CN102891275A - 改性微孔隔膜及其制备方法和应用 - Google Patents

改性微孔隔膜及其制备方法和应用 Download PDF

Info

Publication number
CN102891275A
CN102891275A CN2011102033326A CN201110203332A CN102891275A CN 102891275 A CN102891275 A CN 102891275A CN 2011102033326 A CN2011102033326 A CN 2011102033326A CN 201110203332 A CN201110203332 A CN 201110203332A CN 102891275 A CN102891275 A CN 102891275A
Authority
CN
China
Prior art keywords
precursor
barrier film
micro
cleaning
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102033326A
Other languages
English (en)
Inventor
张鹏
姜来新
王丹
何丹农
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN2011102033326A priority Critical patent/CN102891275A/zh
Publication of CN102891275A publication Critical patent/CN102891275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种制备改性微孔隔膜的方法,其特征在于原子层沉积制备改性微孔隔膜:将预处理的微孔隔膜置于原子层沉积设备的反应腔,关闭腔体,用高纯氮清洗反应腔,在20hPa以下的低真空并加热到反应温度80oC-150oC,在载气流量1-100ml/min条件下将前躯体通入反应腔完成一次脉冲,前驱体通入反应腔的脉冲时间为0.1-1s;用高纯氮气清洗,,高纯氮气清洗前躯体的脉冲时间为1-10s;然后通入水蒸气,得到沉积物,最后用高纯氮气清洗,脉冲时间1-20s;前躯体-高纯氮气清洗-水蒸气-高纯氮气清洗,该过程定义为一个沉积循环;沉积循环数在1-1000次后,得到改性的微孔隔膜。本方法能够大幅度提高电解质体系的离子传导速率,满足大电流充放电的需要。

Description

改性微孔隔膜及其制备方法和应用
技术领域
本发明属于电化学领域,具体涉及一种微孔隔膜及其制备方法和应用,特别是涉及一种改性微孔隔膜及其制备方法和应用。 
背景技术
目前,采用液体电解液的化学电源体系如锂离子电池等需要采用隔膜材料阻隔正、负极,避免短路。隔膜材料主要是以聚乙烯(Polyethylene, PE)、聚丙烯(Polypropylene, PP)、聚四氟乙烯(Polytetrafluoroethylene, PTFE)等为主要成分的含有微孔结构的聚合物膜或无纺布。液体电解液(一般是含有电解质盐的碳酸酯类有机溶剂)存在于微孔结构中,实现离子在正、负极之间的传导。隔膜与液体电解液构成了电解质体系。 
随着电动汽车等领域的发展,对于锂离子电池等化学电源体系在大电流工作条件下的性能要求越来越高。这就需要提高离子在电极与电解质间的传导速度。 
电解质体系的离子电导率σ(T)可用下式表示: 
σ(T)=Σniqiμi 
其中,ni、qi、μi分别表示载流子的数目、电荷和迁移速率。提高电解质体系的离子电导率主要是通过开发新型电解质盐、提高隔膜孔隙率及改善微孔联通结构、在隔膜的聚合物基体上接枝与丙烯酸酯类电解液相亲性能较好的聚合物链段以及添加无机填料等。在这其中,填料的添加能提高电解质体系的复合性能而受到最广泛的关注。
填料主要是无机氧化物如二氧化硅(SiO2)、二氧化钛(TiO2)、三氧化二铝(Al2O3)、氧化锆(ZrO2)等。填料上的氧(O)充当路易斯碱,与电解质盐中的阳离子(路易斯酸)发生相互作用,形成填料/阳离子富相,相界面被认为是电解质盐阳离子迁移的新通道。研究表明,该通道可以实现离子的快速传导,从而获得较高的室温离子电导率和阳离子迁移数。无机填料的加入还会起到稳定电解质/电极界面的作用,提高电解质体系的电化学窗口。这是因为无机粉末能捕捉残留在电解质中的杂质,如氧气、痕量的水等,以保护电极。因此,形成连续、有效的填料/电解质盐阳离子的界面对于提高电解质体系的性能尤为重要。 
原子层沉积(Atomic Layer Deposition, ALD)是一种可以将物质以单原子膜形式一层层的镀在基底表面的方法。通过将气相前驱体脉冲交替地通入反应器在沉积基体上化学吸附并反应形成沉积膜。原子层沉积技术由于其沉积参数的高度可控型(厚度、成份和结构),优异的沉积均匀性和一致性使得其在微纳电子和纳米材料等领域具有广泛的应用潜力。采用ALD技术可以沉积的材料包括: 氧化物,氮化物,氟化物,金属,碳化物,硫化物及以上材料的复合物等。 
由于纳米粒子具有较高的比表面能,直接添加到聚合物体系容易发生团聚,造成填料功能的丧失。通过原子层沉积的方法不仅可以避免直接添加造成的纳米填料的团聚现象,并能通过控制沉积次数等实验条件获得连续、有效的填料/电解质盐阳离子的界面,这对于提高电解质体系的性能非常重要,具有其他通过填料添加改性隔膜的方法所不具备的优势。此外,本方法操作简便,沉积的效果高度可控。 
发明内容
本发明通过原子层沉积方法在微孔隔膜中生成无机氧化物,实现提高电解质体系性能的目的。 
本发明的一个目的是提供一种微孔隔膜的改性方法。 
本发明的另一个目的是提供由这种发明方法制备的改性微孔隔膜。 
本发明的目的还一个目的是提供由这种发明方法制备的微孔改性隔膜在锂离子电池等化学电源体系的应用。 
本发明提供一种制备改性微孔隔膜的方法,其特征在于具体步骤如下: 
(1)微孔隔膜的预处理:将微孔隔膜浸入无水乙醇,在超声条件下清洗,取出微孔隔膜,用无水乙醇淋洗,在60oC真空条件下烘干备用,保持欲改性的微孔隔膜有洁净的表面;
(2)原子层沉积制备改性微孔隔膜:将步骤(1)预处理的微孔隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔,在20hPa以下的低真空并加热到反应温度80oC-150oC,在载气流量1-100ml/min条件下将前躯体通入反应腔完成一次脉冲,前驱体通入反应腔的脉冲时间为0.1-1秒;用高纯氮气清洗,,高纯氮气清洗前躯体的脉冲时间为1-10秒;清洗掉多余的前躯体,然后通入水蒸气使前躯体发生水解,得到沉积物,通入水蒸汽的脉冲时间为0.1-1秒,最后用高纯氮气清洗,去除未发生反应的水蒸气,脉冲时间1-20秒;前躯体-高纯氮气清洗-水蒸气-高纯氮气清洗,该过程定义为一个沉积循环;沉积循环数在1-1000次后,得到改性的微孔隔膜;
其中所述的前躯体为金属有机化合物,纯度大于98%。
所述的微孔隔膜包括单层或多层以聚乙烯、或聚丙烯等聚烯烃为基体的聚合物隔膜或以聚酰胺、或聚酯、或聚四氟乙烯、或聚偏氟乙烯,或聚氯乙烯为基体的无纺布隔膜。 
所述的沉积物为无机氧化物。 
所述的沉积物质为无机氧化物;所述的无机氧化物为二氧化钛、三氧化二铝、氧化铜、氧化锌、氧化硅中的一种或其组合。 
所述的金属有机化合物为金属烷基盐、金属卤化物、金属醇盐、金属氨盐、其他金属有机化合物中的一种或其组合; 
其中所述的金属烷基盐为三甲基铝、二乙基锌中的一种或其组合;所述的金属卤化物为四氯化钛;所述的金属醇盐为正丁醇钛、钛酸四丁酯、乙醇钛, 钛酸四乙酯、三异丙醇铝中的一种或其组合;所述的金属氨盐为四(二甲氨基)钛、四(二甲氨基)锆中的一种或其组合;所述的其他金属有机化合物为双(六氟乙酰丙酮)合铜、二(六氟二甲基丙酰基丙烯酸)铜、三氟乙酰丙酮化铜中的一种或其组合。
本发明提供一种改性微孔隔膜。 
本发明提供一种改性微孔隔膜在锂离子电池等储能体系的应用。 
 该技术的有益效果是: 
1.由于前躯体吸附在微孔隔膜的孔壁上,经过水解后的氧化物也原位生成在微孔隔膜的孔壁上,从而形成氧化物填料与隔膜基体的界面和氧化物填料与电解液的界面,这对于发挥氧化物填料促进锂盐解离,提高聚合物机械强度、提高电解质体系的电化学窗口及稳定性等方面具有明显的作用。
2.通过控制沉积次数可以调节改性隔膜中无机氧化物层的厚度和结构。在一定沉积条件下,可以形成较薄的具有连续结构的无机氧化物层,并最终形成连续的以填料/电解液盐阳离子的快速离子传导通道,能够大幅度提高电解质体系的离子传导速率,满足大电流充放电的需要。 
附图说明
图1实施例1的改性微孔隔膜的截面扫描电镜照片。 
图2实施例2的改性隔膜在20oC的交流阻抗谱图。 
图3实施例2的改性隔膜及未改性空白隔膜的线性扫描曲线图。 
具体实施方式
下面将通过实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。 
实施例1
将PE微孔隔膜浸入无水乙醇,在超声条件下清洗30分钟,取出微孔隔膜,用无水乙醇淋洗三次,在60oC真空条件下烘干备用。将经过预处理的PE微孔隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔。用真空泵将反应腔抽到10hPa的低真空并加热到120oC, 在载气流量为5ml/min的条件下将钛酸四丁酯通入反应腔0.1s,用高纯氮气清洗5s,清洗掉多余的钛酸四丁酯,然后通入水蒸气0.2s使钛酸四丁酯发生水解,最后再用高纯氮气清洗10s,去除未发生反应的水蒸气。如此反复完成100次沉积循环,得到改性的微孔隔膜。
图1为制得的改性微孔隔膜经液氮处理后的扫描电镜照片,从照片中可以明显观察到TiO2无机改性物的生成。 
实施例2
将PE/PP/PE三层微孔隔膜浸入无水乙醇,在超声条件下清洗30分钟,取出微孔隔膜,用无水乙醇淋洗三次,在60oC真空条件下烘干备用。将经过预处理的PE/PP/PE微孔隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔。用真空泵将反应腔抽到10hPa的低真空并加热到100oC, 在载气流量为2ml/min的条件下将三甲基铝通入反应腔0.1s,用高纯氮气清洗10s,清洗掉多余的三甲基铝,然后通入水蒸气0.2s使三甲基铝发生水解,最后再用高纯氮气清洗20s,去除未发生反应的水蒸气。如此反复完成50次沉积循环,得到改性的微孔隔膜。
表1为实施例2的改性微孔隔膜的元素原子含量表。 
元素 重量百分比 原子百分比
C K 88.40 91.99
O K 8.30 6.48
Al K 3.30 1.53
总量 100.00  
表1为制得的改性微孔隔膜经液氮处理后在截面进行的能谱分析,数据表明,改性隔膜中Al原子的百分比为1.53%,从而验证了含铝氧化物的有效生成。 
对本实施例的改性隔膜的电化学性能进行表征。将改性隔膜浸入1mol/L LiPF6的EC/DEC/DMC(体积比1:1:1)的商业液体电解液中10分钟后,固定在不锈钢电极的中间。对其进行交流阻抗的测试,根据下述方程: 
σ=l/RS    (1)
可以计算该改性隔膜的离子电导率,其中l是隔膜的厚度,R是由交流阻抗谱得到的隔膜的电阻,S为隔膜的面积。实施例2的改性隔膜在20oC的离子电导率可以达到0.79mS/cm,高于文献报道的未改性隔膜的0.42mS/cm。交流阻抗谱图如图2所示。
以不锈钢电极作为研究电极,Li片作为参比电极,在0-7V(vs. Li+/Li)的电位范围内,以2mV·s-1的速度对改性隔膜进行线性扫描,其电化学窗口超过5V,高于未改性的隔膜材料(如图3所示)。 
实施例3
将PVDF微孔无纺布隔膜浸入无水乙醇,在超声条件下清洗30分钟,取出微孔隔膜,用无水乙醇淋洗三次,在60oC真空条件下烘干备用。将经过预处理的PVDF微孔无纺布隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔。用真空泵将反应腔抽到20hPa的低真空并加热到140oC, 在载气流量为1ml/min的条件下将四(二甲氨基)锆通入反应腔0.5s,用高纯氮气清洗5s,清洗掉多余的四(二甲氨基)锆,然后通入水蒸气1s使四(二甲氨基)锆发生水解,最后再用高纯氮气清洗5s,去除未发生反应的水蒸气。如此反复完成500次沉积循环,得到改性的微孔隔膜。
实施例4
将聚酰胺微孔无纺布隔膜浸入无水乙醇,在超声条件下清洗30分钟,取出微孔隔膜,用无水乙醇淋洗三次,在60oC真空条件下烘干备用。将经过预处理的聚酰胺微孔无纺布隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔。用真空泵将反应腔抽到20hPa的低真空并加热到80oC, 在载气流量为1ml/min的条件下将四(二甲氨基)钛通入反应腔0.5s,用高纯氮气清洗5s,清洗掉多余的四(二甲氨基)钛,然后通入水蒸气1s使四(二甲氨基)钛发生水解,最后再用高纯氮气清洗5s,去除未发生反应的水蒸气。如此反复完成1000次沉积循环,得到改性的微孔隔膜。 
                                             

Claims (7)

1.一种制备改性微孔隔膜的方法,其特征在于具体步骤如下:
(1)微孔隔膜的预处理:将微孔隔膜浸入无水乙醇,在超声条件下清洗,取出微孔隔膜,用无水乙醇淋洗,在60oC真空条件下烘干备用,保持欲改性的微孔隔膜有洁净的表面;
(2)原子层沉积制备改性微孔隔膜:将步骤(1)预处理的微孔隔膜置于原子层沉积设备的反应腔,关闭腔体,再用纯度为99.999%的高纯氮清洗反应腔,在20hPa以下的低真空并加热到反应温度80oC-150oC,在载气流量1-100ml/min条件下将前躯体通入反应腔完成一次脉冲,前驱体通入反应腔的脉冲时间为0.1-1秒;用高纯氮气清洗,,高纯氮气清洗前躯体的脉冲时间为1-10秒;清洗掉多余的前躯体,然后通入水蒸气使前躯体发生水解,得到沉积物,通入水蒸汽的脉冲时间为0.1-1秒,最后用高纯氮气清洗,去除未发生反应的水蒸气,脉冲时间1-20秒;前躯体-高纯氮气清洗-水蒸气-高纯氮气清洗,该过程定义为一个沉积循环;沉积循环数在1-1000次后,得到改性的微孔隔膜;
其中所述的前躯体为金属有机化合物,纯度大于98%。
2.根据权利要求1所述的一种制备改性微孔隔膜的方法,其特征在于所述的微孔隔膜包括单层或多层以聚乙烯、或聚丙烯等聚烯烃为基体的聚合物隔膜或以聚酰胺、或聚酯、或聚四氟乙烯、或聚偏氟乙烯,或聚氯乙烯为基体的无纺布隔膜。
3.根据权利要求1所述的一种制备改性微孔隔膜的方法,其特征在于步骤(2)中所述的沉积物为无机氧化物。
4.根据权利要求1所述的一种制备改性微孔隔膜的方法,其特征在于步骤(2)中所述的沉积物质为无机氧化物;所述的无机氧化物为二氧化钛、或三氧化二铝、或氧化铜、或氧化锌、或氧化硅中的一种或其组合。
5.根据权利要求1所述的一种制备改性微孔隔膜的方法,其特征在于步骤(2)中所述的金属有机化合物为金属烷基盐、或金属卤化物、或金属醇盐、或金属氨盐、或其他金属有机化合物中的一种或其组合;
其中所述的金属烷基盐为三甲基铝、或二乙基锌中的一种或其组合;所述的金属卤化物为四氯化钛;所述的金属醇盐为正丁醇钛、或钛酸四丁酯、或乙醇钛, 或钛酸四乙酯、或三异丙醇铝中的一种或其组合;所述的金属氨盐为四(二甲氨基)钛、或四(二甲氨基)锆中的一种或其组合;所述的其他金属有机化合物为双(六氟乙酰丙酮)合铜、或二(六氟二甲基丙酰基丙烯酸)铜、或三氟乙酰丙酮化铜中的一种或其组合。
6.一种由权利要求1~5之一所述的方法得到的改性微孔隔膜。
7.由权利要求6所述的改性微孔隔膜在锂离子电池等储能体系的应用。 
CN2011102033326A 2011-07-20 2011-07-20 改性微孔隔膜及其制备方法和应用 Pending CN102891275A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102033326A CN102891275A (zh) 2011-07-20 2011-07-20 改性微孔隔膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102033326A CN102891275A (zh) 2011-07-20 2011-07-20 改性微孔隔膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN102891275A true CN102891275A (zh) 2013-01-23

Family

ID=47534721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102033326A Pending CN102891275A (zh) 2011-07-20 2011-07-20 改性微孔隔膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102891275A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928704A (zh) * 2014-04-14 2014-07-16 南京安普瑞斯有限公司 锂离子电池及其制造方法
CN104480452A (zh) * 2014-12-10 2015-04-01 上海动力储能电池***工程技术有限公司 一种锂离子电池有机粘结剂的表面改性方法
CN106784539A (zh) * 2017-01-24 2017-05-31 厦门大学 一种无纺布陶瓷隔膜及其制备方法和应用
CN107359300A (zh) * 2017-06-30 2017-11-17 刘桥 一种芳纶复合涂覆的锂离子电池隔膜及其制备方法
CN107383716A (zh) * 2017-06-20 2017-11-24 中纺院(天津)科技发展有限公司 一种聚四氟乙烯微孔薄膜及其制备方法
CN108258155A (zh) * 2018-01-16 2018-07-06 福州大学 一种调控和平衡全无机qled的载流子输运的方法
CN108878737A (zh) * 2018-06-13 2018-11-23 力源(广州)新能源科技有限公司 高安全性隔膜材料及其制备方法和应用
CN112886143A (zh) * 2021-03-26 2021-06-01 上海电气集团股份有限公司 多层结构复合隔膜及其制备方法、以及二次电池与用电设备
CN114883744A (zh) * 2022-05-31 2022-08-09 西安理工大学 一种改性pp/pe/pp隔膜的制备方法及隔膜的应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928704A (zh) * 2014-04-14 2014-07-16 南京安普瑞斯有限公司 锂离子电池及其制造方法
CN103928704B (zh) * 2014-04-14 2016-08-03 南京安普瑞斯有限公司 锂离子电池及其制造方法
CN104480452A (zh) * 2014-12-10 2015-04-01 上海动力储能电池***工程技术有限公司 一种锂离子电池有机粘结剂的表面改性方法
CN106784539A (zh) * 2017-01-24 2017-05-31 厦门大学 一种无纺布陶瓷隔膜及其制备方法和应用
CN107383716A (zh) * 2017-06-20 2017-11-24 中纺院(天津)科技发展有限公司 一种聚四氟乙烯微孔薄膜及其制备方法
CN107359300A (zh) * 2017-06-30 2017-11-17 刘桥 一种芳纶复合涂覆的锂离子电池隔膜及其制备方法
CN108258155A (zh) * 2018-01-16 2018-07-06 福州大学 一种调控和平衡全无机qled的载流子输运的方法
CN108878737A (zh) * 2018-06-13 2018-11-23 力源(广州)新能源科技有限公司 高安全性隔膜材料及其制备方法和应用
CN112886143A (zh) * 2021-03-26 2021-06-01 上海电气集团股份有限公司 多层结构复合隔膜及其制备方法、以及二次电池与用电设备
CN114883744A (zh) * 2022-05-31 2022-08-09 西安理工大学 一种改性pp/pe/pp隔膜的制备方法及隔膜的应用

Similar Documents

Publication Publication Date Title
CN102891275A (zh) 改性微孔隔膜及其制备方法和应用
Thompson et al. Stabilization of lithium metal anodes using silane-based coatings
CN106702441B (zh) 一种连续电沉积制备锂带的方法
Liu et al. Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells
Radecka et al. TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting
CN103682296B (zh) 一种高比容量纳米级钛酸锂材料的制备方法
Kang et al. Ultrathin insulating under-layer with a hematite thin film for enhanced photoelectrochemical (PEC) water splitting activity
CN106299136B (zh) 一种室温溶解碘化铅制备掺杂钙钛矿薄膜电池的方法
CN105780087B (zh) 电氧化合成一维纳米氧化物结构的制备方法
CN108417798A (zh) 一种ZnO纳米片/碳海绵柔性复合负极材料及其制备方法
CN105749914A (zh) 一种对称双功能光催化剂、双室光反应器及光催化还原二氧化碳的方法
CN102747424A (zh) 一种在ito玻璃上制备可调控直径和高度的氧化锌纳米线/管阵列的方法
Sima et al. Study of dye sensitized solar cells based on ZnO photoelectrodes deposited by laser ablation and doctor blade methods
CN108355470A (zh) 一种Ag-TiO2/Ti(NO2)/ITO光电极、光电协同催化反应装置及其应用
Gao et al. Enhanced photovoltaic performance of CdS quantum dots sensitized highly oriented two-end-opened TiO2 nanotubes array membrane
CN104198560A (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN104815668A (zh) 一种Ta、Al共掺杂的氧化铁光催化剂的制备方法
CN108878737A (zh) 高安全性隔膜材料及其制备方法和应用
US20080236658A1 (en) Electrode, manufacturing method of the same, and dye-sensitized solar cell
CN107904570A (zh) 一种制备镍纳米粒子‑石墨烯‑泡沫镍材料的方法
Tesemma et al. Investigation of the dipole moment effects of fluorofunctionalized electrolyte additives in a lithium ion battery
CN112072087B (zh) 一种锌离子电池负极复合材料的制备方法及应用
CN104409692A (zh) 一种锂离子电池电极材料的改性方法
Waghmare et al. Zirconium oxide films: deposition techniques and their applications in dye-sensitized solar cells
CN103320828B (zh) 一种六次甲基四胺掺杂纳米氧化锌薄膜的电化学制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130123