CN102886230B - 一种饱和塔串等温炉co变换工艺 - Google Patents

一种饱和塔串等温炉co变换工艺 Download PDF

Info

Publication number
CN102886230B
CN102886230B CN201210378009.7A CN201210378009A CN102886230B CN 102886230 B CN102886230 B CN 102886230B CN 201210378009 A CN201210378009 A CN 201210378009A CN 102886230 B CN102886230 B CN 102886230B
Authority
CN
China
Prior art keywords
gas
saturator
conversion
perforated plate
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210378009.7A
Other languages
English (en)
Other versions
CN102886230A (zh
Inventor
许仁春
施程亮
唐永超
涂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petrochemical Corp
Sinopec Ningbo Engineering Co Ltd
Sinopec Ningbo Technology Research Institute
Original Assignee
China Petrochemical Corp
Sinopec Ningbo Engineering Co Ltd
Sinopec Ningbo Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corp, Sinopec Ningbo Engineering Co Ltd, Sinopec Ningbo Technology Research Institute filed Critical China Petrochemical Corp
Priority to CN201210378009.7A priority Critical patent/CN102886230B/zh
Publication of CN102886230A publication Critical patent/CN102886230A/zh
Application granted granted Critical
Publication of CN102886230B publication Critical patent/CN102886230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明涉及到一种饱和塔串等温炉CO变换工艺,其特征在于包括下述步骤:气液分离的粗煤气除去杂质后送入饱和塔内,在饱和塔内被增湿提温后,送入等温变换炉进行深度变换反应,出等温变换炉的变换混合气经换热降温后,送去热水塔与工艺冷却水进行换热。优选方案提供了供本工艺使用的等温变换炉的结构。与现有技术相比较,本发明所提供的饱和塔串等温炉CO变换工艺,解决了现有技术中高水气比CO变换工艺流程长、反应级数多、***压降大、设备投资高、变换炉容易超温、催化剂寿命短等一系列问题。

Description

一种饱和塔串等温炉CO变换工艺
技术领域
本发明涉及一种CO变换工艺,具体指一种饱和塔串等温炉CO变换工艺。
背景技术
壳牌煤气化技术对煤质要求低、合成气中有效组分高、运行费用低且环境友好。我国在本世纪初相继引进了十多套壳牌的粉煤气化技术来制取合成气。该技术中粗合成气的冷却采用废热锅炉,生成的粗合成气中CO干基体积含量高达60%以上,同时水蒸气体积含量小于20%,粗合成气具有水蒸气含量低和CO含量高等显著特点。将壳牌粉煤气化技术用于造气来配套合成氨、制氢、合成甲醇等装置时就面临高浓度CO变换技术难题。所以壳牌粉煤气化技术引进的同时,也极大的推动了我国高浓度CO变换技术的发展和进步。
变换工序是水蒸气和CO的等摩尔强放热反应,生成二氧化碳和氢气。对于不同的煤气化技术所生成的粗合成气,下游变换工序的化学反应过程均是相同的,但是变换流程需要根据粗合成气的特点进行有针对性的设计。对于壳牌煤气化技术生成的粗合成气,在变换工序进行CO变换反应时,变换流程设计的重点和难点是如何有效的控制CO变换反应的床层温度,延长变换催化剂的使用寿命、减少变换级数和设备投资、降低变换工序的压力降以及节省中压蒸汽和动力消耗。
目前国内在高浓度CO变换流程设计中普遍采用绝热变换炉,鉴于CO变换反应是强放热过程,现有的变换工艺流程组织均采用多段绝热变换炉进行反应,段间移走反应热量。因此,导致现有的高浓度CO变换技术工艺流程长、***压降大、热量损失多、设备投资高、变换炉容易超温、催化剂寿命短以及能耗高等一系列问题。
申请号为201110260537.8的中国发明专利申请公开了《一种饱和热水塔高水气比CO变换工艺》,该饱和热水塔高水气比CO变换工艺全部采用绝热变换炉,反应级数较多,***压降大,后***对变换气压缩消耗的能耗高;其变换炉全部采用绝热变换炉,尤其是第一变换炉和第二变换炉采用绝热变换炉,炉壁要承受高温高压的变换气,造成设备壁厚大,设备投资高;第一变换炉催化剂处于较高温度下运行,运行环境苛刻,催化剂寿命较短,更换频繁操作费用高;绝热变换炉温度控制较困难,容易出现超温问题,对变换工序安全运行造成不利影响,存在安全隐患。同时,由于绝热反应级数多,变换工序开车时对催化剂硫化过程复杂,变换工序开车耗时长、费用高。
发明内容
本发明所要解决的技术问题是针对现有技术的现状提供一种饱和塔串等温炉CO变换工艺,以解决现有技术中高水气比CO变换工艺流程长、反应级数多、***压降大、设备投资高、变换炉容易超温、催化剂寿命短等一系列问题。
本发明解决上述技术问题所采用的技术方案为:该饱和塔串等温炉CO变换工艺,其特征在于包括下述步骤:
由粉煤气化工段送来的粗煤气首先送入气液分离器进行气液相分离,分离出液相后送入脱毒槽内除去粗煤气中的杂质,随后送入饱和塔内;
粗煤气由饱和塔的下部送入饱和塔,从热水塔底部送出的工艺循环水换热至180~200℃后,由饱和塔的上部进入饱和塔,两股物流在饱和塔内进行逆流传热传质。由饱和塔底部送出的工艺循环水经饱和塔塔底泵加压后,返回至热水塔;
粗煤气在饱和塔内被增湿提温后,由饱和塔顶部送出,与来自管网的中压过热蒸汽混合增湿提温后,送入等温变换炉进行深度变换反应,控制进入等温变换炉的粗煤气的水/干气摩尔比为1.0~1.2、温度250℃;控制等温变换炉内催化剂的空速为1000~3000,等温变换炉第温升为10℃~20℃;出等温变换炉的变换气温度为250℃~270℃,CO干基体积含量为1%~2%;
出等温变换炉的变换混合气经换热降温至180~200℃后,由热水塔下部送入热水塔,与从热水塔中部进入的工艺循环水进行逆流传质传热,在热水塔的上部喷入净化工艺冷凝液和中压锅炉水,所述工艺循环水与净化冷凝液之和与所述中压锅炉水的摩尔比为7.0~10.0,进行逆流传质传热,在热水塔顶部得到降温后的变换混合气,在热水塔底部得到工艺循环水。
上述从热水塔中部进入热水塔的工艺循环水的用量与进入气液分离器的干基粗煤气的摩尔比为4.0~6.0。
上述工艺中所使用的等温变换炉可以使用现有技术中的任意一种等温变换炉。较好的,所述的等温变换炉包括炉体,所述炉体内设有由多根换热管组成的换热管束,所述炉体顶部设有反应气入口和检修人孔,炉体的上部侧壁上设有循环冷却水出口,炉体底部设有变换气出口和第一冷却水入口,所述炉体的中心设有气体收集器;其特征在于所述炉体包括可拆卸连接的上部第一段炉体和下部第二段炉体,所述第二段炉体内设有管状结构的筒体构成反应炉的气体分布器,该筒体的上、下两端分别连接在上管板和下管板上,所述上管板与所述炉体的内壁间隔有间隙,所述下管板的周缘密封连接所述炉体的内周壁;所述上管板的上方设有上封头,所述下管板的下方设有下封头,所述的换热管束设置在所述的筒体内,并且各所述换热管的两端分别固定在所述的上、下管板上并分别连通由上封头和上管板、下封头和下管板构成的空腔;所述气体收集器的上端连接所述的上管板,气体收集器的下端穿过所述的下封头位于下封头和所述炉体底部构成的空腔内;所述上封头上设有冷却水出口,该冷却水出口通过出水管连接所述的循环冷却水出口,并且所述的出水管包括可拆卸连接在一起的两部分;所述下封头上设有第二冷却水入口,该第二冷却水入口通过进水管连接所述的第一冷却水入口,并且所述的进水管包括可拆卸连接在一起的两部分;所述气体分布器上间隔均匀地设有多个气孔。
较好的,第一段炉体和第二段炉体之间可以通过法兰连接,炉体可以支承在裙座上立式放置。
为了方便催化剂的装填,所述气体分布器可以包括可拆卸连接在一起的多个分段,并且各分段又由两个半圆筒可拆卸连接构成。
进一步,为了保证气体进入催化剂床层时的分布均匀性,各所述分段均包括有外筒体和套设在所述外筒体内的内筒体,各所述外筒体可拆卸连接在一起形成外筒,各所述内筒体可拆卸连接在一起形成套设在所述外筒内的内筒,并且所述外筒体和所述内筒体间隔有间隙。内筒体对反应气起到二次分布的作用。
较好的,上述方案中所述内筒上的气孔的密度大于所述外筒的,并且所述内孔上的气孔的孔径小于等于3mm。
考虑到生产过程中催化剂的沉降问题,所述气体分布器靠近所述上管板100mm以内的位置不开设气孔,以防止催化剂沉降引起的反应气回流和短路。
上述各方案中,所述气体收集器外露于所述下封头的部分呈喇叭状,并且所述气体收集器下端端口的中部设有挡板,所述挡板与所述气体收集器下端端口的周缘间隔有供合成气流出的空隙。该结构可使出气体收集器的气流扩散流动,避免了气流直接冲击炉体下封头对炉体所造成的冲击损伤,并且可使出气体收集器的气体在下封头与炉体之间的空腔内短暂停留,保证了下封头内外的压力平衡,并且可使炉体和筒体以及下封头内外的环境温度相对均匀,不会产生应力集中。
挡板与气体收集器之间可以通过支撑筋板焊接连接,并通过筋板加强。较好地,收集管顶部靠近上管板100mm内不开孔,以防止催化剂沉降引起反应气回流和短路。
考虑到气体收集器的热膨胀,可以在所述上管板的下表面上设有连接套,所述气体收集器的上端部定位在该连接套内并与所述的上管板间隔有间隙,该间隙可供气体收集器热膨胀。
考虑到反应炉内部的热膨胀,可以在所述的出水管上设置膨胀节,以解决内部反应***整体热膨胀问题。
下管板与炉体的连接方式可以有多种,较好的,可以在所述炉体的周壁上设有定位环,该定位环的上表面上设有环形凹槽;所述下管板上设有与所述凹槽相适配的环形凸块,所述凸块容置在所述凹槽内,并且凸块和凹槽之间设有密封圈。
所述炉体的内周壁上设有多组定位板,每组定位板包括左、右间隔设置的左定位板和右定位板,对应地,所述上管板的侧壁上设有多块定位块,各所述定位块容置在对应的上定位板和下定位板之间。
较好的,上管板上焊接有4块定位块,与焊接在炉体内壁上的4组定位板配合径向定位,以保证内部管束的快速安装和所述凹凸槽的密封配合。
上述方案中的等温变换炉整体上采用全径向Z型结构,反应气上进下出,换热管间为催化剂床层,管内走循环冷却水,冷却水吸收变换热,根据反应热移出的强度要求,冷却水循环过程可以是自然循环也可以是强制循环,循环冷却水下游可设置汽包副产蒸汽回收余热。通过控制循环水量来维持变换反应温度的恒定。
一、与现有饱和热水塔高水气比CO变换工艺相比较,本发明的优点在于:
1、变换流程短,***阻力小,节省了下道工序的压缩功,降低了能耗。
2、使用等温变换炉替代了至少两级绝热变换炉,减少了变换炉台数,节省了设备投资和催化剂费用。
3、等温变换炉操作温度低,催化剂运行环境温和,催化剂使用寿命长,变换工序容易实现长周期稳定运行。
4、变换工序自产的蒸汽经过甲烷化工序过热后,全部用于自身的变换反应,省去了部分段间换热器以及热能回收设备,简化了工艺流程,进一步节省了设备投资。
5、通过冷却水的循环达到快速移出高浓度CO变换反应热,其过程可以是自然循环也可是强制循环,通过控制循环水量达到控制变换反应温度的目的,冷却水出口可以设置汽包副产蒸汽,回收余热,反应器结构简单,投资少,可控性强。
6、利用全径向反应器气体压降小特点,对内部反应***采用设备自重密封,冷却水进出管和炉体均采用法兰连接,使内部反应***可整体抽出,加上气体分布器的可拆卸结构为催化剂的快速装卸以及后期设备的检维修提供便利。
7、内部反应***循环冷却水出口膨胀节的设置和气体收集管顶套筒间隙定位,充分考虑高温应力工况,解决了内部反应***的整体热膨胀和气体收集管的局部膨胀,有利于设备运行稳定和延长使用寿命。
8、等温变换炉采用全径向结构,流通面积大,床层阻力小,压降小。气体分布器采用内、外筒结构,对反应气二次分布,使气体分布更加均匀,有利于提高转化率,同时,充分考虑催化剂沉降问题,在气体分布器和收集管顶部都预留有100mm不开孔区,可防止变换气的回流、短路。
9、本发明采用管壳式反应器,催化剂装填换热管间,催化剂床层温度,稳定,寿命长,且可通过增加气体分布器段数方式增加CO变换气处理量,有利于装置的大型化。
附图说明
图1为本发明实施例中装配结构的平面示意图;
图2为本发明实施例中上管板定位示意图;
图3为本发明实施例中下管板定位示意图;
图4为本发明实施例中气体分布器结构示意图;
图5为沿图4中A-A向的剖视图。
图6为本发明实施例中气体收集器结构示意图;
图7为本发明实施例的工艺流程示意图。
具体实施方式
以下的附图实施例是结合采用壳牌粉煤气化造气生产30万吨/年合成氨52万吨/年尿素的典型的化肥装置,对本发明作进一步详细描述。
如图1至图6所示,本实施例中所使用的等温变换炉包括:
炉体51,包括主体511、上封头515和下封头512,主体511与上封头515之间设有过渡段518,主体511与过渡段518之间采用法兰可拆卸连接,主体511与下封头512、上封头515与过渡段518之间均为焊接连接。上封头515顶部设有反应气入口516和上部检修人孔517,过渡段518侧壁上设有循环冷却水出口514,主体511下端侧壁设有下部检修人孔513,下封头底部设有第一冷却水入口519和变换气出口5110,炉体51底部坐落在裙座56上,裙座56为该等温变换炉的支撑底座。
内部反应***,主要由换热管束52、气体分布器53、气体收集管54、椭圆形上封头526和球形下封头522等部件组成。上封头526顶部设有与上述循环冷却水出口514相连通的冷却出水管525,出水管竖直部分的中部设有膨胀节,膨胀节的作用是消除出水管热膨胀所产生的应力;出水管的水平部分分为两段,这两段通过法兰可拆卸连接在一起。圆形下封头522上设有与上述下部检修人孔513相通的内部检修人孔521和与上述第一冷却水入口519法兰连接的循环冷却水进口管段。内部反应***还包括上管板527和下管板5210,上管板527依靠焊接在上管板上的四块定位块5211和焊接在设备筒体上的四组定位板5212配合径向定位,保证轴向位移。每组定位板包括左右间隔设置的左定位板和右定位板,定位块位于对应的左、右定位板之间。主体511的内周壁上焊接有定位环5215,该定位环的上表面上设有环形凹槽;定位环的底部设有十六块均布的支撑筋板5213,这些支撑筋板焊接在主体511和定位环5215上,以加强定位环的承重;定位环上还设置八颗顶丝5214,方便反应***的拆卸。下管板5210上设有与凹槽相适配的环形凸块,凸块容置在凹槽内,并且凸块和凹槽之间设有密封圈5217。定位环的上表面和主体511的内壁之间还焊接有四块定位锥5216,定位锥成45°倾斜;定位锥的作用主要是用于对下管板定位。上、下管板上均设有供各换热管528插设的管孔,各换热管的两端分别插设在对应的管孔内形成换热管束,各换热管之间间隙内装填有催化剂,换热管束的中部设有多个用于支撑换热管束的支撑件529。
气体分布器53,由几段相同结构的气体分布器短节螺栓连接组成,每段分布器均包括长度为500mm的内筒体535和外筒体534,且内、外筒体均由两个半圆筒组成,半圆筒端部焊接有两组竖向连接板533,将两个半圆形的筒体栓接在一起形成圆柱形的筒体;各段内筒体连接后形成内筒,各段外筒体连接后形成套设在内筒外的外筒。内筒体535和外筒体534上分别均布有圆形气孔作为反应气通道;内筒作为气体二次分布器,其开孔密度大于外筒且孔径不大于3mm,同时,内、外筒距离上管板100mm高度位置之内不开设气孔以防止催化剂沉降引起反应气短路。内筒和外筒的顶部和底部均设有二组半环板531,半环板分割位置与内筒和外筒一致,且与竖向连接板533焊接在一起,半环板531端部设有八个支耳532,用于上下段气体分布器之间的栓接和定位,最上段筒体的上端依靠与上管板527焊接的定位环定位,最下段筒体的下端放入下管板上5210开的环形槽内定位。气体分布器的分段螺栓可拆连接设计,可以有效提高催化剂的装卸效率。
气体收集器54,包括收集管543,其上开有宽度小于3mm的长条形气体收集孔,同样,在收集管顶部靠近上管板527留100mm高度不开孔,以防止因催化剂沉降引起的反应气短路。收集管顶部焊接有圆形盖板542,圆形盖板外侧设有焊接在上管板527的收集管定位套筒541,套筒与所述盖板542之间留2mm间隙,盖板与上管板527间设有30mm间隙以解决气体收集管54热膨胀问题。收集管543下端与内部反应***球形下封头522焊接连接。所述收集管底部设有扩管段545,扩管底部出口设有中心圆形挡板547,使气体呈扩散状流动,中心挡板与扩管段通过支撑筋板546焊接连接,并通过焊接54块支撑筋板544加强。
如图7所示,本实施例的CO变换工艺如下:
由粉煤气化工段送来的饱和了水蒸气的粗煤气温度160℃,压力3.7Mpa,在用管道将粗煤气从气化工段送到变换工段的过程中由于热量损失,粗煤气中的少量水蒸气会被冷凝生成冷凝液,粗煤气和凝液在管道***内共存会导致管线和设备的腐蚀以及震动,所以粗煤气首先需要将其中的凝液分离出来。
因此本实施例先将粗煤气送入气液分离器1,液体从气液分离器1的底部出口流出。从气液分离器1顶部出来的经过分液后的粗煤气送入脱毒槽2除去粗煤气中的灰分和重金属等杂质,然后进入饱和塔3的底部。
粗煤气在饱和塔3内与来自热水塔8温度为180℃~185℃的工艺循环水逆流接触进行传热传质,出饱和塔3底部的工艺循环水经饱和塔塔底泵4加压后,送回热水塔8再次加热循环使用,同时抽出工艺循环水总量的3%~8%去后***进行汽提,防止有害物质在工艺循环水***中累积。
粗合成气在饱和塔3内被增湿提温,温度达到175℃~180℃,水干气摩尔比为0.44~0.48。补充来自甲烷化和蒸汽管网的4.0Mpa,400℃中压过热蒸汽,调节粗合成气水/干气摩尔比为1.0~1.1,温度为250℃,送入等温变换炉5中进行深度变换。
出等温变换炉5的变换气温度为250℃~270℃,CO干基体积含量约为1.0%~2.0%,该变换气经变换气冷却器7与工艺循环水换热降温至185℃,然后送入热水塔8下部。
变换混合气在热水塔8中与来自饱和塔3的工艺循环水和来自后***的工艺冷凝液以及补充的中压锅炉给水逆流传热传质,回收低位热能。由热水塔8底部送出的工艺循环水温度约为171℃,经变换气冷却器7提温后,送入饱和塔3。由热水塔8顶部出来的变换气温度约为160℃,送入下游工段回收低温余热。
等温变换炉5通过锅炉给水方式移去变换反应热,同时副产压力4.0Mpa、温度251℃的中压饱和蒸汽,副产的中压饱和蒸汽进入汽包6分离液相,汽包6顶部送出的中压饱和蒸汽去甲烷化工序进行过热至400℃,然后和管网的中压过热蒸汽一起作为变换反应的补充蒸汽,注入从饱和塔3顶部出来的粗煤气中,汽包6底部的液相通过自循环方式进入等温变换炉5中循环使用,同时由界区向汽包6内补充中压锅炉给水,以维持汽包液位的稳定。
对比例
对于采用壳牌粉煤气化造气生产30万吨/年合成氨52万吨/年尿素的典型的化肥装置,进入变换工段的有效气(H2+CO)大约为85000Nm3/h,在此基准下对一种饱和热水塔高水气比CO变换工艺和一种饱和塔串等温炉CO变换工艺主要参数进行对比见表1。
表1
由表1可以看出,本实施例所提供的饱和塔串等温炉CO变换工艺中,变换炉数量少,催化剂装填量小、热点温度低且***压降小。可以降低变换工序的设备和催化剂投资费用。热点温度低可以有效延长催化剂使用寿命,***压降小可以显著降低后***的压缩功消耗,两者均可起到节省操作费用的目的。

Claims (10)

1.一种饱和塔串等温炉CO变换工艺,其特征在于包括下述步骤:
由粉煤气化工段送来的粗煤气首先送入气液分离器进行气液相分离,分离出液相后送入脱毒槽内除去粗煤气中的杂质,随后送入饱和塔内;
粗煤气由饱和塔的下部送入饱和塔,从热水塔底部送出的工艺循环水换热至180~200℃后,由饱和塔的上部进入饱和塔,两股物流在饱和塔内进行逆流传热传质,由饱和塔底部送出的工艺循环水经饱和塔塔底泵加压后,返回至热水塔;
粗煤气在饱和塔内被增湿提温后,由饱和塔顶部送出,与来自管网的中压过热蒸汽混合增湿提温后,送入等温变换炉进行深度变换反应,控制进入等温变换炉的粗煤气的水/干气摩尔比为1.0~1.2、温度250℃;控制等温变换炉内催化剂的空速为1000~3000,等温变换炉 的温升为10℃~20℃;出等温变换炉的变换气温度为250℃~270℃,CO干基体积含量为1%~2%;
出等温变换炉的变换混合气经换热降温至180~200℃后,由热水塔下部送入热水塔,与从热水塔中部进入的工艺循环水进行逆流传质传热,在热水塔的上部喷入净化工艺冷凝液和中压锅炉水,所述工艺循环水与净化冷凝液之和与所述中压锅炉水的摩尔比为7.0~10.0,进行逆流传质传热,在热水塔顶部得到降温后的变换混合气,在热水塔底部得到工艺循环水;
上述从热水塔中部进入热水塔的工艺循环水的用量与进入气液分离器的干基粗煤气的摩尔比为4.0~6.0。
2.根据权利要求1所述的饱和塔串等温炉CO变换工艺,其特征在于所述的等温变换炉的炉体内设有由多根换热管组成的换热管束,所述炉体顶部设有反应气入口和检修人孔,炉体的上部侧壁上设有循环冷却水出口,炉体底部设有变换气出口和第一冷却水入口,所述炉体的中心设有气体收集器;其特征在于所述炉体包括可拆卸连接的上部第一段炉体和下部第二段炉体,所述第二段炉体内设有气体分布器,该气体分布器的上、下两端分别连接在上管板和下管板上,所述上管板与所述炉体的内壁间隔有间隙,所述下管板的周缘密封连接所述炉体的内周壁;所述上管板的上方设有上封头,所述下管板的下方设有下封头,所述的换热管束设置在所述的气体分布器内,并且各所述换热管的两端分别固定在所述的上、下管板上并分别连通由上封头和上管板、下封头和下管板构成的空腔;所述气体收集器的上端连接所述的上管板,气体收集器的下端穿过所述的下封头位于下封头和所述炉体底部构成的空腔内;所述上封头上设有冷却水出口,该冷却水出口通过出水管连接所述的循环冷却水出口,并且所述的出水管包括可拆卸连接在一起的两部分;所述下封头上设有第二冷却水入口,该第二冷却水入口通过进水管连接所 述的第一冷却水入口,并且所述的进水管包括可拆卸连接在一起的两部分。
3.根据权利要求2所述的饱和塔串等温炉CO变换工艺,其特征在于所述的气体分布器包括可拆卸连接在一起的多个分段,并且各分段又由两个半圆筒可拆卸连接构成。
4.根据权利要求3所述的饱和塔串等温炉CO变换工艺,其特征在于各所述分段均包括有外筒体和套设在所述外筒体内的内筒体,各所述外筒体可拆卸连接在一起形成外筒,各所述内筒体可拆卸连接在一起形成套设在所述外筒内的内筒,并且所述外筒体和所述内筒体间隔有间隙。
5.根据权利要求4所述的饱和塔串等温炉CO变换工艺,其特征在于所述内筒上的气孔的密度大于所述外筒的,并且所述内孔上的气孔的孔径小于等于3mm。
6.根据权利要求5所述的饱和塔串等温炉CO变换工艺,其特征在于所述气体分布器和气体收集器在靠近所述上管板100mm以内的位置均不开设气孔。
7.根据权利要求2至6任一权利要求所述的饱和塔串等温炉CO变换工艺,其特征在于所述气体收集器外露于所述下封头的部分呈喇叭状,并且所述气体收集器下端端口的中部设有挡板,所述挡板与所述气体收集器下端端口的周缘间隔有供合成气流出的空隙。
8.根据权利要求7所述的饱和塔串等温炉CO变换工艺,其特征在于所述上管板的下表面上设有连接套,所述气体收集器的上端部定位在该连接套内并与所述的上管板间隔有间隙。
9.根据权利要求8所述的饱和塔串等温炉CO变换工艺,其特征在于所述的出水管上设有膨胀节。
10.根据权利要求9所述的饱和塔串等温炉CO变换工艺,其特征在于所述炉体的周壁上设有定位环,该定位环的上表面上设有环形凹槽;所述下管板上设有与所述凹槽相适配的环形凸块,所述凸块容置在所述凹槽内,并且凸块和凹槽之间设有密封圈;所述炉体的内周壁上设有多组定位板,每组定位板包括上、下间隔设置的上定位板和下定位板,对应地,所述上管板的侧壁上设有多块定位块,各所述定位块容置在对应的上定位板和下定位板之间。
CN201210378009.7A 2012-10-08 2012-10-08 一种饱和塔串等温炉co变换工艺 Active CN102886230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210378009.7A CN102886230B (zh) 2012-10-08 2012-10-08 一种饱和塔串等温炉co变换工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210378009.7A CN102886230B (zh) 2012-10-08 2012-10-08 一种饱和塔串等温炉co变换工艺

Publications (2)

Publication Number Publication Date
CN102886230A CN102886230A (zh) 2013-01-23
CN102886230B true CN102886230B (zh) 2014-10-08

Family

ID=47530031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210378009.7A Active CN102886230B (zh) 2012-10-08 2012-10-08 一种饱和塔串等温炉co变换工艺

Country Status (1)

Country Link
CN (1) CN102886230B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748662A (zh) * 2013-12-30 2015-07-01 中核武汉核电运行技术股份有限公司 一种基于涡流检测信号的传热管外壁结垢厚度测量方法
CN104748666A (zh) * 2013-12-30 2015-07-01 中核武汉核电运行技术股份有限公司 一种基于涡流旋转探头信号的缺陷深度定量方法
CN103879961B (zh) * 2014-03-24 2015-07-29 中石化宁波工程有限公司 一种饱和塔分股循环co变换工艺
CN104152187B (zh) * 2014-08-06 2016-02-17 中石化宁波工程有限公司 一种能延长催化剂使用寿命的co变换工艺
CN204589112U (zh) * 2015-01-30 2015-08-26 成都高科达科技有限公司 一种带循环气的甲烷化合成甲烷***
CN107164007A (zh) * 2017-05-15 2017-09-15 中石化南京工程有限公司 一种非化学计量比等温合成天然气的方法
CN109385293B (zh) * 2017-08-02 2020-12-08 中国石油化工股份有限公司 烃类蒸汽转化酸性水回收利用装置和方法
CN108772026B (zh) * 2018-06-24 2024-04-26 唐山三友硅业股份有限公司 用于气固体催化塔式反应器的气体分布器
CN109052319B (zh) * 2018-09-30 2022-04-08 中石化宁波工程有限公司 配套甲醇合成的高co变换工艺
CN109438181A (zh) * 2018-11-08 2019-03-08 鄂尔多斯市瀚博科技有限公司 一种利用硅锰炉尾气生产甲醇的方法
CN110550602B (zh) * 2019-08-08 2022-08-12 中石化宁波工程有限公司 一种用于羰基合成的高浓度一氧化碳可控半等温变换工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE298723T1 (de) * 2002-05-16 2005-07-15 Haldor Topsoe As Verfahren und reaktor zur umsetzung von kohlenmonoxid
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
CN101721956B (zh) * 2009-12-04 2011-12-21 湖南安淳高新技术有限公司 等温低温co变换反应器

Also Published As

Publication number Publication date
CN102886230A (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
CN102886230B (zh) 一种饱和塔串等温炉co变换工艺
CN102888252B (zh) 一种饱和塔等温炉串绝热炉co变换工艺
CN102888253B (zh) 一种低水气低变串饱和塔等温co变换工艺
CN102887480B (zh) 一种等温变换串绝热变换的co变换工艺
CN102887481B (zh) 一种低水气比预变串等温co变换工艺
CN105642197A (zh) 一种大型反应器及其装置和工艺
CN105457563B (zh) 一种内置管束等温变换反应器
CN202893318U (zh) 一种co全径向等温变换炉
CN102850183B (zh) 甲醇合成***及方法
CN102886229B (zh) 一种co全径向等温变换炉
CN109264668B (zh) 配套甲醇合成的co变换工艺
CN103240036B (zh) 一种抗温差应力的换热反应器及其组合装置和应用
CN102160981B (zh) 一种催化反应设备
CN104709875A (zh) 高浓度一氧化碳等温变换工艺及其***
CN102872767B (zh) 一种用于羰化耦联合成酯的工业化板式反应器
CN204365252U (zh) 一种大型反应器及其装置
CN204182370U (zh) 一种径向流动副产蒸汽式等温变换炉
CN203075923U (zh) 一种轴径向等温变换反应器
CN102502901A (zh) 一种配套co变换装置使用的冷凝液汽提方法
CN101491751B (zh) 一种换热催化反应设备
CN102886231B (zh) Co全径向等温变换炉
CN110877896B (zh) 一种配套粉煤气化装置的等温变换制氢方法及等温变换炉
CN103585933B (zh) 一种波纹板式均温加氢反应器
JP5312355B2 (ja) 反応器およびこれを用いた反応生成物製造方法
CN102337161A (zh) 一种低水气比串饱和热水塔co变换工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant