CN102901951A - 基于gpu的雷达信号脉内特征实时分析实现方案 - Google Patents

基于gpu的雷达信号脉内特征实时分析实现方案 Download PDF

Info

Publication number
CN102901951A
CN102901951A CN2011102101319A CN201110210131A CN102901951A CN 102901951 A CN102901951 A CN 102901951A CN 2011102101319 A CN2011102101319 A CN 2011102101319A CN 201110210131 A CN201110210131 A CN 201110210131A CN 102901951 A CN102901951 A CN 102901951A
Authority
CN
China
Prior art keywords
gpu
signal
data
frequency
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102101319A
Other languages
English (en)
Inventor
张朝晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011102101319A priority Critical patent/CN102901951A/zh
Publication of CN102901951A publication Critical patent/CN102901951A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

基于GPU的雷达信号脉内特征实时分析实现方案,主要包括:数据获取模块,接收来自数字化仪的数字比特流,将数据分为多个短序列供后续处理;GPU信号分析模块,对各短序列数据进行并行分析处理,将处理得到的频率分集特征、频率、频率均方根误差、相位跳变特征等数据输出;CPU信号分析模块,分析GPU输出数据,统计属于同一脉冲各短序列中的分集比例,用各短时序列中的瞬时频率值进行最小二乘拟合得到调频斜率及拟合均方根误差,统计瞬时频率平均均方根误差和有效相位跳变,然后根据各特征参数判断脉内调制类型。本发明除处理实时性较好,还具有结构简单,扩展性强,易维修可升级的优点。

Description

基于GPU的雷达信号脉内特征实时分析实现方案
一、技术领域
本发明涉及电子对抗侦察技术领域,主要用于电子侦察设备对雷达信号脉冲内部调制特征进行实时分析。
二、背景技术
随着技术进步,各种雷达争相采用先进的调制技术,脉冲重复频率、载频均固定的雷达越来越少,信号环境日趋复杂。电子侦察设备越来越难以从信号的载频、脉冲重复频率、脉宽等参数中分析出具体目标信息,进而得到有价值的情报。电子侦察将重点转向分析雷达脉冲内部的调制特征,即电子“指纹”。
近二十年发生的几场战争表明,对战场电磁信息掌握的及时和准确程度决定了战争的走向。因此,迫切需要可实时分析雷达脉内特征的方法。
由于现代雷达信号瞬时带宽越来越大,可达500MHz甚至更高,需要使用1GHz以上的采样频率来采集信号,需处理的数据量巨大,实时脉内分析要求平台的处理能力达到每秒几百至数千亿次,在处理器数量较少的通用计算平台上难以实现。因此,目前国内还没有可实时分析雷达信号脉内特征的现役装备。
电子侦察开始借鉴软件无线电的思路来解决这个问题,主要是采用基于FPGA的数字信道化接收机技术。一般的方法是在FPGA中采用多相滤波数字下变频,将较宽的带宽变换到多路较窄的基带频率上,从而减少每一路需处理的数据量,用硬件上的并行弥补处理性能不足。2008年12月,电子科技大学祝俊博士在其学位论文《宽带雷达信号侦察接收关键技术研究》104至112页公开了基于DSP和FPGA的宽带数字信道化接收机实验***,初步实现了实时测频,并可实时识别脉内线性调频、相位编码特征。但该方案需要设计专门的硬件***,且规模庞大,结构较复杂,实用化难度较大,目前尚未见于具体装备。
近年来GPU(图形处理器)技术发展很快,单芯片计算能力已超过每秒万亿次,而且可以通过CUDA、OpenCL等接口进行通用计算。目前GPU已用于医学成像、分子模拟、股票期权、物理仿真等领域,极大地提高了生产率。理论上,GPU已经具备了直接处理宽带海量数据的能力,但至今未见将GPU用于实时分析雷达脉内特征的相关报道。
三、发明内容
本发明提供一种基于GPU的雷达信号脉冲内部调制特征实时分析处理方案。该实现方案使用现成的通用硬件,无须设计专门硬件,模块少,结构简洁。
本发明的技术解决方案是:基于GPU的雷达信号脉内特征实时分析实现方案,其特征主要包括:
单路***由1个数据获取模块、1至4个GPU信号分析模块和1个CPU信号分析模块组成,其中:
数据获取模块,接收来自数字化仪的数字比特流,按便于GPU处理的固定长度分为多组短序列,输出供后续处理;
GPU信号分析模块,执行信号分析算法中可以并行处理的部分,利用GPU内部大量运算单元并行分析各组短序列数据,将处理得到的频率分集特征、频率值、频率值均方根误差、相位跳变特征等数据输出至CPU信号分析模块;
CPU信号分析模块,执行信号分析算法中顺序处理的部分,分析GPU信号分析模块的输出数据,统计属于同一脉冲各短序列的分集比例,用各序列的频率值以最小二乘法拟合得到调频斜率及拟合均方根误差,统计频率均方根误差的均值和有效相位跳变,然后根据各特征参数判断调制类型。
通常情况下,单路***采用1个GPU信号分析模块即可实时处理,对于高占空比信号,可根据需要,采用1至4个GPU信号分析模块并行执行,达到实时处理目的。
本发明的单路***可实时分析500MHz带宽的雷达信号脉内特征;如需分析更高带宽信号,可在多个信道中同时应用本发明的多路***。
本发明与现有技术相比有如下优点:
1.本发明提出的雷达信号脉内特征实时分析实现方案,前端无需采用数字信道化结构,不必专门设计硬件,因此模块少,结构简单,成本和制造难度较低。
2.本发明提出的雷达信号脉内实时分析实现方案还具有良好的扩展性,可采用多个GPU号分析模块并行执行,也可用多路***实时分析更宽频段的信号。
3.本发明的处理核心GPU为通用硬件,更换、维修方便,而且随着GPU技术的发展,容易通过直接升级新一代GPU获得更强的处理能力。
因此,本发明除处理实时性较好,还具有结构简单,扩展性强,易维修可升级的优点。
本发明如在电子侦察设备中得到应用,可提高识别复杂调制雷达信号的能力,缩短对威胁目标的预警时间,为作战***提供更及时、更准确的电子情报,从而提高作战能力。
四、附图说明
图1是本发明的基于GPU的雷达信号脉内特征实时分析实现方案处理流程;
图2是本发明的数据获取模块处理流程;
图3是本发明的GPU信号分析模块流程;
图4是本发明的CPU信号分析模块流程;
图5是本发明的基于GPU的雷达信号脉内特征实时分析实现方案中多线程异步协作示意图;
图6是本发明单路***中采用多个GPU信号分析模块实现并行处理的数据分配方式示意图。
五、具体实施方式
下面列出的具体实施方法可以使本专业技术人员更全面地理解本发明,涉及到的公开算法或技术实施途径不唯一,变量所取具体数值亦可根据实际需要调整,不应成为限制本发明的条件。
图1是本发明的基于GPU的雷达信号脉内特征实时分析实现方案处理流程。由数据获取模块将接收到的数字比特流根据所属脉冲分为多组便于GPU并行处理的短序列,再先后经GPU信号分析模块和CPU信号分析模块分析处理得到脉冲的脉内特征参数。
图2是本发明的数据获取模块处理流程。该模块包括以下处理步骤:
1.读取输入脉冲数据,将每个输入的脉冲序列前后补0,使其长度M为N的整数倍,其中,N应为L的整数次幂,便于使用基L的FFT算法;
2.在主机端分配大小为N(2K-1)的数据缓存,其中K=M/N;
3.用长度为N点的窗在每个脉冲的数据序列上移动,步长为N/2,每移动1个步长取出N点数据,即从前后相邻的N点短序列中有N/2点重复;
4.每个脉冲分出2K-1段长度为N的短序列,按各脉冲的顺序存于主机缓存中;
5.在GPU中为每个脉冲分配大小为N(2K-1)的存储区,再一次性从主机缓存将所有脉冲的数据拷入GPU。
数据在拷入GPU之前,必须在主机上先进行缓冲,这样可以最大限度减少零散数据多次拷入GPU,在通过PCI-E总线时积累的延迟。
图3是本发明的GPU信号分析模块流程。该模块包括以下处理步骤:
1.GPU的每个线程块读取长度为N的短序列,先将数据类型从整数型转换为单精度浮点复数类型;
2.每个线程块进行N点FFT运算,将信号从时域变换至频域;
2.搜索幅度最大的2根谱线,最大的谱线即对应中心频率的估计值f0,用幅度其次的谱线值与f0进行比较,如小于3dB,则记该谱线对应频率为第2分集频率,并置频率分集标志为真;
3.将N点的复频域数据前N/2点乘以2(零频处不变),后N/2点乘以0,进行N点IFFT运算,得到原信号的解析信号序列s(n);
4.由式r(n,τ)=s(n)s*(n-τ)得到瞬时自相关函数序列r(n,τ),τ为延时值,可根据具体情况取适当的值;
5.对序列r(n,τ)应用瞬时自相关算法,计算出中央N/2点的瞬时频率和瞬时相位差,统计瞬时相位差接近π的次数(记为相位跳变数),并求瞬时频率的平均值及均方根误差;
6.输出属于各脉冲的2K-1个频率分集标志、相位跳变次数、频率(即瞬时频率平均值)、频率均方根误差或第2分集频率值(统计频率分集信号的频率均方根误差没有意义)。
基于GPU的FFT算法参见Naga K Govindaraju等人2008年11月在《SC′08 Proceedingsof the 2008 ACM/IEEE conference on Supercomputing》上发表的《High Performance DiscreteFourier Transforms on Graphics Processors》,IEEE Press,ISBN:978-1-4244-2835-9。计算瞬时频率、瞬时相位差的瞬时自相关算法,可参考2003年1月西安电子科技大学刘东霞的《脉内调制信号的分析与自动识别》第13-14页、30-35页及37-39页。
GPU信号分析模块中基本运行单位是线程,每个线程块由N/2个线程组成,处理1个长度为N的序列,整个GPU管理几百个硬件核心以异步并行方式运行成百上千线程块。GPU处理模块运行过程中,只有原始数据输入和处理结果输出时GPU与CPU之间进行通信,避免了不必要的通信开销。
图4是本发明的CPU信号分析模块流程。CPU信号分析模块对GPU信号分析模块输出的属于各不同脉冲的参数进行统计和分析。统计属于同一脉冲各序列中出现频率分集标志的比例;用最小二乘法将各短序列的频率值进行拟合,得到调频斜率k和拟合一次曲线均方根误差C,并统计频率均方根误差的平均值D,计算调频范围Δf,若相位跳变数为奇数则记为有效相位跳变(强噪声造成的相位跳变一般成对出现),并记录其次数T,然后用各特征参数根据以下判别规则判断信号所属调制类型:
1.属于同一脉冲的序列频率分集标志出现比例大于90%,判为频率分集信号,否则为其他脉内调制类型信号;
2.D<38且C≥1,判为频率编码信号,否则判为常规信号、线性调频信号或相位编码信号;
3.D<30且T>1,判为相位编码信号,否则判为常规信号或线性调频信号;
4.时宽带宽积>5,判为线性调频信号,否则判为常规信号;
5.不满足以上规则的信号判为脉内调制类型未知信号。
表1至表4中的仿真实验数据可验证以上判别规则。
本发明提到的具体实施方法,在信噪比大于10的情况下,分析识别正确率大于90%,配合降噪算法,可适应更低信噪比的情况。
表1
Figure BSA00000544512100051
表2
Figure BSA00000544512100052
表3
Figure BSA00000544512100061
表4
使用价格相当的GPU和4核心CPU进行对比测试,测试条件、方法及结果在表5中列出。表中所列GPU性能目前处于中档水平,使用更高性能GPU或使用多GPU处理实时性更好。单部雷达信号占空比一般不超过1%,但在复杂电磁环境下,多部雷达信号互相交织,占空比常达到10%以上,从表中数据可见,使用本发明基于GPU的方案比使用CPU的方案性能高1个数量级,能够实时分析高占空比雷达信号。
表5
Figure BSA00000544512100071
图5为本发明的基于GPU的雷达信号脉内特征实时分析实现方案中多线程异步协作示意图。有多个主要线程同时运行,其中取数线程负责从输入数据缓冲区队列中获取数据,并将数据分为短序列分批送入待处理队列;GPU处理线程负责从待处理队列中读取数据并负责调度GPU信号分析模块进行处理;CPU处理线程负责从GPU信号分析模块输出的数据队列中取出数据,由CPU信号分析模块进行特征归类分析并输出脉内特征数据。各线程互相协作,以流水线的方式不间断同时工作。
图6为本发明单路***中采用多个GPU信号分析模块实现并行处理的数据分配方式示意图。若采用4个GPU信号分析模块,分别在0号GPU,1号GPU,2号GPU,3号GPU上调度;则第0组信号输入数据由0号GPU处理,第1组信号输入数据由1号GPU处理......第i组信号输入数据由序号为(i%4)的GPU处理,循环顺序调度所有GPU异步并行处理。
本发明未尽事宜属于本领域公知技术。

Claims (3)

1.基于GPU的雷达信号脉内特征实时分析实现方案,其特征在于主要包括:
单路***由1个数据获取模块、1至4个GPU信号分析模块和1个CPU信号分析模块组成,其中:
数据获取模块,接收来自数字化仪的数字比特流,按便于GPU处理的固定长度分为多组短序列,输出供后续处理;
GPU信号分析模块,执行信号分析算法中可以并行处理的部分,利用GPU内部大量运算单元并行分析各组短序列数据,将处理得到的频率分集特征、频率值、频率值均方根误差、相位跳变特征等数据输出至CPU信号分析模块;
CPU信号分析模块,执行信号分析算法中顺序处理的部分,分析GPU信号分析模块的输出数据,统计属于同一脉冲各短序列的分集比例,用各序列的频率值以最小二乘法拟合得到调频斜率及拟合均方根误差,统计频率均方根误差的均值和有效相位跳变,然后根据各特征参数判断调制类型。
2.根据权利要求1所述的基于GPU的雷达信号脉内特征实时分析实现方案,其特征在于:同时应用本发明的多路***,可满足实时分析多个500MHz带宽内雷达信号脉内特征的需要。
3.根据权利要求1所述的基于GPU的雷达信号脉内特征实时分析实现方案,其特征在于:有多个主要线程同时运行,其中取数线程负责从输入数据缓冲区队列中获取数据,并将数据分为短序列分批送入待处理队列;GPU处理线程负责从待处理队列中读取数据并负责调度GPU信号分析模块进行处理;CPU处理线程负责从GPU信号分析模块输出的数据队列中取出数据,由CPU信号分析模块进行特征归类分析并输出脉内特征数据;各线程互相协作,以流水线的方式不间断同时工作。
CN2011102101319A 2011-07-26 2011-07-26 基于gpu的雷达信号脉内特征实时分析实现方案 Pending CN102901951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102101319A CN102901951A (zh) 2011-07-26 2011-07-26 基于gpu的雷达信号脉内特征实时分析实现方案

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102101319A CN102901951A (zh) 2011-07-26 2011-07-26 基于gpu的雷达信号脉内特征实时分析实现方案

Publications (1)

Publication Number Publication Date
CN102901951A true CN102901951A (zh) 2013-01-30

Family

ID=47574292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102101319A Pending CN102901951A (zh) 2011-07-26 2011-07-26 基于gpu的雷达信号脉内特征实时分析实现方案

Country Status (1)

Country Link
CN (1) CN102901951A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426602A (zh) * 2015-11-05 2016-03-23 中国电子科技集团公司第四十一研究所 一种基于多核dsp实现脉内调制特性分析的装置及方法
CN110162398A (zh) * 2019-04-11 2019-08-23 平安科技(深圳)有限公司 一种疾病分析模型的调度方法、装置及终端设备
CN112946580A (zh) * 2021-01-14 2021-06-11 无锡国芯微电子***有限公司 一种多处理器协同辐射源频率参数估计装置及方法
CN117111016A (zh) * 2023-10-20 2023-11-24 南京航天工业科技有限公司 复杂电磁环境下基于信道化的实时脉内分析方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241954A1 (en) * 2004-10-12 2007-10-18 Hintz Kenneth J Syntactic target classifier
CN101587186A (zh) * 2008-05-22 2009-11-25 赵力 一种雷达脉内调制信号的特征提取方法
US20100318593A1 (en) * 2009-06-15 2010-12-16 Em Photonics, Inc. Method for Using a Graphics Processing Unit for Accelerated Iterative and Direct Solutions to Systems of Linear Equations
CN101937082A (zh) * 2009-07-02 2011-01-05 北京理工大学 基于gpu众核平台的合成孔径雷达并行成像方法
CN101937555A (zh) * 2009-07-02 2011-01-05 北京理工大学 基于gpu众核平台的脉冲压缩参考矩阵并行生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241954A1 (en) * 2004-10-12 2007-10-18 Hintz Kenneth J Syntactic target classifier
CN101587186A (zh) * 2008-05-22 2009-11-25 赵力 一种雷达脉内调制信号的特征提取方法
US20100318593A1 (en) * 2009-06-15 2010-12-16 Em Photonics, Inc. Method for Using a Graphics Processing Unit for Accelerated Iterative and Direct Solutions to Systems of Linear Equations
CN101937082A (zh) * 2009-07-02 2011-01-05 北京理工大学 基于gpu众核平台的合成孔径雷达并行成像方法
CN101937555A (zh) * 2009-07-02 2011-01-05 北京理工大学 基于gpu众核平台的脉冲压缩参考矩阵并行生成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
俞惊雷等: "一种基于GPU的高效合成孔径雷达信号处理器", 《信息与电子工程》, vol. 8, no. 4, 31 August 2010 (2010-08-31), pages 415 - 419 *
刘东霞等: "脉内调制信号的分析", 《现代雷达》, no. 11, 30 November 2003 (2003-11-30), pages 17 - 20 *
张朝晖等: "基于GPGPU的准实时测频技术", 《雷达科学与技术》, no. 2, 30 April 2011 (2011-04-30), pages 183 - 187 *
赵丽丽等: "基于CUDA的高速FFT计算", 《计算机应用研究》, vol. 28, no. 4, 30 April 2011 (2011-04-30), pages 1556 - 1559 *
邹顺等: "一种雷达信号脉内调制特征分析方法", 《航天电子对抗》, vol. 22, no. 1, 28 February 2006 (2006-02-28), pages 52 - 54 *
韩立辉等: "基于瞬时自相关算法的线性调频雷达信号脉内分析研究", 《舰船电子对抗》, vol. 34, no. 3, 30 June 2011 (2011-06-30) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426602A (zh) * 2015-11-05 2016-03-23 中国电子科技集团公司第四十一研究所 一种基于多核dsp实现脉内调制特性分析的装置及方法
CN105426602B (zh) * 2015-11-05 2019-07-26 中国电子科技集团公司第四十一研究所 一种基于多核dsp实现脉内调制特性分析的装置及方法
CN110162398A (zh) * 2019-04-11 2019-08-23 平安科技(深圳)有限公司 一种疾病分析模型的调度方法、装置及终端设备
CN110162398B (zh) * 2019-04-11 2024-05-03 平安科技(深圳)有限公司 一种疾病分析模型的调度方法、装置及终端设备
CN112946580A (zh) * 2021-01-14 2021-06-11 无锡国芯微电子***有限公司 一种多处理器协同辐射源频率参数估计装置及方法
CN117111016A (zh) * 2023-10-20 2023-11-24 南京航天工业科技有限公司 复杂电磁环境下基于信道化的实时脉内分析方法及***
CN117111016B (zh) * 2023-10-20 2023-12-19 南京航天工业科技有限公司 复杂电磁环境下基于信道化的实时脉内分析方法及***

Similar Documents

Publication Publication Date Title
CN106526568B (zh) 基于短时稀疏分数阶傅里叶变换的雷达动目标检测方法
Liu et al. Deep learning and recognition of radar jamming based on CNN
CN102830409B (zh) 一种基于压缩感知的导航信号采集方法
CN111722188A (zh) 基于stft预分选的pri变换雷达信号分选方法
CN104854473B (zh) 使用多普勒聚焦的亚奈奎斯特雷达处理
CN102508031A (zh) 一种基于傅里叶级数的局部放电脉冲相角测量方法
CN106324596B (zh) 基于压缩感知的随机脉冲多普勒雷达角度-多普勒成像方法
CN102901951A (zh) 基于gpu的雷达信号脉内特征实时分析实现方案
CN106597389B (zh) 步进频信号固定主瓣宽度的低旁瓣加权系数设计方法
CN104991239B (zh) 一种基于脉冲压缩雷达的距离旁瓣抑制方法
CN110208785A (zh) 基于稳健稀疏分数阶傅立叶变换的雷达机动目标快速检测方法
CN110308427A (zh) 基于fpga的lfm脉冲雷达频域脉冲压缩处理方法
CN114118142A (zh) 一种雷达脉内调制类型的识别方法
CN114545342A (zh) 利用多通道侦察接收机的雷达脉冲信号参数测量方法
Limin et al. Low probability of intercept radar signal recognition based on the improved AlexNet model
EP3055704B1 (en) Analog to information converter
Nguyen et al. Wavelet-based sparse representation for helicopter main rotor blade radar backscatter signal separation
CN106405509B (zh) 空时自适应信号的分块处理方法
CN113608177A (zh) 一种雷达高稳健低旁瓣波形设计方法
CN104181508A (zh) 基于压缩感知的威胁雷达信号检测方法
Ni et al. Polyphase-modulated radar signal recognition based on time-frequency amplitude and phase features
CN111522000A (zh) 一种基于OFDM-chirp波形的目标检测方法
CN109490853A (zh) 一种线性调频脉冲信号中心频率处谱线值确定方法
CN115685056B (zh) 空间目标二维角度的测量方法、装置、电子设备及介质
Dash et al. Time frequency analysis of OFDM-LFM waveforms for multistatic airborne radar

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130130