用于发送所述控制信号的模块包括:
用于在所述半持久的控制区域中发送所述半持久的控制信号的模块;
用于当存在所述动态控制信号时在所述动态控制区域中发送所述动态控制信号的模块;以及
其中,所述用于发送所述数据信号的模块包括:
用于在所述数据区域中发送所述数据信号的模块。
36.根据权利要求35所述的UE,其中,当不存在所述动态控制信号时,所述用于发送所述数据信号的模块还包括:
用于在所述动态控制区域中发送所述数据信号的模块。
37.一种用于无线网络中的无线通信的计算机程序产品,包括:
其上记录有程序代码的计算机可读介质,所述程序代码包括:
用于生成用于至少一个上行链路(UL)控制信号的第一资源划分调度的程序代码;
用于生成用于至少一个UL数据信号的第二资源划分调度的程序代码,所述第一资源划分调度和所述第二资源划分调度适用于相同的传输帧结构;
用于向用户设备(UE)发送所述第一资源划分调度和所述第二资源划分调度的程序代码;以及
用于从所述UE接收传输帧的程序代码,其中,所述传输帧取决于所述第一资源划分调度和所述第二资源划分调度。
38.根据权利要求37所述的计算机程序产品,其中,所述第一资源划分调度是基于第一周期,所述第二资源划分调度是基于与所述第一周期不同的第二周期。
39.根据权利要求37所述的计算机程序产品,其中,所述第一资源划分调度使用第一子帧类型的分配配置,所述第二资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
40.根据权利要求37所述的计算机程序产品,还包括:
用于在***信息块(SIB)消息中广播所述第一资源划分和所述第二资源划分的调度的程序代码。
41.根据权利要求37所述的计算机程序产品,还包括:
用于将所述第一资源划分和所述第二资源划分适用的传输帧结构分成三个区域的程序代码,其中,所述三个区域包括:
半持久的控制区域,其被保留在所述传输帧结构中的每一个传输帧结构的第一频率边缘和第二频率边缘处;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述第一频率边缘和所述第二频率边缘中的每一个频率边缘处的所述半持久的控制区域之间保留的第三RB集合。
42.一种用于无线网络中的无线通信的计算机程序产品,包括:
其上记录有程序代码的计算机可读介质,所述程序代码包括:
用于从服务小区接收控制资源划分调度的程序代码;
用于从所述服务小区接收数据资源划分调度的程序代码;以及
用于发送信号的程序代码,其中,所述信号包括取决于所述控制资源划分调度的控制信号和取决于所述控制资源划分调度的数据信号。
43.根据权利要求42所述的计算机程序产品,其中,所述控制资源划分调度是基于第一周期,所述数据资源划分调度是基于与所述第一周期不同的第二周期。
44.根据权利要求42所述的计算机程序产品,其中,所述控制资源划分调度使用第一子帧类型的分配配置,所述数据资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
45.根据权利要求42所述的计算机程序产品,其中,所述控制资源划分调度和所述数据资源划分调度是在相同的***信息块(SIB)消息中被接收的。
46.根据权利要求42所述的计算机程序产品,其中,将所述控制资源划分调度和所述数据资源划分调度适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其具有在所述传输帧结构中的每一个传输帧结构的起始边缘和终止边缘上保留的第一资源块(RB)集合;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述起始边缘和所述终止边缘中的每一个边缘处的所述半持久的控制区域之间保留的第三RB集合。
47.根据权利要求46所述的计算机程序产品,其中,所述控制信号包括半持久的控制信号和动态控制信号中的一个或多个。
48.根据权利要求47所述的计算机程序产品,
其中,所述用于发送所述控制信号的程序代码包括:
用于在所述半持久的控制区域中发送所述半持久的控制信号的程序代码;
用于当存在所述动态控制信号时在所述动态控制区域中发送所述动态控制信号的程序代码;以及
其中,所述用于发送所述数据信号的程序代码包括:
用于在所述数据区域中发送所述数据信号的程序代码。
49.一种被配置用于无线通信的基站,所述基站包括:
至少一个处理器;以及
存储器,其被耦合到所述至少一个处理器,
其中,所述至少一个处理器被配置为:
生成用于至少一个上行链路(UL)控制信号的第一资源划分调度;
生成用于至少一个UL数据信号的第二资源划分调度,所述第一资源划分调度和所述第二资源划分调度适用于相同的传输帧结构;
向用户设备(UE)发送所述第一资源划分调度和所述第二资源划分调度;以及
从所述UE接收传输帧,所述传输帧取决于所述第一资源划分调度和所述第二资源划分调度。
50.根据权利要求49所述的基站,其中,所述第一资源划分调度是基于第一周期,所述第二资源划分调度是基于与所述第一周期不同的第二周期。
51.根据权利要求49所述的基站,其中,所述第一资源划分调度使用第一子帧类型的分配配置,所述第二资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
52.根据权利要求49所述的基站,其中,所述至少一个处理器被进一步配置为:
在***信息块(SIB)消息中广播所述第一资源划分和所述第二资源划分的调度。
53.根据权利要求49所述的基站,其中,所述至少一个处理器被进一步配置为:
将所述第一资源划分和所述第二资源划分适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其被保留在所述传输帧结构中的每一个传输帧结构的第一频率边缘和第二频率边缘处;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述第一频率边缘和所述第二频率边缘中的每一个频率边缘处的所述半持久的控制区域之间保留的第三RB集合。
54.一种被配置用于无线通信的用户设备(UE),所述UE包括:至少一个处理器;以及
存储器,其被耦合到所述至少一个处理器,
其中,所述至少一个处理器被配置为:
从服务小区接收控制资源划分调度;
从所述服务小区接收数据资源划分调度;以及
发送信号,其中,所述信号包括取决于所述控制资源划分调度的
控制信号和取决于所述控制资源划分调度的数据信号。
55.根据权利要求54所述的UE,其中,所述控制资源划分调度是基于第一周期,所述数据资源划分调度是基于与所述第一周期不同的第二周期。
56.根据权利要求54所述的UE,其中,所述控制资源划分调度使用第一子帧类型的分配配置,所述数据资源划分调度使用与所述第一子帧类型的分配配置不同的第二子帧类型的分配配置。
57.根据权利要求54所述的UE,其中,所述控制资源划分调度和所述数据资源划分调度是在相同的***信息块(SIB)消息中被接收的。
58.根据权利要求54所述的UE,其中,将所述控制资源划分调度和所述数据资源划分调度适用的传输帧结构分成三个区域,其中,所述三个区域包括:
半持久的控制区域,其具有在所述传输帧结构中的每一个传输帧结构的起始边缘和终止边缘上保留的第一资源块(RB)集合;
数据区域,其具有在所述传输帧结构中的每一个传输帧结构的中间段中保留的第二RB集合;以及
动态控制区域,其具有在所述数据区域与所述起始边缘和所述终止边缘中的每一个边缘处的所述半持久的控制区域之间保留的第三RB集合。
59.根据权利要求54所述的UE,其中,所述控制信号包括半持久的控制信号和动态控制信号中的一个或多个。
60.根据权利要求54所述的UE,
其中,被配置为发送所述控制信号的所述至少一个处理器被配置为:
在所述半持久的控制区域中发送所述半持久的控制信号;
当存在所述动态控制信号时,在所述动态控制区域中发送所述动态控制信号;以及
其中,被配置为发送所述数据信号的所述至少一个处理器被配置为:
在所述数据区域中发送所述数据信号。
CN201180017750.4A 2010-04-08 2011-04-08 用于上行链路控制和上行链路数据信号的单独的资源划分管理 Active CN102907156B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32222810P 2010-04-08 2010-04-08
US61/322,228 2010-04-08
US13/079,716 2011-04-04
US13/079,716 US9031010B2 (en) 2010-04-08 2011-04-04 Separate resource partitioning management for uplink control and uplink data signals
PCT/US2011/031831 WO2011127435A1 (en) 2010-04-08 2011-04-08 Separate resource partitioning management for uplink control and uplink data signals

Publications (2)

Publication Number Publication Date
CN102907156A true CN102907156A (zh) 2013-01-30
CN102907156B CN102907156B (zh) 2016-09-07

Family

ID=44144886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180017750.4A Active CN102907156B (zh) 2010-04-08 2011-04-08 用于上行链路控制和上行链路数据信号的单独的资源划分管理

Country Status (7)

Country Link
US (1) US9031010B2 (zh)
EP (1) EP2556713B1 (zh)
JP (1) JP5646727B2 (zh)
KR (1) KR101475882B1 (zh)
CN (1) CN102907156B (zh)
TW (1) TW201204069A (zh)
WO (1) WO2011127435A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153738A1 (en) * 2013-03-27 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Method for selecting consecutive resource blocks and associated base station
CN105359593A (zh) * 2013-07-19 2016-02-24 夏普株式会社 终端装置、方法以及集成电路
CN107295650A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 一种下行控制信息传输方法、基站、ue 和***
CN108781141A (zh) * 2016-03-04 2018-11-09 三星电子株式会社 在支持混合自动重发请求方案的无线通信***中发送和接收信号的装置和方法
CN109565815A (zh) * 2016-08-04 2019-04-02 高通股份有限公司 在无线网络中可靠低延时与其它服务的共存
CN110192420A (zh) * 2017-01-13 2019-08-30 高通股份有限公司 控制资源的配置
CN113726495A (zh) * 2016-08-01 2021-11-30 诺基亚技术有限公司 用于数据传输的控制资源的使用

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634364B2 (en) 2010-04-20 2014-01-21 Qualcomm Incorporated Semi-persistent scheduling grants in heterogeneous networks
KR101674007B1 (ko) * 2010-05-26 2016-11-09 삼성전자주식회사 광대역 무선통신시스템에서 상향링크 자원 할당을 위한 레인징 방법 및 장치
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
WO2012067448A2 (ko) * 2010-11-17 2012-05-24 엘지전자 주식회사 무선 통신 시스템에서 하향링크제어채널을 송수신하는 방법 및 장치
KR101785313B1 (ko) 2011-04-12 2017-10-17 삼성전자주식회사 통신 시스템에서 간섭 제어를 위한 서브프레임 운용 및 채널 정보 전송 방법 및 장치
KR101820742B1 (ko) * 2011-05-30 2018-01-22 삼성전자 주식회사 이동 통신 시스템 및 그 시스템에서 데이터 전송 방법
US9742516B2 (en) * 2011-07-28 2017-08-22 Blackberry Limited Method and system for control format detection in heterogeneous cellular networks
JP5444298B2 (ja) * 2011-08-29 2014-03-19 株式会社Nttドコモ 無線通信システム、無線基地局および通信制御方法
WO2013074830A1 (en) * 2011-11-17 2013-05-23 Docomo Innovations, Inc. A method for scheduling and mu-mimo transmission over ofdm via interference alignment based on user multipath intensity profile information
US20130194997A1 (en) 2012-02-01 2013-08-01 Fujitsu Limited Low Power Narrowband Operation By An Endpoint
US9497013B2 (en) * 2012-02-10 2016-11-15 Nec Corporation Radio communication system, base station, and communication method
US9215060B2 (en) 2012-02-21 2015-12-15 Lg Electronics Inc. Communication method for user equipment and user equipment, and communication method for base station and base station
CN103327594B (zh) * 2012-03-22 2017-04-05 电信科学技术研究院 上行功率控制方法、设备及***
CN103379604B (zh) 2012-04-20 2018-04-27 北京三星通信技术研究有限公司 动态tdd小区中的上行功率控制方法
US9385856B2 (en) 2012-05-10 2016-07-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving frame configuration information in TDD wireless communication system
US9185620B2 (en) 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
EP2856826B1 (en) * 2012-05-31 2017-10-11 Qualcomm Incorporated Interference mitigation in asymmetric lte deployment
CN104412685B (zh) * 2012-05-31 2018-07-13 高通股份有限公司 不对称的lte部署中的干扰缓解
US9300395B2 (en) 2012-07-05 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for carrier aggregation
US9544880B2 (en) 2012-09-28 2017-01-10 Blackberry Limited Methods and apparatus for enabling further L1 enhancements in LTE heterogeneous networks
KR101664876B1 (ko) * 2013-05-14 2016-10-12 삼성전자 주식회사 무선 통신 시스템에서 셀간 간섭 제어를 위한 간섭 측정 방법 및 장치
CN104244430B (zh) * 2013-06-09 2017-11-24 普天信息技术研究院有限公司 快速调度方法
US10420054B2 (en) * 2014-03-28 2019-09-17 Qualcomm Incorporated Wireless communications in a system that supports a first subframe type having a first symbol duration and a second subframe type having a second symbol duration
US11831584B2 (en) * 2015-12-15 2023-11-28 Qualcomm Incorporated Techniques for indicating a dynamic subframe type
US10448285B2 (en) 2015-12-22 2019-10-15 Huawei Technologies Co., Ltd. Mobility handling in ultra dense networks
US10470171B2 (en) * 2016-04-01 2019-11-05 Huawei Technologies Co., Ltd. System and method for partitioning resources for joint decoding in the downlink
US10660115B1 (en) * 2016-10-19 2020-05-19 Sprint Spectrum L.P. Systems and methods for configuring a semi-persistent scheduler
KR102449433B1 (ko) * 2017-07-19 2022-09-30 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보 전송을 위한 방법 및 장치
WO2019180222A1 (en) * 2018-03-23 2019-09-26 Sony Corporation Coexistence of persistent and dedicated allocations on a wireless link
US11968658B2 (en) * 2021-07-09 2024-04-23 Cisco Technology, Inc. Partitioning radio resources to enable neutral host operation for a radio access network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010006208A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Hierarchical control channel structure for wireless communication
WO2010025249A1 (en) * 2008-08-27 2010-03-04 Qualcomm Incorporated Multiplexing of control information and data for wireless communication
US20100074209A1 (en) * 2008-09-23 2010-03-25 Qualcomm Incorporated Method and apparatus for controlling ue emission in a wireless communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031688B2 (en) 2007-06-11 2011-10-04 Samsung Electronics Co., Ltd Partitioning of frequency resources for transmission of control signals and data signals in SC-FDMA communication systems
KR20090029623A (ko) 2007-09-18 2009-03-23 엘지전자 주식회사 무선통신 시스템에서 시스템 정보 획득 방법
US8472389B2 (en) 2007-09-21 2013-06-25 Panasonic Corporation Radio resource management device, radio communication base station device, and radio resource management method
JP5064573B2 (ja) * 2008-02-08 2012-10-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 通信システムにおける方法および装置
US8184579B2 (en) * 2008-02-15 2012-05-22 Texas Instruments Incorporated ACK/NAK repetition schemes in wireless networks
US8483107B2 (en) 2008-03-16 2013-07-09 Lg Electronics Inc. Method and apparatus for acquiring resource allocation of control channel
US8442069B2 (en) 2008-04-14 2013-05-14 Qualcomm Incorporated System and method to enable uplink control for restricted association networks
US9288021B2 (en) 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
US8311053B2 (en) 2008-09-15 2012-11-13 Infineon Technologies Ag Methods for controlling an uplink signal transmission power and communication devices
US20100309876A1 (en) 2009-06-04 2010-12-09 Qualcomm Incorporated Partitioning of control resources for communication in a dominant interference scenario
US8320267B2 (en) * 2009-06-23 2012-11-27 Motorola Mobility Llc Reference signal sounding for uplink pilot time slot in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010006208A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Hierarchical control channel structure for wireless communication
WO2010025249A1 (en) * 2008-08-27 2010-03-04 Qualcomm Incorporated Multiplexing of control information and data for wireless communication
US20100074209A1 (en) * 2008-09-23 2010-03-25 Qualcomm Incorporated Method and apparatus for controlling ue emission in a wireless communication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153738A1 (en) * 2013-03-27 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Method for selecting consecutive resource blocks and associated base station
US10015787B2 (en) 2013-03-27 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting consecutive resource blocks and associated base station
CN105359593A (zh) * 2013-07-19 2016-02-24 夏普株式会社 终端装置、方法以及集成电路
CN105359593B (zh) * 2013-07-19 2019-01-04 夏普株式会社 终端装置、方法以及集成电路
CN108781141A (zh) * 2016-03-04 2018-11-09 三星电子株式会社 在支持混合自动重发请求方案的无线通信***中发送和接收信号的装置和方法
CN108781141B (zh) * 2016-03-04 2021-03-02 三星电子株式会社 在支持混合自动重发请求方案的无线通信***中发送和接收信号的装置
CN107295650A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 一种下行控制信息传输方法、基站、ue 和***
CN107295650B (zh) * 2016-03-31 2019-11-15 电信科学技术研究院 一种下行控制信息传输方法、基站、ue和***
CN113726495A (zh) * 2016-08-01 2021-11-30 诺基亚技术有限公司 用于数据传输的控制资源的使用
CN109565815A (zh) * 2016-08-04 2019-04-02 高通股份有限公司 在无线网络中可靠低延时与其它服务的共存
CN110192420A (zh) * 2017-01-13 2019-08-30 高通股份有限公司 控制资源的配置
CN110192420B (zh) * 2017-01-13 2023-05-26 高通股份有限公司 控制资源的配置

Also Published As

Publication number Publication date
US20120082101A1 (en) 2012-04-05
JP2013529413A (ja) 2013-07-18
EP2556713B1 (en) 2019-01-16
US9031010B2 (en) 2015-05-12
KR20130020677A (ko) 2013-02-27
EP2556713A1 (en) 2013-02-13
CN102907156B (zh) 2016-09-07
JP5646727B2 (ja) 2014-12-24
TW201204069A (en) 2012-01-16
KR101475882B1 (ko) 2014-12-22
WO2011127435A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
CN102907156A (zh) 用于上行链路控制和上行链路数据信号的单独的资源划分管理
US11652516B2 (en) Method and apparatus for configuration of CSI-RS for 3-D MIMO
RU2624003C2 (ru) Способы и устройства для расширяемого и масштабируемого канала управления для беспроводных сетей
US9313782B2 (en) Enhanced PDSCH operation
KR101962457B1 (ko) Csi 피드백을 위한 효율적인 업링크 리소스 표시
CN102934497B (zh) 频域和时域范围扩展
CN102823165B (zh) 针对异构网络的***接入
KR101806826B1 (ko) 다수의 액세스 노드들 사이에 사용자 장비 처리 능력을 할당하기 위한 기술들
CN105379383B (zh) 针对eimta的有效下行链路操作
CN102845016A (zh) 取决于子帧的物理上行链路控制信道(pucch)区域设计方案
CN105210308B (zh) 用于无线通信的方法、节点、非暂时性计算机可读介质和装置
CN104938014A (zh) 用于长期演进(lte)的基于增强型控制信道单元(ecce)的物理下行链路共享信道(pdsch)资源分配
CN102090109A (zh) 用于在显著干扰场景中进行通信的方法和装置
CN105122715A (zh) 针对机器型通信(mtc)的物理广播信道(pbch)覆盖增强
CN106102176A (zh) 在使用公共参考信号干扰消除的***中计算信道状态反馈
CN103718496A (zh) 用于以信号发送聚合的载波的控制数据的方法和装置
CN103069903A (zh) 用于不对称上行链路/下行链路频谱的后向兼容lte***
CN102893647A (zh) 用于在干扰场景中提高上行链路覆盖的***和方法
CN104885548A (zh) 在多tti调度消息中的非连续子帧
CN102812768A (zh) Tdd中的高效资源利用
CN102948238B (zh) 在干扰场景下增强上行链路覆盖的方法和装置
CN103004117A (zh) 去往无线通信***中的用户设备的物理层信令
CN104115539A (zh) 处理LTE中的增强型PDCCH(ePDCCH)
CN104025493A (zh) 长期演进(LTE)中的增强型物理下行链路控制信道(e-PDCCH)的结构
CN102893677A (zh) 利用交叉子帧分配的功率控制

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant