CN1028077C - 电阻焊接方法及实现该方法的装置 - Google Patents

电阻焊接方法及实现该方法的装置 Download PDF

Info

Publication number
CN1028077C
CN1028077C CN 92101508 CN92101508A CN1028077C CN 1028077 C CN1028077 C CN 1028077C CN 92101508 CN92101508 CN 92101508 CN 92101508 A CN92101508 A CN 92101508A CN 1028077 C CN1028077 C CN 1028077C
Authority
CN
China
Prior art keywords
welding
current
welding current
wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 92101508
Other languages
English (en)
Other versions
CN1071359A (zh
Inventor
H·许曼
W·苏特
H·韦伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elpatronic AG
Original Assignee
Elpatronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH676/91A external-priority patent/CH682889A5/de
Application filed by Elpatronic AG filed Critical Elpatronic AG
Publication of CN1071359A publication Critical patent/CN1071359A/zh
Application granted granted Critical
Publication of CN1028077C publication Critical patent/CN1028077C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

本发明的电阻焊接的方法,在各半波内以斩波频率对脉宽调制过程中的初级交流电压斩波,斩波频率是焊接电流频率的倍数,以产生特定的焊接电流波形。本发明的装置有静态变频器,它有直流中间级电路及用作输出级的斩波器,斩波器产生初级交流电压并将它送到次级电路连接电阻焊接机焊接电极的焊接变压器。控制器的调节器连接斩波器,通过初级交流电压的脉宽调制来控制焊接电流。该装置可用于接头滚缝焊、点焊或金属板坯焊的电阻焊接机。

Description

本发明涉及利用由初级交流电压产生并通过脉宽调制受控以周期性半波脉动(尤其是交流)的焊接电流进行电阻焊接的方法。
本发明还涉及用于实现该方法的装置,它具有一个静态变频器,所述静态变频器具有一个直流中间级电路以及一个用作输出级的斩波器,该斩波器产生初级交流电压并将它传送到次级电路连接到电阻焊接机的焊接电极的焊接变压器。
这种方法和装置可从EP-A2-0    260    963获知,下文将作更详细的讨论。
在用于纵向电阻缝焊保存罐或类似物之本体的搭接边缘的一种已知缝焊装置(EP-A1-0    261    328)中,将三相电源交流电压转换为直流电压,直流电压被平滑和转换为有交变极性的脉冲电压。该脉冲电压施加于缝焊装置的焊接电极。脉冲电压的频率是这样选择的,即所得到的焊接电流是连续的,为此在每种情况下由脉冲电压的矩形半波之一产生的各个点焊熔核或焊点彼此搭接。由于焊接电流半波各自是由脉冲电压的半波产生的,焊接电流的波形取决于脉冲电压半波的持续时间。当调节焊接电流时,如果该脉冲持续时间在半波期间内发生变化,这导致焊接电流波形上相当大的变化,这种变化必定认为是缺点。假若焊接电流形式不取决于机器参数,因而不由机器参数所决定,但可以为了使焊接结果最佳而对焊接电流进行预选,则会相当有利。
而且,在已知的缝焊装置中,控制每一焊点电流的焊接电流调节器在各种情况下以先前焊点的已测定值工作。调节器的反应时间(也 由调节器控制的校正装置确定)因此较长(对于500Hz焊接频率,反应时间达1ms)。因此,调节器不能校正焊接参数的快速变化(例如,污染的金属板表面)。为了改进这种已知缝焊装置的调节能力,因而要求缩短调节器的反应时间。为此,转换频率可以设想增加某一个因子。但是,结果焊接电流的频率因此也增加该因子。由于缝焊装置的强电感性负载的结果,因为阻抗与频率成正比地增长,焊接电压减小一个因子,该因子等于开关频率所增加的因子的倒数。为对这进行补偿,已知缝焊装置的变频器及焊接变压器的电压和功率必须增加与转换频率所增加的相同因子。此外,不会再满足焊接频率应与焊接速度保持在一定比值上的要求。在该已知缝焊装置中,由于调节器反应时间长,焊接参数、比如例如焊点的接触电阻(焊接材料的表面质量)、焊接材料的材料性质等不能足够快地加以考虑,也没有可能使焊接电流波形适应不同的焊接条件,例如满足处理不同材料的要求。
前述EP-A2-0    260    963提出利用高频电流源,以便使利用较小焊接变压器成为可能。由于这对必要的晶闸管相位控制带来问题,通过在相位控制期间的一个半波内使用事先已根据以前半波的测定值计算的预计算值进行焊接电流的前馈或正向控制。从该公布文件得知的装置也不是在所有工作状态下都能令人满意地工作,因为焊接电流在焊点照样仅接通和断开一次。由于此处调节器在各种情况下也是以先前焊点的测定值操作,调节器的反应时间较长。如果在脉宽调制期间脉冲宽度改变,焊接电流波形也改变,由于这一原因焊接电流不适于特殊材料或特殊工作状态。
况且,为两个已知装置所共有的是,仅将焊接电流的二次平均值作为其实际值来测量,因此仅能够控制焊接电流的这种平均值。由于这个原因,将焊接电流的恒定平均值预置为标称值。
无级控制正弦交流电流幅值的装置已从CH-A5-668842得以了解。
在交流电流的各半波的可变部分上,可将可控电路元件从阻断状态转移到传输状态。无疑,从而提供一种用电子学方法可控可调的变压器,这种变压器实际上是没有延时的,但此处影响焊接电流的可能性也限制于每半波一个转换过程。为此,在这种情况下也不可能获得更快的调节时间。
DE-C2-30    05    083描述了制造纵向缝焊圆形物体的方法,其中为了获得连续不间断的焊缝,焊接电流的几乎为矩形的一个半波的持续时间适合于传输焊接电极辊之间的物体所用的时间,为此焊接操作期间所需的能量可通过将高频电流分量叠加在焊接电流上而直接进行控制。通过叠加高频电流分量而调节的可能性不仅对于调节范围而且对调节时间自然是受到限制的。
最后,例如由Soudronic出版物“电阻焊接”MDI    00188D,第9和第10页可知,专家熟悉借助于相移控制来改变焊接电流强度。遗憾的是,在各种情况下焊接电流波形也改变。如果在变化的负载条件下焊接电流保持不变,上述情况同样适用,因为在两种情况下相移角度均须改变。而且,焊接变压器初级交流电压的相移控制产生中断的焊接电流,这同样是有害的。
本发明的目的是提供用于实现前述类型的过程的方法和装置,由此可容易地使焊接电流波形适合于处理不同材料的需要。而且,旨在使该方法和装置适宜于焊接电流的快速调节,直至保证调节。
源于前述类型的方法,按照本发明来解决问题,其特征在于:在各半波以斩波频率对脉宽调制过程中的初级交流电压进行斩波,该斩波频率是焊接电流频率的倍数,以便产生特定的焊接电流波形。
源于前述类型的装置,按照本发明该装置含有一个静态变频器,所述静态变频器具有一个直流中间级电路以及一个用作输出级的斩波器,该斩波器产生初级交流电压Up并将初级交流电压Up传送到次级 电路连接到电阻焊接机之焊接电极的焊接变压器,其特征在于:含有一个控制装置,借助于该控制装置可控制斩波器对初级交流电压各半波的多次斩波,控制装置具有一个调节器,所述调节器连接到变频器的斩波器,用于通过初级交流电压的脉宽调制来控制焊接电流I,并具有一个焊接电流参考元件,调节器的焊接电流参考元件是含有对应于各斩波间隔的焊接电流波形、用于与每斩波间隔确定的各电流实际值进行比较的电流标称值的存储器。
上述装置的用途,其特征在于可用于接头滚缝焊、点焊或金属板坯焊的电阻焊接机。
因此,虽然在以上提出的现有技术中,在脉宽调制期间的各半波上初级交流电压仅被斩波一次,但是按照本发明,可对初始交流电压斩波n次,其中n>1。如果按最佳方式实现调节,可获得短的调节时间,因为可在每半波实现焊接电流的若干标称-实际值比较并因此可在脉宽调制过程中重复地影响占空系数。由于斩波频率相应地是焊接电流频率的倍数,在各焊点过程获得快速调节。这使得调节器能够校正焊接参数的快速变化(例如,从污染的金属板表面)。对初级交流电压进行斩波形成的脉冲的形式在各半波上近似为矩形。占空系数、即脉冲宽度/脉冲间隔可在宽的范围内变化。由此可直接影响初级交流电压的平均值,且可按要求预设并由此可变地形成电流波形,这在现有技术中是不可能的。如以上所说明的,在那里它被***所影响(例如,在相移控制期间)或被确定。尽管以上阐述的现有技术中的斩波频率或者被确定(例如在相移控制期间),或至多等于焊接频率,但在按照本发明方法和装置中它是焊接频率的倍数。然而通过简单控制斩波无需调节也能产生简单选择所要求的焊接电流波形的优点。尽管调节仍为最佳。
在一个最佳装置中,存储器至少含有焊接电流曲线每半波的n个 标称值,在焊接电流的调节期间这n个标称值与每半波确定的n个电流实际值中的每个进行比较,以便获得在脉宽调制期间能够影响占空系数的设定值。
因此该方法和装置具有下列优点,尤其对于最佳的具体实施例而言:
焊接频率是可变的,斩波频率是焊接频率的可选倍数;
电流波形是可以预选的,因而是可变的,并且基本上不被焊接电流调节过程中占空系数的修正所改变;
如果工作期间不要保持预选的焊接电流波形,则通过调节程序、即通过对占空系数的影响相应地校正电流波形;
保存在存储器中的焊接电流波形可按要求选择,即以矩形、正弦或梯形形式,例如具有倾斜脉冲顶部的梯形或带驼峰或凹谷的梯形(取决于一个焊点内需要的热能平衡,一个焊点内的加热相及冷却相能控制得越好,焊接操作即可控制得越好,以致以前认为不可焊接的材料、比如例如镀铬部件现在借助于本发明也可进行焊接);
调节器的反应时间明显比现有技术中更短,因为在一个半波内焊接发生n次,并在各种情况下均对电流进行调节。
用按照本发明选择成对应于焊接频率倍数的高斩波频率来获得这些优点。
在根据本发明的一种设计中,将斩波频率选择为焊接电流频率的20倍,例如,产生500Hz的焊接频率,10KHz的斩波频率。固定地预选该斩波频率然后保持其不变。在焊接电流的调节期间仅仅改变占空系数。在根据本发明上述设计的实例中,对初级交流电压的每半波斩波10次。
在借助于标称值表预选焊接电流形式的本发明另一设计方案中,以可选择的标称值表记下各焊接电波形。因此,例如,为正弦电流波 形存储一个标称值表,为矩形电流波形以及梯形电流波形等也各存储一个标称值表。
在变频器的斩波器包含用晶体管作为电路元件且续流二极管并联于晶体管的电桥电路的本发明再一设计中,可最容易地实现本发明的调节方法,因为用于作为电路元件的晶体管具有特别短的开关时间。
在本发明的又一些设计方案中,可在存储器中获得可通过输入端选择的各要求的焊接电流波形的标称值表;或者通过的可调焊接频率输入可在存储器的各标称值表中为各焊接频率(fs)选择子表;或者在存储器中可获得各焊接频率的对应于所要求的焊接电流波形的标称值表。特定子表或标称值表适用于各焊接电流波形和/或频率。因此,较低焊接频率比起较高焊接频率每半波可获得更多标称值。
在本发明的其它一个设计方案中,调节器包含PID调节电路,该PID调节电路配备有前馈回路,对表中的各电流标称值存储着向后续电流标称值的变化值,并将其提供给PIP调节电路的输出作为前馈值。可以极其充分地利用调节器的短反应时间,因为电流标称值及相邻电流标称值之间的相应变化能够预先方便地算出并存储在表中。最好将焊接电流曲线的一次导数存储作为相邻电流标称值之间的变化量。这给它带来如下优点,调节可预先出现,即可从开始就基本上避免调节过程中的过调,因为根据存储的变化量事先就知道下一电流标称值位于何处。
在本发明的另外一个设计方案中,一个乘法器连接于存储器,该乘法器用能通过调节器的可调电流标称值输入端输入的选择因子乘以表的标称值;该乘法器还有另外的输入端,通过这些另外输入端可以手动或由叠加的焊接机控制***来输入其它因子。可以简单的方式即通过用表的已存储标称值乘以可按要求馈给的相应因子来获得焊接电流的所要求幅值。
本发明还涉及用以周期半波脉动的电流尤其是交变焊接电流进行电阻焊接的方法。至今,这种焊接用正弦电流的已经出现。在白铁皮焊接中,对非常薄的金属板和/或很轻微镀锡的金属板的焊接日益出现问题。特别是在罐(白铁皮容器)的焊接中,这些金属板可能带来其生产技术难于控制的问题。该方法也应用于未涂锡的黑钢板,特别是镀层金属薄板,更具体地说即镀铬金属薄板的焊接。至今,已尝试用正弦焊接电流的不同焊接电流幅值和焊接电流频率来克服这些问题,但结果一直不能令人满意。
因此,作为本发明基础的问题是要使薄和/或轻微镀锡的金属薄板及其它金属薄板的焊接成为可能。在非常窄的容许带宽内,特别要使焊接期间的能量供应成为可能,以便避免溅射(太高的能量供应)或搭接缝隙(太低的能量供应)。
按照本发明,这可用前面所述的、其中的焊接电流不同于正弦形的方法来达到。
因为焊接电流的各个半波可具有任何形状,对最佳焊接的焊接部位的确实必需的能量供应是可能的。通过电流的变化过程,为了在焊接部位形成所需要的电阻而对焊接部位的必要加热和冷却可得到很好地控制,至今这一直是不可能的。
下面参见附图更为详细地描述本发明的典型实施例。
图1示出具有用于调节焊接电流的本发明装置的电阻缝焊机的电路图,
图2示出本发明装置在虚线Ⅱ-Ⅱ以上所示的部分的更详细的电路图,
图3示出如图1中方块所示的调节器的详图,
图4示出脉宽调制的焊接变压器初级交流电压以及出现的正弦焊接电流的第一实例,
图5示出以不同于图4的方式斩波的脉宽调制的初级交流电压的第二实例,
图6示出产生梯形焊接电流用的脉宽调制的初级交流电压的第三实例,
图7a-7c示出具有倾斜的脉冲的顶部的预选梯形焊接电流的各种演变,
图8a-8c示出脉冲顶部有一个或多个驼峰的可预选梯形焊接电流的各种实例,
图9a-9c1示出脉冲顶部有一个或多个驼峰的可预选梯形焊接电流的各种实例,
图10示出可预选的三角形焊接电流的实例,
图11示出可获得要求的焊接电流波形的电阻缝焊机的电路图,
图12示出图11中线Ⅱ-Ⅱ之上所示调节器的更详细的图示,
图13示出如图11中方块所示的调节器的详细图示,
图14至40示出各种最佳电流波形。
图1示出用于纵向缝焊辊状焊接电极10和12之间未示出之圆形罐体的电阻缝焊机的简化电路图。该电阻缝焊机具有一个静态变频器14,静态变频器14由线路L1-L3表示的电源供电,以及具有一个通过常规直流中间级电路14C连接到设计作为斩波器的输出级14b的输入级14a。输出级14b连接到焊接电流变压器16的初级电路,将初级交流电压Up输送至初级电路。焊接变压器16的次级电路连接到焊接电极10和12。
按照图2中的扩展电路图,静态变频器14的输入级14a具有一个三相整流器,其同时构成直流中间级电路14c的输入,直流中间级电路14c一般是已知的,因为它对本发明各种情况而言是不重要的,故无需进行详细描述。如图2所示,变频器14(图1)的输出级14b中的 斩波器包含以晶体管T1-T4作为开关元件且续流二极管F1-F4与这些晶体管并联的电桥电路。四个选通驱动器以图2所示方式连接到晶体管和续流二极管,并由调节器18(图1)通过线路15加以控制。在焊接变压器16的初级电路中设置有一个检测流入焊接变压器16初级电路的电流的实际值的电流互感器20。
如已经指出的,甚至用产生所要求电流波形的所需占空系数的简单控制***就能够获得本发明的重要优越性。但是由于本发明首次真正使快速调节成可能,以下将参照调节来进行说明。
按照图1的电路图,来自电流互感器20的电流实际值通过A/D转换器22传输到设计为过程计算机的调节器18的输入端。在调节器18上,可通过电位器24和26设定焊接电流的标称值Isoll或焊接频率fs。在电位器24和26上建立的模拟电压通过A/D转换器25或27施加于过程计算机。另外可将焊接电流源值IF通过标志为“手动”的输入端或通过焊接机控制***19馈入调节器18。所述值与标称焊接电流Isoll结合以便允许例如罐体上的电流为非恒定。这样,准确地知晓各时刻被焊罐***置的焊接机控制***19也因此能够改变设定的标称值Isoll,从而在罐体各点发生的焊接具有适当的焊接电流幅值。调节器18通过焊接电流的标称-实际值比较而确定设定值,它通过A/D转换器28和线路15将该设定值输送给变频器14(图1)的输出级14b中的选通驱动器(图2)。该设定值影响输出级14b中的斩波器对来自直流中间级电路14c的各半波中平滑直流电压进行斩波所形成的矩形脉件的占空系数,以便借此通过初级交流电压以受影响的占空系数的脉宽调制调节焊接电流,如以下参照图3更为详细描述的。
在图4-6中示出了通过将平滑的直流电压斩波成矩形脉冲而产生初级交流电压的各种方式。在图4实例中,平滑的直流电压被斩波成极性从半波到半波改变的矩形脉冲,从而产生平均来说(in    the    mean) 为正弦初级交流电压U和基本上为正弦形式的焊接电流I。
同样的方法应用于图5的实例,将平滑的直流电压斩波成等高的矩形脉冲,该高度在各种情况下等于平均来说为正弦波的初级交流电压之峰值的两倍。
在按照图6的实例中,根据与图4相同的原理但以产生梯形焊接电流I的方式来实现对平滑的直流电压的斩波。
图3更详细地示出了调节器18。如以上已指出的,将调节器18设计为过程计算机,图3中仅示出了为本发明所必需的部分并在下文中加以描述。它包含PID调节电路50以及存储器形式的焊接电流参考元件52,存储器52含有各斩波间隔的对应于焊接电流波形、用于与各斩波间隔内所确定的各电流实际值进行比较的电流标称值。对于各焊接电流波形(正弦波、三角波、梯形波等),存储器52包含可通过输入端WTab选择的标称值表。存储器52的一个输出端连接到乘法器54的一个输入端。乘法器54的输出端连接到求和点56。求和点56将从乘法器54接收的输入信号与电流实际值结合。通过标称-实际值比较形成的求和点56的输出信号施加于PID调节电路50的输入端。
PID调节电路50在其输出端将设定信号传输给求和点58的一个输入端。存储器52的另一输出端通过前馈或正向驱动回路60连接到求和点58的另一输入端。通过前馈回路,存储器把从传输给乘法器54的实际电流标称值到下一标称值的变化值、即在实际电流标称值的焊接电流曲线在下一电流标称值方向上的一阶导数dI/dt或增量传输给求和点58。将该方向数据与PID调节电路50的输出信号互相结合,因此求和点58的输出信号构成一设定信号,用该信号可以正确的方向及比例设定焊接电流,从而在调节电流的过程中不存在过调。
在与各焊接电流波形配合的标称值表内,有特别可对各焊接频率fS选择的子表,这在下面进一步作更为详细的描述。将通过输入信号 WTab选择的电流曲线的标称值以及它的一阶导数存储在各标称值表中。对于各测量和斩波间隔,来自该表的相应标称值在乘法器54中与所要求的电流幅值相乘,然后作为标称值馈送给求和点56。所要求的电流幅值作为信号Isoll通过A/D转换器25馈入乘法器54并在其中与来自存储器52的电流标称值相乘。所要求的电流幅值Isoll还可通过“手动”输入或由焊接机控制***19(图1)交替地或辅助地予以影响,例如,以便在一个焊接点内给焊接电流I某一确定的变化过程,从而在初级交流电压的一个半波之内,例如越来越倾斜脉冲顶部,如图7a-7c所示,或者给它提供更多或更少的驼峰或凹谷,如图8a-8c或9a-9c所示。
如前所述,对应每种电流波形存储器52包含一个标称值表,在所示的示范实施例中为四个标称值表。在各表中,以预先选定的若干电流标称值存储所要求的焊接电流波形。在本实例中,每个焊接电流周期存储256个标称值。利用500Hz的焊接频率和10KHz的斩波频率,每半波分别可获得100μs的10个斩波或转换间隔。因此焊接电流每半波可被斩波10次,亦即接通并断开10次。在256个可获得的焊接电流标称值中,每周期因此可选出20个焊接电流标称值,亦就是说,每半波10个标称值,并用于调节器18中的标称一实际值比较。如果焊接频率仅达到50Hz,那么焊接电流每周期可选出200个标称值,因此每半波为100个标称值。根据所选焊接频率fS,通过A/D转换器27选择对应于焊接电流波形的标称值表中的适宜子表。
在标称值表中还存储从一个焊接电流标称值到下一电流标称值的变化量,即,256个预置焊接电流标称值序列中的dI/dt值。如果用35与40Hz之间的焊接频率工作,则利用标称-实际值比较中的所有256个点。然而,通常使用的是500Hz的焊接频率,因此在标称-实际值比较中焊接电流每周期仅用到20个焊点。因此,如果不用含有256个 标称值的标称值表,而是选择超过fS的更高焊接频率的子表,计算机就自动地使变化量适应它,使得该变化量对应于焊接电流标称值之间所选的分级。另一可能性是并非从开头即用每焊接电流周期256个点来预置标称值表随后用较少焊接电流标称值选择子表,而是预先计算这些子表,并使它们可与从标称值到标称值的变化量一起选作存储器52中的标称值表。
存储器52传输的标称电流值精确对应于所要求的焊接电流形式,但仍不对应于所要求的幅值。如所说明的,借助于可通过上述另三个输入端馈入乘法器54的独立因子来选定所要求的幅值。
调节过程操作如下:参照上面引用的实例,假定以500Hz的焊接频率fs和10KHz的斩波频率工作。焊接电流I为正弦波形并以图4所示方式通过初级交流电压U的脉宽调制获得。标称值表在焊接电流I的每半波包含10个标称值。以10KHz对直流中间级电路14c传输的平滑直流电压进行斩波,由此产生对应于电流标称值的焊接电流曲线。从电流互感器20测定焊接电流实际值的测量频率等于斩波频率。因此对于各焊接电流标称值测出焊接电流实际值。在每一标称-实际值的比较中,确定所测得的实际值是否等于标称值表中所存在的焊接电流标称值。如果情况非如此,求和点56和PID调节电路50传输误差信号,由该信号以上述方式借助于前馈信号形成对应占空系数的设定信号。利用该设定信号以下述方式对占空系数施加影响,即在初级交流电压的脉宽调制期间脉冲持续时间与脉冲间隔之间的比值以消除焊接电流实际值与焊接电流标称值之间差异的方式予以修正。
因此,在焊接电流的一个半波内,即在一个焊点内能以极其短的调节时间来调节焊接电流。该调节方法的另一特殊优点是可另外以标称值表的形式来存储各所要求的电流波形并按需要加以选择。可在一定限制内任意选择焊接电流波形,该限制实际上仅由机器所设定(例 如,若存在焊接电流曲线的最大可能增幅,由于存在各种物理因素等不能超过该增幅)。
在上部与下部焊接辊(如同这里所示出的焊接电极10和12)之间的罐体的所谓完全正弦焊接中,焊接辊与金属板之间总接触长度上的加热距离划分为六个相,这些相是由60米/分钟的焊接速度和500Hz的焊接频率以及3mm的总接触长度造成的,并产生三个半波,这些相被分为三个冷期和三个热期(见“Soudronic”公司期刊,第一年出版物第一号,1985年6月,第3页)。焊接辊之间各焊点的产生因此包括加热与冷却之间的三次交替作用。按照本发明的调节方法允许对一个焊点内加热和冷却相的最优控制。图7-9示出为此目的的适当焊接电流形式。因此本发明适应不同材料的焊接情况。至今一直仅可利用溅射焊接的金属板现在可以用无电流峰值的平顶焊接电流脉冲进行良好的焊接。
图14示出最初焊接电流在各半波中正弦增长,而在达到正弦波峰之前下降并再次增长然后下降到零交叉的电流变化过程。对于本发明的这一具体实施例而言,对焊点成形热(无流体相)获得非常有效的有目的影响。在滚缝焊中有可能例如以500Hz的焊接频率、3700A的焊接电流以及60米/分钟的焊接速度工作,甚至对通常难于进行控制的金属板品质也具有非常良好的结果。
图15和16示出在半波中央存在焊接电流的反复下降的其它最佳电流波形;图15从零交叉起初始作正弦增长;图16则朝着处在高于两个后续峰值位置的第一幅峰作线性增长。对于这些电流波形,可用低焊接频率获得最大焊接速度,这防止焊接设备过热并产生小的能量损耗。例如,对辊缝焊可指定频率250Hz、电流3780A、速度60米/分钟。
图17示出在各种情况下各半波的中间具有缓慢下降的电流变化过程的最佳电流波形。依据金属板的质量用该过程可获得较大焊接范围 (在粘合与溅射极限之间)。
图18示出电流的三角波变化过程。此处,尤其可获得在有非常规镀层以(非镀锡)金属板焊接中的优点。
图19示出对被焊接材料进行较慢能量供应的类似电流波形。
图20至28示出各种情况下在半波内某些时间保持焊接电流恒定的电流波形。在具体焊接情况下,这产生对焊接区尤为良好的能量供应。
图29、30和31示出半波期间焊接电流或多或少慢慢下降的变化过程。
图32至39示出各种情况下通过将电流减小为零值使半波期间能量供应显著减少、或者在半波期间使电流短时间发生倒相的电流波形。
图40示出具有几个恒定部分的电流波形,其中第一恒定部具有比后续恒定部分大的振幅。
所示出的电流波形和另外的电流波形可用以下描述的装置产生。图11示出用于纵向缝焊辊状焊接电极10和12之间未示出的圆形罐体的电阻缝焊机的简化电路图。该电阻缝焊机含有一个具有由线路L1-L3表示的电源供电的输入级14a的静态变频器14,所述输入级通过常规直流中间级电路14c连接到设计为斩波器的输出级14b。输出级14b连接到焊接电流变压器16的初级电路,将初级交流电压Up传输给该电路,焊接变压器16的次级电路连接到焊接电极10和12。
按照图12所示的扩展电路图,静态变频器14的输入级14a有一个三相整流器,其同时构成直流中间级电路14c的输入,直流中间级电路14c一般是公知的,因为它对本发明各种情况而言不重要故无需进行详细描述。如图12所示,变频器14(图11)的输出级14b中的斩波器包含以晶体管T1-T4作为电路元件且续流二极管F1-F4与这些晶体管并联的电桥电路。四个选通驱动器以图12所示方式连接到晶体管和续流二极管,并由调节器18(图11)通过线路15加以控制。在焊接变 压器16的初级电路中设置有一个检测焊接变压器16初级电路中电流实际值的电流互感器20。
按照图11中的电路图,来自电流互感器20的电流实际值通过A/D转换器22传输到设计为过程计算机的调节器18的输入端。在调节器18上,可通过电位器24和26设定焊接电流的标称值Isoll或焊接频率。在电位器24和26上建立的模拟电压通过A/D转换器25或27施加于过程计算机。另外可将焊接电流源值I通过标志为“手动”的输入端或通过焊接机控制***19馈入调节器18。该值与标称焊接电流Isoll结合以便允许例如在一个罐体上的电流为非恒定。这样,知晓各个时刻被焊罐***置的焊接机控制***19也因此能够改变设定的标称值Isoll,从而在罐体各点发生的焊接具有适当的焊接电流幅值。调节器18通过焊接电流的标称-实际值比较确定设定值,它通过A/D转换器28和线路15将该设定值输送给变频器14(图11)的输出级146中的选通驱动器(图12)。该设定值影响输出级14b中的斩波器对来自直流中间级电路14c的各半波中平滑直流斩波形成的矩形脉件的占空系数,以便借此通过初级交流电压以受影响的占空系数的脉宽调制来调节焊接电流,如以下参照图13更为详细描述的。
在图14-30中示出了通过将平滑的直流电压斩波成矩形脉冲而产生初级交流电压的各种方式。
图13更详细地示出了调节器18。如以上已指出的,将该调节器18设计为过程计算机,图3中仅示出了为本发明所必需的部分并在下文中加以描述。它包含PID调节电路50以及存储器形式的焊接电流参考元件52,存储器52含有各斩波间隔的对应于焊接电流波形、用于与各斩波间隔内所确定的各电流实际值进行比较的电流标称值。对于各焊接电流波形(正弦波、三角波、梯形波等),存储器52包含可通过输入端WTab选择的标称值表。存储器52的一个输出端连接到乘法器54的一 个输入端。乘法器54的输出端连接到求和点56。求和点56将从乘法器54接收的输入信号与电流实际值相互结合。通过标称-实际值比较形成的求和点56的输出信号施加于PID调节电路50的输入端。
PID调节电路50在其输出端将设定信号传输给求和点58的一个输入端。存储器52的另一输出端通过前馈或正向驱动回路60连接到求和点58的另一输入端。通过前馈回路,存储器将传输给乘法器54的从实际电流标称值到下一标称值的变化量、即在实际电流标称值的焊接电流曲线在下一电流标称值方向上的一阶导数dI/dt或增量传输给求和点58。将该方向数据与PID调节电路50的输出信号互相结合,因此求和点58的输出信号表示一设定信号,用该信号可沿正确的方向及比例设定焊接电流,从而在调节电流的过程中不存在过调。
在与各焊接电流波形相配合的标称值表内,特别可对各焊接频率fs选择另一子表,这在下面作更为详细的描述。将通过输入信号WTab选择的电流曲线的标称值以及它的一阶导数存储在各标称值表中。对于各测量和斩波间隔,来自该表的相应标称值在乘法器54中与所要求的电流幅值相乘,然后作为标称值馈送给求和点56。所要求的电流幅值作为信号Isoll通过A/D转换器25传输给乘法器54并在其中与来自存储器52的电流标称值相乘。所要求的电流幅值Isoll还可通过“手动”输入或由焊接机控制***19(图11)交替地或辅助地予以影响,例如,以便在一个焊接点内给焊接电流I某一确定的变化过程,从而在初级交流电压的一个半波之内,例如越来越倾斜脉冲顶部,如图7a-7c所示,或者给它提供更多或更少的驼峰或凹谷。
如前文已描出的,对应每种电流波形存储器52都包含一个标称值表,在所示出的示范实施例中为四个标称值表。通过预先选定的若干电流标称值在各表中存储所要求的焊接电流波形。在本实例中,每个焊接电流周期存储256个标称值。利用500Hz的焊接频率和10KHz的 斩波频率,每半波可获得各为100μs的10个斩波或转换间隔。因此焊接电流每半波可被斩波10次,亦即接通并断开10次。在256个可获得的焊接电流标称值中,每周期因此可选出20个焊接电流标称值,亦就是说,每半波10个标称值,并用于调节器18中的标称一实际值比较。如果焊接频率仅达到50Hz,那么每焊接电流周期可选出200个标称值,因此每半波为100个标称值。根据所选焊接频率fs,通过A/D转换器27选择对应于焊接电流波形的标称值表中的适当子表。在标称值表中还存储从一个焊接电流标称值到下一电流标称值的变化情况,即,256个预设焊接电流标称值序列中的dI/dt值。如果用35与40Hz之间的焊接频率工作,则会利用标称-实际值比较中的所有256个点。
然而,通常使用的是500Hz的焊接频率,因此在标称-实际值比较中每焊接电流周期仅用到20个焊点。因此,如果不用有256个标称值标称值表,而选择超过fs的更高焊接频率的子表,计算机就自动地使该变化量适应它,使得变化量对应于焊接电流标称值之间所选的分级。另一可能性是并非从开头即预设每焊接电流周期256个点的标称值表随后选择较少焊接电流标称值选择子表,而是预先计算这些子表,并使它们可与从标称值到标称值的变化量一起选作存储器52中的标称值表。存储器52传输的标称电流值精确对应于所要求的焊接电流波形,但仍不对应于所要求的幅值。如所说明的,借助于可通过上述另三个输入端馈入乘法器54的独立因子来选定所要求的幅值。
调节过程操作如下:参照上面引用的实例,假定以500Hz的焊接频率fS和10KHz的斩波频率工作。焊接电流I为正弦形并以图14所示方式通过初级交流电压U的脉宽调制获得。标称值表在焊接电流I的每半波包含10个标称值。以10KHz对直流中间级电路14c传输的平滑直流电压进行斩波,由此产生对应于电流标称值的焊接电流曲线。由电流互感器20测定焊接电流实际值的测量频率等于斩波频率。因此为 各焊接电流标称值测出焊接电流实际值。在每一标称-实际值的比较中,确定所测得的实际值是否等于标称值表中预设的焊接电流标称值。如果情况非如此,求和点56和PID调节电路50传输误差信号,由该信号以上述方式借助于前馈信号形成对于该占空系数的设定信号。利用该设定信号以下述方式对占空系数施加影响,即在初级交流电压的脉宽调制期间脉冲持宽度与脉冲间隔之间的比值以消除焊接电流实际值与焊接电流标称值之间差异的方式予以修正。
因此,在焊接电流的一个半波内,即在一个焊点内能以极其短的调节时间来重新调节焊接电流。该调节方法的另一特殊优点是可另外以标称值表的形式来存储各所要求的电流波形并按需要加以选择。可在一定限制内任意选择焊接电流波形,该限制实际上仅由机器所设定(例如,若存在焊接电流曲线的最大可能增幅,由于存在各种物理因素等不能超过该增幅)。
在上部与下部焊接辊(如同这里所示出的焊接电极10和12)之间的罐体的所谓完全正弦焊接中,焊接辊与金属板之间总接触长度上的加热距离划分为六个相,这些相是由60米/分钟的焊接速度和500Hz的焊接频率以及3mm的总接触长度造成的,并产生三个半波,这些相被分为三个冷期和三个热期(见“Soudronic”公司期刊,第一年出版物第一号,1985年6月,第3页)。焊接辊之间各焊点的产生因此由加热与冷却之间的三次交替作用所构成。按照本发明的调节方法允许是一个焊点的加热和冷却相的最优控制。因此本发明可以适应不同材料的焊接情况。至今一直仅可利用溅射焊接的金属板现在可以用无电流峰值的平顶焊接电流脉冲进行良好的焊接。

Claims (24)

1、利用由初级交流电压产生并通过脉宽调制加以控制的以周期性半波脉动尤其是交流的焊接电流进行电阻焊接的方法,其特征在于:在各半波内以斩波频率对脉宽调制过程中的初级交流电压进行斩波,所述斩波频率是焊接电流频率的倍数,以产生特定的焊接电流波形。
2、如权利要求1所述的方法,其特征在于:选择斩波频率为焊接电流频率的20倍。
3、如权利要求1或2所述的方法,其特征在于:通过按照脉宽调制影响占空系数,根据标称一实际值比较在半波内控制焊接电流。
4、如权利要求3所述的方法,其特征在于:对初级交流电压的各半波斩波n次,实现焊接电流的n次标称一实际值比较,以及对占空系数影响n次。
5、如权利要求1的方法,其特征在于:可借助于标称值表预选焊接电流的波形。
6、如权利要求5所述的方法,其特征在于:可在存储器(52)中获得各焊接频率的对应于所要求的焊接电流波形的标称值表。
7、如权利要求1所述的方法,其特征在于所述焊接电流的波形是非正弦波,且分别基本上呈梯形或三角形。
8、如权利要求1所述的方法,其特征在于:零交点之后焊接电流一开始主要正弦地增长,在达到正弦波峰值之前下降并再次增长,然后主要正弦地下降到零交点,焊接电流在零交点之后最初主要正弦增长,然后重复采取下降然后增长的变化过程,然后主要正弦地下降到零交点。
9、如权利要求7所述的方法,其特征在于:焊接电流总体上从零交点开始线性增长,在半波的峰值区域内重复地下降并再次增长,随后总体上线性下降至零交点。
10、如权利要求7所述的方法,其特征在于:焊接电流遵循三角波变化过程。
11、如权利要求7所述的方法,其特征在于:焊接电流遵循梯形波变化过程。
12、如权利要求11所述的方法,其特征在于:在较长梯形变化过程的肩部之间出现另一种梯形电流变化。
13、如权利要求11所述的方法,其特征在于:在较长梯形变化过程的肩部之间出现多种类似的梯形电流变化。
14、如权利要求7所述的方法,其特征在于:焊接电流最初总的以线性方式增长,然后总的以线性方式下降并接着增长,然后再次以线性方式下降。
15、如权利要求8所述的方法,其特征在于:半波内电流的下降发生于直至零值或发生在电流的零值以下。
16、如权利要求7至15中之一所述的方法,其特征在于:焊接频率为500Hz或250Hz。
17、用于实现如权利要求1至16中任何一项所述的方法的装置,该装置含有一个静态变频器(14),所述静态变频器具有一个直流中间级电路(14c)以及一个用作输出级的斩波器(14b),该斩波器产生初级交流电压(Up)并将初张交流电压(Up)传送到次级电路连接到电阻焊接机之焊接电极(10和12)的焊接变压器(16),其特征在于:含有一个控制装置,借助于该控制装置可控制斩波器对初级交流电压各半波的多次斩波,控制装置具有一个调节器(18),所述调节器(18)连接到变频器(14)的斩波器(14b),用于通过初级交流电压的脉宽调制来控制焊接电流(I),并具有一个焊接电流参考元件,调节器(18)的焊接电流参考元件是含有对应于各斩波间隔的焊接电流波形、用于与每斩波间隔确定的各电流实际值进行比较的电流标称值的存储器(52)。
18、如权利要求17所述的装置,其特征在于,变频器(14)的斩波器(14b)包含用晶体管(T1-T4)作为电路元件、续流二极管(F1-F4)并联于晶体管(T1-T4)的电桥电路。
19、如权利要求17所述的装置,其特征在于:调节器(18)配有存储器(52)及用以选择所述存储器的不同地址的输入端Wrab。
20、如权利要求19所述的装置,其特征在于:调节器(18)配有可调焊接频率输入端。
21、如权利要求19所述的装置,其特征在于:其中调节器(18)含有PID调节电路(50),该PID调节电路配备有前馈回路,对于表中的各电流标称值,存储有向后续电流标称值的变化值,并将该变化值提供给PID调节电路(50)的输出作为前馈值。
22、如权利要求16至21中任何一项所述的装置,其特征在于:一个乘法器(54)连接于存储器(52),该乘法器用能通过调节器(18)的可调电流标称值输入端(Isoll)输入的选择因子乘以所述表的标称值。
23、如权利要求22所述的装置,其特征在于:乘法器(54)还有另外的输入端,通过这些输入端可以手动或由叠加的焊接机控制***(19)来输入其它一些因子。
24、一种如权利要求17所述的装置的用途,其特征在于,该装置可用于接头滚缝焊、点焊或金属板坯焊的电阻焊接机。
CN 92101508 1991-03-06 1992-03-06 电阻焊接方法及实现该方法的装置 Expired - Lifetime CN1028077C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH676/91A CH682889A5 (de) 1991-03-06 1991-03-06 Verfahren zum Widerstandsschweissen und Anordnung zur Durchführung des Verfahrens.
CH676/91 1991-03-06
DE4113117A DE4113117C1 (en) 1991-03-06 1991-04-22 Resistance welding using pulse-modulated AC - chopping each half wave in prim. circuit of transformer more than once
DEP4113117.7 1991-04-22
CH3435/91 1991-11-22
CH3436/91 1991-11-22

Publications (2)

Publication Number Publication Date
CN1071359A CN1071359A (zh) 1993-04-28
CN1028077C true CN1028077C (zh) 1995-04-05

Family

ID=25685338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 92101508 Expired - Lifetime CN1028077C (zh) 1991-03-06 1992-03-06 电阻焊接方法及实现该方法的装置

Country Status (1)

Country Link
CN (1) CN1028077C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941117A (zh) * 2009-07-02 2011-01-12 苏德罗尼克股份公司 在焊接容器主体期间评定焊接电流强度的方法、焊接装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009008199A1 (de) * 2009-02-04 2010-08-05 Lorch Schweißtechnik GmbH Verfahren zum Regeln einer Schweißstromquelle sowie Schweißstromquelle zur Durchführung des Verfahrens
DE102012018098A1 (de) * 2012-09-13 2014-03-13 Volkswagen Ag Verfahren zum Widerstandsschweißen von Bauteilen mit veränderlichem Zeitverlauf des Schweißstroms, sowie hiermit hergestellter Bauteilverbund
CN104162735B (zh) * 2013-05-17 2016-12-28 上海赛科利汽车模具技术应用有限公司 用于汽车热成型钢的电阻点焊***
CN107088701B (zh) * 2017-04-20 2019-08-02 天津商科数控技术股份有限公司 一种直接接触式交流梯形波铝电阻焊工艺方法
CN109434260B (zh) * 2018-12-25 2020-11-27 浙江劳士顿科技股份有限公司 一种基于低频静态输出的防电阻电流收缩聚拢电阻焊机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941117A (zh) * 2009-07-02 2011-01-12 苏德罗尼克股份公司 在焊接容器主体期间评定焊接电流强度的方法、焊接装置
CN101941117B (zh) * 2009-07-02 2014-07-30 苏德罗尼克股份公司 在焊接容器主体期间评定焊接电流强度的方法、焊接装置

Also Published As

Publication number Publication date
CN1071359A (zh) 1993-04-28

Similar Documents

Publication Publication Date Title
US5489757A (en) Process for resistance welding arrangement for carrying out the process
CN101682943B (zh) 工件的感应热处理
EP0080514B1 (en) Method and apparatus for controlling resistance welding
CN101077037B (zh) 扫描感应加热
EP0852452A1 (en) Temperature controller of electromagnetic induction heater and its start system
KR960001587B1 (ko) 저항용접방법 및 이 방법의 실시를 위한 장치
US6051804A (en) Plasma cutting or arc welding power supply with phase staggered secondary switchers
CN1028077C (zh) 电阻焊接方法及实现该方法的装置
US4745255A (en) Method and apparatus for welding current regulation for a resistance welding machine
JP3253993B2 (ja) 抵抗溶接装置に対する電源を制御し監視する電子装置
US20140175065A1 (en) Welding-Current Control Method of the Resistance Welding Machine and Welding-Current Control Device
US3636298A (en) Static square-wave resistance tube welding system
EP0261328B1 (en) Seam welder
CN112654454B (zh) 点焊方法
JP2001105155A (ja) インバータ交流式抵抗溶接方法と制御装置
US6586701B2 (en) Resistance welding method and device
JP2019514689A (ja) 交流台形波を用いた直接接触式アルミ抵抗溶接方法
JPS62259674A (ja) パルスア−ク溶接方法
CA1255761A (en) Electronic device for controlling the supply of electrical power to resistance welding equipment, in particular as used in metal box construction
JPH08197260A (ja) インバータ制御交流式抵抗溶接装置及びその抵抗溶接 方法
JPH1024377A (ja) パラレルギャップ溶接用の溶接電源装置
JP2524047C (zh)
JPH1034350A (ja) 抵抗溶接装置
SU778704A3 (ru) Способ управлени мощностью при контактной шовной сварке и устройство дл его осуществлени
JPH0677851B2 (ja) 抵抗溶接機

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20120306

Granted publication date: 19950405