CN102866665B - 用于全电动折弯机的多轴同步控制***的控制方法 - Google Patents

用于全电动折弯机的多轴同步控制***的控制方法 Download PDF

Info

Publication number
CN102866665B
CN102866665B CN201210368869.2A CN201210368869A CN102866665B CN 102866665 B CN102866665 B CN 102866665B CN 201210368869 A CN201210368869 A CN 201210368869A CN 102866665 B CN102866665 B CN 102866665B
Authority
CN
China
Prior art keywords
permanent magnet
speed
servo
magnet synchronous
servo motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210368869.2A
Other languages
English (en)
Other versions
CN102866665A (zh
Inventor
史步海
伍祁林
苏炳恩
方志雄
戴敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210368869.2A priority Critical patent/CN102866665B/zh
Publication of CN102866665A publication Critical patent/CN102866665A/zh
Application granted granted Critical
Publication of CN102866665B publication Critical patent/CN102866665B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Presses (AREA)

Abstract

本发明公开了一种用于全电动折弯机的多轴同步控制***及控制方法,包括运动控制板卡、数控***与若干组滑块驱动机构;每组滑块驱动机构包括伺服驱动器、永磁同步伺服电机、同步皮带传动机构、滚珠丝杠与光栅尺;永磁同步伺服电机通过同步皮带传动机构与滚珠丝杠连接,且滚珠丝杠的底端安装于折弯机滑块的顶端;光栅尺安装在折弯机滑块的背面且与滚珠丝杠在同一竖直轴线上;永磁同步伺服电机还与伺服驱动器相连,伺服驱动器及光栅尺分别通过运动控制板卡与数控***相连。采用该***能够显著提高多台永磁同步伺服电机运行的同步性能以及折弯定位精度。

Description

用于全电动折弯机的多轴同步控制***的控制方法
技术领域
本发明涉及涉及工业自动化控制与折弯机数控技术领域,特别涉及一种用于全电动折弯机的多轴同步控制***及控制方法。 
背景技术
板料折弯是钣金加工工艺中重要的一种。该工艺采用成套上下模具,在冷态下通过挤压使金属板材产生塑性变形折制成预定角度的钣金件。该工艺的通用性好、工艺简单、成形质量高等优点,已广泛应用于电器、造船、航空、重型机械制造等行业领域。 
为实现折弯机数控化,提高定位精度与同步精度,克服传统液压式折弯机的固有缺点,采用伺服电机直接驱动的全电动折弯机成为主流。小功率全电动折弯机上模滑块仅需二台伺服电机同步驱动控制,而大功率要实现1000KN及以上的折弯压力,则需要使用多台伺服电机在一个滑块(刚体)上进行同步驱动。 
但,在大功率全电动折弯机实际使用中,存在各电机受力不平衡引发的位置不同步现象,从而导致机械上的强耦合,而机械上的强耦合将导致滑块等移动部件扭斜,加剧丝杠等传动器件磨损,降低加工精度与机床寿命,严重时损坏驱动元件与行走机构。为防止上述情况发生,驱动滑块需要多轴同步速度位置联动。因此,研究多轴电机位置同步控制***是大功率全电动折弯机研制中必不可少的环节。 
发明内容
本发明的发明目的是针对现有工业自动化控制与折弯机数控的技术不足,提供一种用于全电动折弯机的多轴同步控制***。 
进一步地,本发明提供一种用于全电动折弯机的多轴同步控制***的控制方法。 
为实现上述发明目的,本发明采用的技术方案为: 
提供一种用于全电动折弯机的多轴同步控制***,包括运动控制板卡、数控***与若干组滑块驱动机构;每组滑块驱动机构包括伺服驱动器、永磁同步伺服电机、同步皮带传动机构、滚珠丝杠与光栅尺;所述永磁同步伺服电机通过同步皮带传动机构与滚珠丝杠连接,且滚珠丝杠的底端安装于折弯机滑块的顶端;所述光栅尺安装在折弯机滑块的背面且与滚珠丝杠在同一竖直轴线上;所述永磁同步伺服电机还与伺服驱动器相连,伺服驱动器及光栅尺分别通过运动控制板卡与数控***相连。
优选地,所述伺服驱动器的三相输出与所述伺服电机动力电源侧连接;所述伺服驱动器的X2功能端口通过电缆线与运动控制板卡连接,所述伺服驱动器的编码器输入端口通过电缆线与永磁同步伺服电机的旋转编码器输出端连接。 
优选地,所述数控***包括工控计算机与嵌入式触摸屏;所述嵌入式触摸屏与工控计算机连接;所述运动控制板卡包括开关量控制板卡与速度控制板卡;所述伺服驱动器及光栅尺与速度控制板卡连接,所述开关量控制板卡通过电缆线连接折弯机滑块的上下行程限位开关;所述开关量控制板卡与速度控制板卡均通过光纤连接至工控计算机内部的PCI模块。 
优选地,所述同步皮带传动机构包括第一带齿轮、同步皮带与第二带齿轮;第一带齿轮安装于永磁同步伺服电机的输出轴上,第二带齿轮安装于滚珠丝杠的螺母上,第二带齿轮通过同步皮带与第一带齿轮连接。 
优选地,所述折弯机滑块的长度大于3000mm。 
优选地,所述滑块驱动机构的数量为四个,分别为第一滑块驱动机构、第二滑块驱动机构、第三滑块驱动机构与第四滑块驱动机构;第一滑块驱动机构包括第一伺服驱动器、第一永磁同步伺服电机、第一同步皮带传动机构、第一滚珠丝杠与第一光栅尺;第二滑块驱动机构包括第二伺服驱动器、第二永磁同步伺服电机、第二同步皮带传动机构、第二滚珠丝杠与第二光栅尺;第三滑块驱动机构包括第三伺服驱动器、第三永磁同步伺服电机、第三同步皮带传动机构、第三滚珠丝杠与第三光栅尺;第四滑块驱动机构包括第四伺服驱动器、第四永磁同步伺服电机、第四同步皮带传动机构、第四滚珠丝杠与第四光栅尺。 
进一步地,本发明提供一种用于全电动折弯机的多轴同步控制方法,工控计算机包括运动控制模块、PID模块、模糊控制模块、速度与力矩输出控制模块、PCI通讯模块与力矩限幅控制模块;所述运动控制器模块包含使能端控制、轨迹规划处理与反馈位置处理;所述多轴同步控制方法包括高速同步驱动阶段与加压折弯驱动阶段; 
1)通过嵌入式触摸屏对参数进行设置;
2)通过嵌入式触摸屏针对特定工件输入折弯数据,工控计算机将自动计算折弯行程、角度与挠度补偿量,生成折弯程序;
3)折弯时,将待折弯板料置于全电动折弯机的下工作台上,数控***驱动全电动折弯机的后挡料装置定位;此时,多轴同步控制***为高速同步驱动阶段;其中,第一伺服驱动器与第四伺服驱动器设置成速度控制模式;第二伺服驱动器与第三伺服驱动器设置成力矩控制模式,第二伺服驱动器驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩;同时,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩调整为给定值,且力矩变化曲线为线性变化;
4)全电动折弯机的滑块带动其上模以10~100mm/s的速度下行至速度转换点,再以1~10mm/s的速度下行至夹紧点;此时,多轴同步控制***切换为加压折弯驱动阶段;所述四个伺服驱动器均设置成速度控制模式,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩线性调整为给定的加压力矩,进而加压折弯至行程终点并进行保压;
5)保压时间到后,力矩限幅控制模块通过减少力矩输出值控制四台伺服驱动器同时自动进行卸压,多轴同步控制***切换为高速同步驱动阶段并控制全电动折弯机的滑块高速向上回程,取走成形板料,加工完毕。
优选地,所述高速同步驱动阶段包括如下步骤: 
(1)运动控制模块依据用户指令规划出各轴运动轨迹,并将其转换成位置指令下发至PID模块,PID模块根据自身比例、积分与微分参数对输入指令处理后第一输出速度指令值;
(2)速度指令经PCI通讯模块直接发至速度控制板卡,速度控制板卡将其转换成模拟电压经电缆线传输至第一伺服驱动器与第四伺服驱动器,第一伺服驱动器驱动第一永磁同步伺服电机,第四伺服驱动器驱动第四永磁同步伺服电机按照给定速度运转,并分别通过第一滚珠丝杠与第四滚珠丝杠的带动滑块作上下直线运动;
(3)第一光栅尺、第二光栅尺、第三光栅尺与第四光栅尺分别实时检测折弯机滑块机械位置,转换成电平信号传输至速度控制板卡,速度控制板卡将电信号转换成第一数字量后经PCI通讯模块反馈至PID模块;PID模块将第一数字量与第一输出速度指令值作比较得到位置偏差,该位置偏差经由比例、积分调节后产生新的速度指令,并通过步骤(2)控制第一永磁同步伺服电机与第四永磁同步伺服电机转速;
(4)将速度与力矩输出控制模块设置为力矩输出模式,速度控制板卡采集第一永磁同步伺服电机与第四永磁同步伺服电机实时输出的力矩信号,经PCI通讯模块传输至速度与力矩输出控制模块;经PCI通讯模块对力矩信号作平滑与滤波处理后,再由PCI通讯模块下发至速度控制板卡,经电缆线分别送至第二伺服驱动器与第三伺服驱动器,第二伺服驱动器通过第二滚珠丝杠驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器通过第三滚珠丝杠驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩;
(5)模糊控制模块将其中一台永磁同步伺服电机的速度反馈同另外三台永磁同步伺服电机的速度反馈分别作差,然后根据各永磁同步伺服电机转动惯量比值确定速度补偿量;并使用位置补偿量及其变化率作为参考,在线调整各轴PID控制器的参数;
(6)运功控制模块通过其切换控制端口输出逻辑低电平对速度与力矩输出控制模块与模糊控制模块工作模式进行切换,实现高速同步驱动阶段切换至加压折弯驱动阶段。
优选地,所述加压折弯驱动阶段包括如下步骤: 
(1)运动控制模块依据用户指令规划出各轴运动轨迹,并将其转换成位置指令下发至PID模块,PID模块根据自身比例、积分与微分参数对输入指令处理后第二输出速度指令值;
(2)速度指令经PCI通讯模块直接发至速度控制板卡,速度控制板卡将其转换成模拟电压经电缆线传输至第一伺服驱动器与第四伺服驱动器;第一伺服驱动器驱动第一永磁同步伺服电机、第四伺服驱动器驱动第四永磁同步伺服电机按照给定速度运转,并分别通过第一滚珠丝杠与第四滚珠丝杠的带动滑块作上下直线运动;
(3)第一光栅尺、第二光栅尺、第三光栅尺与第四光栅尺分别实时检测全自动折弯机的滑块机械位置,转换成电平信号传输至速度控制板卡;速度控制板卡将电信号转换成第二数字量,再经PCI通讯模块反馈至PID模块,PID模块对第二数字量进行调节,PID模块将第二数字量与第二输出速度指令值作比较得到位置偏差,该位置偏差经由比例、积分调节后产生新的速度指令,并通过步骤(2)控制第一永磁同步伺服电机与第四永磁同步伺服电机转速;
(4)将速度与力矩输出控制模块设置在速度输出模式,第二伺服驱动器与第三伺服驱动器的输出速度指令中转到速度与力矩输出控制模块,第二伺服驱动器驱动第二永磁同步伺服电机、第三伺服驱动器驱动第三永磁同步伺服电机按照给定速度运转,并分别通过第二滚珠丝杠与第三滚珠丝杠的带动滑块作上下直线运动;
(5)模糊控制模块固定输出预置的PID模块的参数;
(6)运功控制模块通过其切换控制端口输出逻辑高电平对速度与力矩输出控制模块与模糊控制模块工作模式进行切换,实现加压折弯驱动阶段切换至高速同步驱动阶段。
优选地,所述嵌入式触摸屏采集用户输入的折弯相关参数信息,其采集的参数信息包括:目标折弯角度、折弯速度、模具信息、工件材料参数、滑块挠度变形补偿及平行度;在用户设定参数后,滑块挠度变形补偿与平行度通过运动控制模块来实现对第一滚珠丝杠、第二滚珠丝杠、第三滚珠丝杠与第四滚珠丝杠位置的控制;所述伺服同步控制***还可以由用户在嵌入式触摸屏上输入压力参数实现滑块折弯压力的动态设置; 
所述多轴同步控制***还包括正负行程限位开关,开关量控制板卡实时监测滑块正负两个行程限位开关状态;滑块触碰正负行程限位开关时,开关量控制板卡通过PCI通讯模块向运动控制模块发送触发信号,运动控制模块停止第一永磁同步伺服电机、第二永磁同步伺服电机、第三永磁同步伺服电机、第四永磁同步伺服电机的运动。
本发明相对于现有技术,具有以下有益效果: 
(1)本发明用于全电动折弯机的多轴同步控制***结构新颖巧妙、清晰合理且易维护;采用该***能够显著提高多台永磁同步伺服电机运行的同步性能以及折弯定位精度,并大幅减少了因永磁同步伺服电机间不同步而造成的滚珠丝杠与直线导轨的磨损,有效增长了折弯机传动机构的使用寿命;
(2)本发明用于全电动折弯机滑块的多轴同步控制***采用该控制***的折弯机在不运动的情况下,永磁同步伺服电机均处于静止状态,能最大程度的节省能源;
(3)一般来说,压折弯时,全自动折弯机的机架受力会产生形变;由于本***在加压折弯段采用各滚珠丝杠独立按照各自的控制规律来精确控制位置,根据不同的加压压力计算出所需的顶架形变补偿量,将其叠加到中间两滚珠丝杠位置指令上即可补偿顶架形变,从而可方便实现对滑块挠度进行智能自动补偿;
(4)本***调整简单,操作者只需在触摸屏上进行参数编辑就能完成一系列机床调整工作,从而极大的降低了对操作人员技术熟练程度的要求。
附图说明
图1是本发明控制***总体示意图; 
图2是本发明多轴同步控制***功能模块示意图;
图3是本发明单轴控制子***结构示意图;
图4是本发明多轴同步控制***结构框图;
图5是本发明多轴同步控制***硬件抽象层框图;
图6是本发明多轴同步控制***工作流程图。
具体实施方式
下面结合附图和具体实施例对本发明的发明目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。除非特别说明,本发明采用的材料和加工方法为本技术领域常规材料和加工方法。 
如图1所示,本发明用于全电动折弯机的多轴同步控制***,包括运动控制板卡1、数控***2与四组滑块驱动机构(3、4、5与6)。每组滑块驱动机构包括伺服驱动器、永磁同步伺服电机、同步皮带传动机构、滚珠丝杠与光栅尺。 
其中,四组滑块驱动机构分别为第一滑块驱动机构、第二滑块驱动机构、第三滑块驱动机构与第四滑块驱动机构。 
第一滑块驱动机构包括第一伺服驱动器31、第一永磁同步伺服电机32、第一同步皮带传动机构33、第一滚珠丝杠34与第一光栅尺35。第一永磁同步伺服电机32通过第一同步皮带传动机构33与第一滚珠丝杠34连接,且第一滚珠丝杠34的底端安装于折弯机滑块的顶端。第一光栅尺35安装在折弯机滑块的背面且与第一滚珠丝杠34在同一竖直轴线上。第一永磁同步伺服电机32还与第一伺服驱动器31相连,第一伺服驱动器31及第一光栅尺35分别通过运动控制板卡1与数控***2相连。第一伺服驱动器31、第一永磁同步伺服电机32、第一同步皮带传动机构33与第一滚珠丝杠34构成第一伺服***30。 
第二滑块驱动机构包括第二伺服驱动器41、第二永磁同步伺服电机42、第二同步皮带传动机构43、第二滚珠丝杠44与第二光栅尺45。第二永磁同步伺服电机41通过43第二同步皮带传动机构与第二滚珠丝杠44连接,且第二滚珠丝杠44的底端安装于折弯机滑块的顶端。第二光栅尺45安装在折弯机滑块的背面且与第二滚珠丝杠44在同一竖直轴线上。第二永磁同步伺服电机42还与第二伺服驱动器41相连,第二伺服驱动器41及第二光栅尺45分别通过运动控制板卡1与数控***2相连。第二伺服驱动器41、第二永磁同步伺服电机42、第二同步皮带传动机构43与第二滚珠丝杠44构成第二伺服***40。 
第三滑块驱动机构包括第三伺服驱动器51、第三永磁同步伺服电机52、第三同步皮带传动机构53、第三滚珠丝杠54与第三光栅尺55。第三永磁同步伺服电机52通过第三同步皮带传动机构53与第三滚珠丝杠54连接,且第三滚珠丝杠54的底端安装于折弯机滑块8的顶端。第三光栅尺55安装在折弯机滑块8的背面且与第三滚珠丝杠54在同一竖直轴线上。第三永磁同步伺服电机52还与第三伺服驱动器51相连,第三伺服驱动器51及第三光栅尺55分别通过运动控制板卡1与数控***2相连。第三伺服驱动器51、第三永磁同步伺服电机52、第三同步皮带传动机构53与第三滚珠丝杠54构成第三伺服***50。 
第四滑块驱动机构包括第四伺服驱动器61、第四永磁同步伺服电机62、第四同步皮带传动机构63、第四滚珠丝杠64与第四光栅尺65。第四永磁同步伺服电机62通过第四同步皮带传动机构63与第四滚珠丝杠64连接,且第四滚珠丝杠64的底端安装于折弯机滑块的顶端。第四光栅尺65安装在折弯机滑块的背面且与第四滚珠丝杠64在同一竖直轴线上。第四永磁同步伺服电机62还与第四伺服驱动器61相连,第四伺服驱动器61及第四光栅尺65分别通过运动控制板卡1与数控***2相连。第四伺服驱动器61、第四永磁同步伺服电机62、第四同步皮带传动机构63与第四滚珠丝杠64构成第四伺服***60。 
如图2所示,运动控制板卡1包括开关量控制板卡11与速度控制板卡12。速度控制板卡11的光纤模块Rx端口通过光纤7连接至工控计算机21内部PCI模块的Tx端口。该 x端口还与开关量控制板卡11的光纤模块Rx端相连,开关量控制板卡11的光纤模块Tx端口与工控计算机内部PCI模块卡的Rx端口相连。 
如图3所示,四台伺服驱动器的三相输出U、V、W、PE分别与四台永磁同步伺服电机的动力电源侧连接。四台伺服驱动器的X2功能端口分别通过9芯电缆线于速度控制板卡12的DB9接头连接。其中,模拟输入端口ISA00与速度控制板卡12的速度指令输出端连接;模拟输入端口ISA01与速度控制板卡12的力矩控制指令输出端连接。另外,四台伺服驱动器的伺服开启信号、伺服报警信号及伺服清除报警信号分别与速度控制卡12的SRV_ON、ALM、SRV_CLR相连。 
另外,四台伺服驱动器的编码器输入端口通过电缆线分别与相应永磁同步伺服电机的编码器输出端连接。四台伺服驱动器的抱闸控制端口分别于继电器线圈两端连接。四台永磁同步伺服电机的抱闸输入口与继电器常开开关连接。 
本发明的多轴同步控制***划分为包括四组单轴全闭环同步子***控制的滑块驱动机构。其采用等效速度、加速度复合前馈控制器来实现对给定位置信号的快速准确跟踪、采用二维模糊PID控制算法来提高四台永磁同步伺服电机的同步精度。相应的控制方法均在工控计算机内部编程实现。 
如图4所示,将第一伺服驱动器与第四伺服驱动器设置为速度输出模式,在位置环PID模块的作用下实现快速定位。将第二伺服驱动器与第三伺服驱动器设置为力矩输出模式。第二伺服驱动器通过第二滚珠丝杠驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器通过第三滚珠丝杠驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩。控制方法在工控计算机内部编程实现。 
如图5所示,数控***2包括工控计算机21与嵌入式触摸屏22。工控计算机21内部包括运动控制模块、PID模块、模糊控制模块、速度与力矩输出控制模块、PCI通讯模块与力矩限幅控制模块。运动控制模块、PID模块、模糊控制模块实现运功轨迹规划的控制。速度与力矩输出控制模块实现***高速同步驱动结构与加压折弯结构的切换控制。力矩限幅控制模块实现力矩输出的控制。速度控制板卡12实现四组伺服***(30、40、50与60)与工控计算机21的信息交互。所有模块在工控计算机内部使用C语言编程实现。 
如图6所示,折弯流程按图中所示进行操作,完成每个折弯节点加工。板材折弯角度主要是通过四组伺服***(30、40、50与60)控制上模在下模凹槽中的位移来实现。在实际操作中,用户完成所有参数的设置,针对特定工件输入折弯数据,数控***将工控计算折弯行程、角度与挠度补偿量,生成折弯程序。 
折弯时,将待折弯板料置于全电动折弯机的下工作台上,数控***驱动全电动折弯机的后挡料装置定位;此时,多轴同步控制***为高速同步驱动阶段;其中,第一伺服驱动器与第四伺服驱动器设置成速度控制模式;第二伺服驱动器与第三伺服驱动器设置成力矩控制模式,第二伺服驱动器驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩;同时,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩调整为给定值,且力矩变化曲线为线性变化; 
全电动折弯机的滑块带动其上模从上死点高速下行至速度转换点,再以慢下速度下行至夹紧点;此时,多轴同步控制***切换为加压折弯驱动阶段;所述四个伺服驱动器均设置成速度控制模式,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩线性调整为给定的加压力矩,进而加压折弯至行程终点并进行保压;
保压时间到后,自动进行卸压,多轴同步控制***切换为高速同步驱动阶段并控制全电动折弯机的滑块高速向上回程,取走成形板料,加工完毕。
目前,我国已在各吨位液压式折弯机的研发上有所建树,但在更高层次的数控***上依然全面落后于国外厂商,缺乏能够实用化并投放市场的折弯机数控***。在日前欧美与日本等发达国家在重大装备关键技术上对我国实行壁垒与封锁政策的情况下,为打破国外在该技术的垄断地位,保证国民经济增长与可持续发展,迫切需要开发具有我国自主知识产权的先进制造技术。本发明全电动折弯机作为先进钣金加工设备的代表,对其进行研究与开发具有很高的技术意义与社会经济意义。 
上述实施例仅为本发明的较佳实施例,并非用来限定本发明的实施范围。即凡依本发明内容所作的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。 

Claims (4)

1. 一种全电动折弯机的多轴同步控制***的控制方法,所述控制***包括运动控制板卡、数控***与若干组滑块驱动机构;每组滑块驱动机构包括伺服驱动器、永磁同步伺服电机、同步皮带传动机构、滚珠丝杠与光栅尺;所述永磁同步伺服电机通过同步皮带传动机构与滚珠丝杠连接,且滚珠丝杠的底端安装于折弯机滑块的顶端;所述光栅尺安装在折弯机滑块的背面且与滚珠丝杠在同一竖直轴线上;所述永磁同步伺服电机还与伺服驱动器相连,伺服驱动器及光栅尺分别通过运动控制板卡与数控***相连;
所述数控***包括工控计算机与嵌入式触摸屏;所述嵌入式触摸屏与工控计算机连接;所述运动控制板卡包括开关量控制板卡与速度控制板卡;所述伺服驱动器及光栅尺与速度控制板卡连接,所述开关量控制板卡通过电缆线连接折弯机滑块的正负行程限位开关;所述开关量控制板卡与速度控制板卡均通过光纤连接至工控计算机内部的PCI模块;
所述滑块驱动机构的数量为四组,分别为第一滑块驱动机构、第二滑块驱动机构、第三滑块驱动机构与第四滑块驱动机构;第一滑块驱动机构包括第一伺服驱动器、第一永磁同步伺服电机、第一同步皮带传动机构、第一滚珠丝杠与第一光栅尺;第二滑块驱动机构包括第二伺服驱动器、第二永磁同步伺服电机、第二同步皮带传动机构、第二滚珠丝杠与第二光栅尺;第三滑块驱动机构包括第三伺服驱动器、第三永磁同步伺服电机、第三同步皮带传动机构、第三滚珠丝杠与第三光栅尺;第四滑块驱动机构包括第四伺服驱动器、第四永磁同步伺服电机、第四同步皮带传动机构、第四滚珠丝杠与第四光栅尺;
其特征在于:工控计算机包括运动控制模块、PID模块、模糊控制模块、速度与力矩输出控制模块、PCI通讯模块与力矩限幅控制模块;所述运动控制器模块包含使能端控制、轨迹规划处理与反馈位置处理;所述多轴同步控制方法包括高速同步驱动阶段与加压折弯驱动阶段;
1)通过嵌入式触摸屏对参数进行设置;
2)通过嵌入式触摸屏针对特定工件输入折弯数据,工控计算机将自动计算折弯行程、角度与挠度补偿量,生成折弯程序;
3)折弯时,将待折弯板料置于全电动折弯机的下工作台上,数控***驱动全电动折弯机的后挡料装置定位;此时,多轴同步控制***为高速同步驱动阶段;其中,第一伺服驱动器与第四伺服驱动器设置成速度控制模式;第二伺服驱动器与第三伺服驱动器设置成力矩控制模式,第二伺服驱动器驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩;同时,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩调整为给定值,且力矩变化曲线为线性变化;
4)全电动折弯机的滑块带动其上模以10~100mm/s的速度下行至速度转换点,再以1~10mm/s的速度下行至夹紧点;此时,多轴同步控制***切换为加压折弯驱动阶段;所述四个伺服驱动器均设置成速度控制模式,力矩限幅控制模块将四台永磁同步伺服电机的输出力矩线性调整为给定的加压力矩,进而加压折弯至行程终点并进行保压;
5)保压时间到后,力矩限幅控制模块通过减少力矩输出值控制四台伺服驱动器同时自动进行卸压,多轴同步控制***切换为高速同步驱动阶段并控制全电动折弯机的滑块高速向上回程,取走成形板料,加工完毕。
2.根据权利要求1所述的全电动折弯机的多轴同步控制***的控制方法,其特征在于:所述高速同步驱动阶段包括如下步骤:
(1)运动控制模块依据用户指令规划出各轴运动轨迹,并将其转换成位置指令下发至PID模块,PID模块根据自身比例、积分与微分参数对输入指令处理后第一输出速度指令值;
(2)速度指令经PCI通讯模块直接发至速度控制板卡,速度控制板卡将其转换成模拟电压经电缆线传输至第一伺服驱动器与第四伺服驱动器,第一伺服驱动器驱动第一永磁同步伺服电机,第四伺服驱动器驱动第四永磁同步伺服电机按照给定速度运转,并分别通过第一滚珠丝杠与第四滚珠丝杠的带动滑块作上下直线运动;
(3)第一光栅尺、第二光栅尺、第三光栅尺与第四光栅尺分别实时检测折弯机滑块机械位置,转换成电平信号传输至速度控制板卡,速度控制板卡将电信号转换成第一数字量后经PCI通讯模块反馈至PID模块;PID模块将第一数字量与第一输出速度指令值作比较得到位置偏差,该位置偏差经由比例、积分调节后产生新的速度指令,并通过步骤(2)控制第一永磁同步伺服电机与第四永磁同步伺服电机转速;
(4)将速度与力矩输出控制模块设置为力矩输出模式,速度控制板卡采集第一永磁同步伺服电机与第四永磁同步伺服电机实时输出的力矩信号,经PCI通讯模块传输至速度与力矩输出控制模块;经PCI通讯模块对力矩信号作平滑与滤波处理后,再由PCI通讯模块下发至速度控制板卡,经电缆线分别送至第二伺服驱动器与第三伺服驱动器,第二伺服驱动器通过第二滚珠丝杠驱动第二永磁同步伺服电机力矩跟随第一永磁同步伺服电机力矩,第三伺服驱动器通过第三滚珠丝杠驱动第三永磁同步伺服电机力矩跟随第四永磁同步伺服电机力矩;
(5)模糊控制模块将其中一台永磁同步伺服电机的速度反馈同另外三台永磁同步伺服电机的速度反馈分别作差,然后根据各永磁同步伺服电机转动惯量比值确定速度补偿量;并使用位置补偿量及其变化率作为参考,在线调整各轴PID控制器的参数;
(6)运功控制模块通过其切换控制端口输出逻辑低电平对速度与力矩输出控制模块与模糊控制模块工作模式进行切换,实现高速同步驱动阶段切换至加压折弯驱动阶段。
3.根据权利要求1所述的全电动折弯机的多轴同步控制***的控制方法,其特征在于:所述加压折弯驱动阶段包括如下步骤:
(1)运动控制模块依据用户指令规划出各轴运动轨迹,并将其转换成位置指令下发至PID模块,PID模块根据自身比例、积分与微分参数对输入指令处理后第二输出速度指令值;
(2)速度指令经PCI通讯模块直接发至速度控制板卡,速度控制板卡将其转换成模拟电压经电缆线传输至第一伺服驱动器与第四伺服驱动器;第一伺服驱动器驱动第一永磁同步伺服电机、第四伺服驱动器驱动第四永磁同步伺服电机按照给定速度运转,并分别通过第一滚珠丝杠与第四滚珠丝杠的带动滑块作上下直线运动;
(3)第一光栅尺、第二光栅尺、第三光栅尺与第四光栅尺分别实时检测全自动折弯机的滑块机械位置,转换成电平信号传输至速度控制板卡;速度控制板卡将电信号转换成第二数字量,再经PCI通讯模块反馈至PID模块,PID模块对第二数字量进行调节,PID模块将第二数字量与第二输出速度指令值作比较得到位置偏差,该位置偏差经由比例、积分调节后产生新的速度指令,并通过步骤(2)控制第一永磁同步伺服电机与第四永磁同步伺服电机转速;
(4)将速度与力矩输出控制模块设置在速度输出模式,第二伺服驱动器与第三伺服驱动器的输出速度指令中转到速度与力矩输出控制模块,第二伺服驱动器驱动第二永磁同步伺服电机、第三伺服驱动器驱动第三永磁同步伺服电机按照给定速度运转,并分别通过第二滚珠丝杠与第三滚珠丝杠的带动滑块作上下直线运动;
(5)模糊控制模块固定输出预置的PID模块的参数;
(6)运功控制模块通过其切换控制端口输出逻辑高电平对速度与力矩输出控制模块与模糊控制模块工作模式进行切换,实现加压折弯驱动阶段切换至高速同步驱动阶段。
4.根据权利要求1所述的全电动折弯机的多轴同步控制***的控制方法,其特征在于:所述嵌入式触摸屏采集用户输入的折弯相关参数信息,其采集的参数信息包括:目标折弯角度、折弯速度、模具信息、工件材料参数、滑块挠度变形补偿及平行度;在用户设定参数后,滑块挠度变形补偿与平行度通过运动控制模块来实现对第一滚珠丝杠、第二滚珠丝杠、第三滚珠丝杠与第四滚珠丝杠位置的控制;所述伺服同步控制***还可以由用户在嵌入式触摸屏上输入压力参数实现滑块折弯压力的动态设置;
所述多轴同步控制***还包括正负行程限位开关,开关量控制板卡实时监测滑块正负两个行程限位开关状态;滑块触碰正负行程限位开关时,开关量控制板卡通过PCI通讯模块向运动控制模块发送触发信号,运动控制模块停止第一永磁同步伺服电机、第二永磁同步伺服电机、第三永磁同步伺服电机、第四永磁同步伺服电机的运动。
CN201210368869.2A 2012-09-27 2012-09-27 用于全电动折弯机的多轴同步控制***的控制方法 Expired - Fee Related CN102866665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210368869.2A CN102866665B (zh) 2012-09-27 2012-09-27 用于全电动折弯机的多轴同步控制***的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210368869.2A CN102866665B (zh) 2012-09-27 2012-09-27 用于全电动折弯机的多轴同步控制***的控制方法

Publications (2)

Publication Number Publication Date
CN102866665A CN102866665A (zh) 2013-01-09
CN102866665B true CN102866665B (zh) 2014-07-16

Family

ID=47445594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210368869.2A Expired - Fee Related CN102866665B (zh) 2012-09-27 2012-09-27 用于全电动折弯机的多轴同步控制***的控制方法

Country Status (1)

Country Link
CN (1) CN102866665B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135500A (zh) * 2013-01-25 2013-06-05 马鞍山市中亚机床制造有限公司 一种折弯机加工控制***
CN104898549B (zh) * 2013-09-13 2017-12-29 绍兴市安雅信自动化技术有限公司 一种扭轴折弯机加轴装置
CN104898576A (zh) * 2015-06-17 2015-09-09 江苏大金激光科技有限公司 一种扭力同步智能数控折弯机数控***
CN106886215B (zh) * 2015-12-15 2023-08-04 北京智行者科技股份有限公司 一种基于多轴无轨电车循迹跟踪***及具有其的电车
CN105573245B (zh) * 2015-12-24 2019-01-11 马鞍山市中亚机床制造有限公司 一种数控折弯机精度调试方法
CN105897068B (zh) * 2016-04-07 2019-04-26 武汉菲仕运动控制***有限公司 一种硬脆材料多线切方机用双电机力矩同步控制***
CN106216451A (zh) * 2016-08-17 2016-12-14 南通惠宇机床有限公司 全自动在线折弯机控制***
CN106424231A (zh) * 2016-08-17 2017-02-22 南通惠宇机床有限公司 一种全自动在线折弯机控制***
CN107831734A (zh) * 2017-11-17 2018-03-23 广船国际有限公司 数控折弯机的控制器及控制方法、装置、设备和存储介质
CN108255209B (zh) * 2017-12-14 2020-12-25 武汉菲仕运动控制***有限公司 一种折弯机控制方法及***
CN109772945B (zh) * 2019-01-15 2021-07-23 武汉菲仕运动控制***有限公司 一种折弯机全闭环电液伺服驱动方法及***
CN112305995A (zh) * 2019-07-30 2021-02-02 摩梁(上海)智能科技有限公司 一种伺服***及其控制方法
CN110899395B (zh) * 2019-12-24 2021-02-05 株洲特装智能装备有限公司 一种纯电伺服数控折弯机
CN112916669A (zh) * 2021-01-20 2021-06-08 无锡市华德尔自动化控制技术有限公司 一种全电伺服折弯机数控***
CN113877994B (zh) * 2021-09-22 2024-01-16 深圳市合信自动化技术有限公司 一种全电驱动的折弯机
CN115107533A (zh) * 2022-06-24 2022-09-27 北京长征天民高科技有限公司 一种长行程高度精度定位***、方法及装置
CN116107268B (zh) * 2023-04-04 2023-07-11 瑞铁机床(苏州)股份有限公司 一种纯电伺服数控折弯机控制***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201040297Y (zh) * 2007-03-23 2008-03-26 济南建达超越数控技术有限公司 伺服电动机驱动数控板料折弯机
CN201493357U (zh) * 2009-07-28 2010-06-02 江苏金方圆数控机床有限公司 多轴电伺服同步折弯机
CN202803847U (zh) * 2012-09-27 2013-03-20 华南理工大学 用于全电动折弯机的多轴同步控制***

Also Published As

Publication number Publication date
CN102866665A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
CN102866665B (zh) 用于全电动折弯机的多轴同步控制***的控制方法
CN202803847U (zh) 用于全电动折弯机的多轴同步控制***
CN100513004C (zh) 可实现工件自动对中的数控锻造液压机
CN202399558U (zh) 一种伺服驱动液压控制***
CN107971415B (zh) 一种自动定位的折弯机板料折弯方法
CN203184475U (zh) 一种自动升降数控折弯机后挡料***
CN201604032U (zh) 铣床伺服定位进给控制***
CN203956921U (zh) 四轴冲压机机械手
CN204503909U (zh) 数控多功能金属张拉机
CN102358019B (zh) 一种双伺服控制***及包括该***的节能注塑机
CN107678387A (zh) 一种高精度柔板型面控制***
CN102862094B (zh) 数控***控制的液压伺服***
CN201408932Y (zh) 母线加工机
CN203003600U (zh) 插床自动控制***
CN203245479U (zh) H型钢锁口火焰切割机
CN208245477U (zh) 一种冷挤压成型复合伺服油压机
CN206773511U (zh) 一种基于交流伺服的单轴定位***
CN105302031A (zh) 码垛搬运机器人的控制装置及其控制方法
CN201023279Y (zh) 陶瓷洁具石膏试验模具数控加工机
CN102430635A (zh) 板材高压水射流柔性渐进成形方法及装置
CN204338889U (zh) 车床顶紧尾座自动调节机构
CN103071723B (zh) 一种机械伺服数控转塔冲床的主传动装置
CN202779582U (zh) 搓齿机
CN202702533U (zh) 全自动剪水口机
CN103832874A (zh) 一种印刷工艺后段自动化加工***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716