CN102803426B - 用于在高温下储存热能的复合材料 - Google Patents

用于在高温下储存热能的复合材料 Download PDF

Info

Publication number
CN102803426B
CN102803426B CN201080027133.8A CN201080027133A CN102803426B CN 102803426 B CN102803426 B CN 102803426B CN 201080027133 A CN201080027133 A CN 201080027133A CN 102803426 B CN102803426 B CN 102803426B
Authority
CN
China
Prior art keywords
matrix material
lioh
koh
carbon structure
heat energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080027133.8A
Other languages
English (en)
Other versions
CN102803426A (zh
Inventor
E·帕罗莫雷巴里诺
S·本黑密斯
D·莫兰德
F·诺埃尔
V·何康典
J-L·奥弗涅
Y·安古
C·普列托里奥斯
A·朱庇特略韦拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abengoa Solar New Technologies SA
Original Assignee
Abengoa Solar New Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies SA filed Critical Abengoa Solar New Technologies SA
Publication of CN102803426A publication Critical patent/CN102803426A/zh
Application granted granted Critical
Publication of CN102803426B publication Critical patent/CN102803426B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5072Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with oxides or hydroxides not covered by C04B41/5025
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种用于在高温下储存热能的复合材料(225~488℃),通过至少部分填充有LiOH/KOH的多孔碳结构体而形成,其中大量的热能会非常快速的储存或释放。该碳结构体的特征在于高的体积导热性、低密度、高的连通孔隙度、相对高的弹性模量。LiOH/KOH混合物的显著特性是:完全结晶/熔融中包含的大量的能量,熔融时相当低的相对体积膨胀,以及相当低的过冷度。所得复合材料的主要优点是:非常高的能量密度,相对低的体积膨胀,大幅增强的热传递,热适应性,稳定性以及可忽略的滞后现象。

Description

用于在高温下储存热能的复合材料
技术领域
本发明涉及一种新的相变材料,用于在高温下(>200℃)储存热能。它们是用具有高能量密度的相变材料填充多孔碳结构的产物。该相变材料的作用是在选定的温度范围内储存或释放热能,而该其中的碳用于增强热传递。
背景技术
目前,需要在高温下储存大量的热量的应用很多。在工业部门中,回收、储存以及再利用余热,会对能量的有效、经济利用起到重要的作用。
在基于传统转换技术(即燃气或燃油发电厂)的能量产生中,热量的储存将成为改善其效力和回收的一种有效方式,以及有利于减少调整到负荷峰值所需要的标称能量。
关于可再生能量,由于从这些来源产生的电量的增加,明显的网络稳定性问题已经开始增加,因为他们依赖于资源的可供应性;例如,现有的太阳能发电厂在夜间停止运行;由于该原因,热能储存的集成将防止网络稳定性问题并延长能量供应周期,这将有助于这些技术符合商业化。
另一方面,在自主式太阳热电厂位于偏僻的或隔离的电场的情况下,能量的储存是最大化利用率和保证可供应性的关键要素。在高温下热量的储存还会有利于增加热电联产的效力。
已提出的新的相变材料在另一领域的应用,是高能电子设备的热防护。在航空航天领域,它们可以用作散热器,以防止人造卫星在循环轨道期间的过热,以及重返大气层过程中空间飞行器的前沿过热。其他潜在地需要热防护的部分,将是航空航天工业中的制动***,以及在化学工业的放热反应中调整温度峰值。
尽管如此重要,非常少或没有商业***用于在高温下储存热能。主要原因是现有技术的高投资成本,这导致非经济型的***。
在储存***中,达到成本显著降低的必要因素是:长期稳定的、符合电厂中储存能量要求的、防止储存单元过于庞大的低成本材料的开发。
现有实施方式通常是基于显热储存***,使用液体(例如油类,熔盐)或固体(例如金属,陶瓷,石头,混凝土)作为储存手段。液体主要占据了150℃-400℃范围内的应用,固体占据了高于500/600℃的温度范围内的应用。对于这些固体,能量密度范围在1500-3000kJ/(m3·K)之间,且投资成本在混凝土的到陶瓷材料的之间。
为了降低投资成本,这些***的关键在于获得紧凑的容器,这是由于储存成本的一个重要部分通常是换热器,接收器和热绝缘。
热量储存基于相变材料(潜热技术),显示了用于开发有效、经济的储存***的高潜力,尤其是使用经历恒温过程的流体的应用,例如冷凝或蒸发过程中的湿气。相变材料的主要优点是它们在相变过程中,在窄温度范围内储存/释放大量热量的能力。
这些中,盐类已经被认为是用于开发有效、经济的潜热储存***的潜在候选者。盐类的熔融/结晶中的潜能或热通常在100-1000kJ/kg(0.2-2GJ/m3)范围内;这些值通常随盐类的熔融温度增长。
与显热技术相比,利用盐类的相变热量储存技术引起***体积显著降低(通常超过10倍),这避免了换热器的过分庞大。然而,盐类低的导热性(<1W/m/K)是在满足预期工业应用的能量要求中的制约因素。
在低温下,不同方法已经被提出和分析,以增加主要是石蜡的相变材料的导热性。金属料的使用,例如铝或铜添加剂,泡沫金属或金属翅片是最早的方法。发现使用这些添加剂时,储存***的充电和发电时间明显减少。然而,这些金属料给储存***增加了明显的重量和成本,并且,其增加了出现腐蚀的危险。
在活化的硅石或碳催化剂的多孔结构中支撑的石蜡,由于其密度低,是金属料的重要的替代路线。
基于用相变材料(PCMs)或在相变材料(PCMs)中充满的石墨添加剂和石墨泡沫,一些学者提出导热率增强技术。
专利WO98/04644,FR2715719A1,US7316262B1和US6399149B1也涉及用低温熔融的相变材料(PCMs)填充多孔结构(金属或碳泡沫,碳纤维)。
关于用于高温的热能储存***的研究,以盐类为基础,近期主要解决的是使用石墨增强其导热率。选择石墨的主要原因是其对腐蚀和化学侵蚀具有强的抵抗力,其非常高的导热性和其低的成本。
在阿尔梅里亚(Almería)的太阳能平台运行的DISTOR(用于直接蒸汽太阳能发电厂的能量储存)项目的架构中,以不使用石墨的体系为基础的导热率增强技术的可行性,已经使用KNO3/NaNO3(50%摩尔)对225℃下的应用进行了测试。另外,研究了两个主要制备途径:石墨颗粒在熔盐中的分散和来自膨胀的天然石墨和盐类粉末的混合物粉末的冷压微胶囊化(单轴的和等压的)。
类似的开发已经使用如下盐类进行,例如KNO3/NaNO3,LiNO3,NaNO3/NaCI,KNO3,LiCO3/Na2CO3和LiBr,分别在225℃,252℃,295℃,337℃,493℃和546℃熔融。
美国专利US6399149B1涉及多孔碳结构,用相变材料填充且涂覆以形成产品,用作散热器。然而,在高温下其应用仅考虑了如下相变材料,即固体-液体转变温度低于1800℃或1200℃,但在温度高达1800℃或1200℃时保持液态的材料。
尽管已经证明碳在增强盐类导热率上的效力,然而碳/盐复合材料成为储存能量的真正选择的各种问题和限制已经确定:
主要的缺点通常涉及盐类熔融以及紧接着受到机械应力时盐类体积的膨胀。寻找具有相当低的相对体积膨胀的盐类,以及允许盐类体积膨胀现场管理的碳结构,是改进碳/盐类材料的重要方面。
已经被研究过的盐类经历在恒温下(纯盐类,低共熔混合物)的熔融。因此,其使用限于采用同样具有恒温过程的工作流体,例如冷凝或蒸发过程中的湿气。如果它们用于要求几个温度的应用,必须实施一系列适当的盐,以满足根据工作流体的进口/出口温度的过程需求。上述方法是可行的,虽然牺牲了储存***的紧凑性。在这点上,寻找在适当温度范围内熔融的盐类混合物,会是重要的选择因为其盐的化学组分没有偏析。
已经研究的盐类的能量密度(潜热)范围在100-360kJ/kg之间。寻找一种具有明显高的能量密度的盐将会是增加储存***紧凑度的一种方法,并且因此减少投资成本。
大部分无机相变材料存在过冷度。这是自然中的随机现象,会导致熔融和结晶温度之间的明显不同。在热能储存应用中,过冷度通常是缺点,因为它需要为充电和放电使用不同的操作温度。
本发明的碳/盐复合材料克服了上述局限,成为了经济的在温度范围225-447℃内储存热能的理想选择。如下文分析的,这些复合材料的主要优点是,非常高的能量密度,相当低的相对体积膨胀,大幅提高的热传递、热适应性(thermoadaptability)、稳定性和可忽略的滞后现象。
发明内容
因此,本发明的目的是,生产一种具有高导热性的复合材料,其由盐填充的多孔碳结构构成,其中大量的热能会非常快速的储存或释放。
当热量从诸如电脑芯片、工作流体或例如太阳光的辐射的热源添加到复合材料的表面,能量会快速地、均匀地通过碳结构传递,然后到盐。由于熔融潜热,该盐中吸收的能量比非相变材料吸收的能量大了几个数量级。相反的,该复合材料可用于当放置为与较冷物体或工作流体接触时快速释放能量。
本发明的另一目的是,提供一种调节复合材料的熔融/结晶温度的简单方法,即储存其能量,这样采用同样的化学组成能够覆盖宽的应用温度范围。
本发明还意在提供具有可忽略的滞后现象的复合材料,其允许因为熔融盐的体积膨胀的现场管理。
这些目的通过盐和多孔碳结构两者的适当选择得以实现。
选择的符合预期要求的盐,是LiOH/KOH的二元体系。
该复合材料具有非常有益的特性;即:
热适应性。通过改变在LiOH/KOH混合物中LiOH的摩尔含量而实现,使得覆盖宽的应用温度范围变成可能。例如,具有46.5%重量LiOH的混合物,可以在314℃下储存能量,然而具有78.92%重量LiOH的混合物,优选在温度范围314℃-450℃内储存能量。
非常高的能量密度。包含在LiOH/KOH的全部固体-液体相变中的能量是非常高的,会达到1500kJ/kg。例如,具有46.05%重量LiOH的混合物的潜热是535kJ/kg,然而包含在具有78.92%重量LiOH的混合物的全部熔融过程中的焓变是1100kJ/kg。这允许改进储存***的紧凑化,从而减少投资成本。
低的体积膨胀。LiOH/KOH混合物的最大相对体积膨胀小于9%。
大幅提高的热传递。由于所选的碳结构整体(体积的)的高导热性,在碳/盐复合材料中使用非常低的碳含量,储存***需要的充电/放电时间会明显减少。
该复合材料的导热性的提高,是减少传热面积(工作流体/储存介质)的非常有效的方法,从而引起投资成本明显降低。
可忽略的滞后现象。LiOH/KOH混合物的过冷度是相当低的,即,在熔融和结晶温度之间没有明显的能观察到的区别。从而,所得到的储存***充电和放电不需要不同的操作条件。
稳定性。“碳结构-LiOH/KOH”的缔合随时间看起来是稳定的(不存在能量储存性能的降低)。
关于在其中引入盐的碳结构,使用多孔结构,例如泡沫(无论是石墨泡沫,玻璃状碳泡沫等),蜂窝状物,纤维体(例如碳纤维),纳米管等,用于增强LiOH/KOH混合物的热传递。这些结构需要满足的与碳/盐复合材料开发有关的主要性质是:
整体(体积的)的高导热性。例如,石墨泡沫和碳纤维体会显示整体导热性在50-180W/m/K范围之间(可比拟金属的导热性)。
低密度,这使得它们成为增强盐的导热性的轻溶液。石墨泡沫的密度通常在200-600kg/m3范围内。
高的连通孔隙度,以允许孔的填充变容易。例如,超过96%的石墨泡沫的孔是连通的或它们具有开气孔。依据泡沫的表观密度(600-200kg/m3),孔的直径范围在60-350μm(平均值)之间。
相对高的弹性模量和压缩阻力,确保该结构侵入盐且经受导致盐(体积膨胀)熔融的机械应力时,其尺寸的稳定性。上述纤维体作为碳结构的一种,允许较好的控制体积弹性模量。
附图说明
为了完成说明书并有助于更好的理解本发明的特征,附加一组附图,下述所代表的是用于阐述而不是限制的目的。
图1是LiOH/KOH的相图(来源FactSage)
图2显示LiOH/KOH样品(46.05%重量LiOH)循环10次时DSC(差示扫描量热法)测定得到的结果。
图3显示LiOH/KOH样品(78.92%重量LiOH)循环10次时DSC(差示扫描量热法)测定得到的结果。
具体实施方式
为了使本发明得到更好的理解,下面我们描述所述的复合材料,以及其在不同状态的功能。
碳/盐复合材料由至少部分填充有LiOH/KOH的多孔碳结构构成。
该多孔结构可以用通过真空侵入熔融的LiOH/KOH填充,或使用其它工业工艺,例如通过LiOH/KOH蒸汽的冷凝填充,或使用具有悬浮的LiOH/KOH小固体颗粒的气流填充。
图1提供LiOH/KOH二元***的相图,从图中看出,得到了该复合材料的最显著的性质,即:
它们使得覆盖宽的应用范围成为可能。如图1所示,LiOH的摩尔浓度等于0,0.264,0.314,0.67和1,使得混合物熔点分别在404℃,249℃,225℃,315℃和477℃。因此,它们被推荐到如下应用中,需要恒温的散热器中的应用,或使用在接近混合物熔点的温度下进行蒸发/冷凝的工作流体的应用。相反的,对于使用单相工作流体(即过热蒸汽,气体)的应用,混合物更倾向于在宽的温度范围内进行熔融。这种情况下,必须选择LiOH的浓度,以使得尽可能满足根据工作流体的进口/出口温度的过程需求。例如,以LiOH/(LiOH+KOH)摩尔计90%的混合物,可以用于满足流体的进口/出口温度等于300-450℃的能量储存的应用。
包含在全部固体-液体相变中的能量密度是非常高的(参见表1)。例如,对于以LiOH/(LiOH+KOH)摩尔计67%的混合物,其潜热是535kJ/kg;并且对于全部熔融以LiOH/(LiOH+KOH)摩尔计90%的混合物,其焓变是1095kJ/kg。
相对体积膨胀是相当低的,对于所有混合物均小于9%。最大值对应纯KOH(大约8.6%)和纯LiOH(+8.33%)。
过冷度是相当低的。图2显示以LiOH/(LiOH+KOH)摩尔计67%的混合物进行DSC(差示扫描量热法)测定的结果。正的热流率差值对应盐的结晶,而负值对应熔融。熔点和结晶温度之间的不同平均小于2℃。
当使用经历熔融温度范围而非恒定熔融温度混合物的LiOH的摩尔浓度时,LiOH/KOH的化学组分没有出现偏析。图3显示以LiOH/(LiOH+KOH)摩尔计,90%的LiOH/KOH的混合物循环时,得到的DSC(差示扫描量热法)结果。事实上,LiOH(固体)的密度相当接近LiOH/KOH混合物(液体)的密度,这样重力不会造成偏析。
表1.对于不同LiOH/KOH混合物的熔融温度范围和焓变。

Claims (9)

1.用于在高温下储存热能的复合材料,其特征在于,其由至少部分填充有LiOH/KOH的多孔碳结构体构成。
2.根据权利要求1所述的用于在高温下储存热能的复合材料,其特征在于,该碳结构体是石墨泡沫。
3.根据权利要求1所述的用于在高温下储存热能的复合材料,其特征在于,该碳结构体是玻璃状碳泡沫。
4.根据权利要求1所述的用于在高温下储存热能的复合材料,其特征在于,该碳结构体是蜂窝状物的形式。
5.根据权利要求1所述的用于在高温下储存热能的复合材料,其特征在于,该碳结构体是由碳纤维构成。
6.根据权利要求1所述的用于在高温下储存热能的复合材料,其特征在于,该碳结构体是由纳米管构成。
7.制造前述权利要求1-6任一项中记载的复合材料的方法,其特征在于,通过LiOH/KOH蒸汽的冷凝完成在碳结构体中填充盐。
8.制造前述权利要求1-6任一项中记载的复合材料的方法,其特征在于,通过具有LiOH/KOH颗粒的气流的方式完成在碳结构体中填充盐。
9.制造前述权利要求1-6任一项中记载的复合材料的方法,其特征在于,通过真空侵入技术的方式完成在碳结构体中填充盐。
CN201080027133.8A 2009-06-16 2010-06-15 用于在高温下储存热能的复合材料 Expired - Fee Related CN102803426B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200901423A ES2362518B1 (es) 2009-06-16 2009-06-16 Material compuesto para almacenamiento de energia termica a alta temperatura.
ESP200901423 2009-06-16
PCT/ES2010/000261 WO2010146197A1 (es) 2009-06-16 2010-06-15 Material compuesto para almacenamiento de energía térmica a alta temperatura

Publications (2)

Publication Number Publication Date
CN102803426A CN102803426A (zh) 2012-11-28
CN102803426B true CN102803426B (zh) 2015-08-12

Family

ID=43355914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080027133.8A Expired - Fee Related CN102803426B (zh) 2009-06-16 2010-06-15 用于在高温下储存热能的复合材料

Country Status (12)

Country Link
US (1) US20120138849A1 (zh)
EP (1) EP2444468A4 (zh)
CN (1) CN102803426B (zh)
AU (1) AU2010261729A1 (zh)
CL (1) CL2011003176A1 (zh)
EG (1) EG26399A (zh)
ES (1) ES2362518B1 (zh)
MA (1) MA33422B1 (zh)
MX (1) MX2011013460A (zh)
TN (1) TN2011000640A1 (zh)
WO (1) WO2010146197A1 (zh)
ZA (1) ZA201109458B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2459241B1 (es) 2012-10-04 2015-02-17 Abengoa Solar New Technologies S.A. Sistema de almacenamiento térmico y su procedimiento de carga y descarga
FR2996630B1 (fr) 2012-10-09 2014-12-19 Commissariat Energie Atomique Procede de realisation d'un echangeur de chaleur contenant un materiau a changement de phase, echangeur obtenu et utilisations aux hautes temperatures.
CN104194735B (zh) * 2014-06-18 2018-06-22 中国科学院广州能源研究所 一种碳基化学蓄热纳米复合材料及其制备方法
DE102014115708A1 (de) * 2014-10-29 2016-05-04 Aixtron Se Verfahren zum Trennen einer Kohlenstoffstruktur von einer Keimstruktur
CN107699201A (zh) * 2017-08-17 2018-02-16 中国科学院广州能源研究所 一种碳基化学储能材料及其制备方法
FR3139381B1 (fr) 2022-09-05 2024-08-09 Univ De Bordeaux Dispositif de stockage d’energie thermique a base de l’hydroxyde de lithium
CN116083055B (zh) * 2022-12-07 2024-06-07 北京科技大学 一种蓄热储能相变充填体及其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665413A1 (fr) * 1994-01-28 1995-08-02 Thomson-Csf Dispositif de stockage d'énergie calorifique
WO1998004644A1 (de) * 1996-07-25 1998-02-05 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Verfahren/system zur speicherung von wärme oder kälte in einem speicherverbundmaterial, ein derartiges speicherverbundmaterial und ein verfahren zur herstellung eines derartigen speicherverbundmaterials
CN1199750A (zh) * 1992-11-06 1998-11-25 大金工业株式会社 含有氟化碳粒子的复合材料及其用途
WO1999011455A1 (en) * 1997-09-04 1999-03-11 Hayes, Claude, Q., C. A thermal storage and transfer device
CN1323870A (zh) * 2000-05-15 2001-11-28 默克专利股份有限公司 用于蓄热或蓄冷的蓄能复合材料的制备方法
US6399149B1 (en) * 1997-09-02 2002-06-04 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712062A (en) * 1992-11-06 1998-01-27 Daikin Industries, Ltd. Carbon fluoride particles, preparation process and uses of the same
FR2764442B1 (fr) * 1997-06-05 1999-07-30 Alsthom Cge Alcatel Electrode de nickel empatee
US6988304B2 (en) * 2001-06-14 2006-01-24 Aircraft Braking Systems Corporation Method of containing a phase change material in a porous carbon material and articles produced thereby
US7316262B1 (en) 2004-01-26 2008-01-08 Rini Technologies, Inc. Method and apparatus for absorbing thermal energy
JP5019829B2 (ja) * 2006-09-19 2012-09-05 Jx日鉱日石エネルギー株式会社 水素貯蔵装置及び水素供給方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199750A (zh) * 1992-11-06 1998-11-25 大金工业株式会社 含有氟化碳粒子的复合材料及其用途
EP0665413A1 (fr) * 1994-01-28 1995-08-02 Thomson-Csf Dispositif de stockage d'énergie calorifique
WO1998004644A1 (de) * 1996-07-25 1998-02-05 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Verfahren/system zur speicherung von wärme oder kälte in einem speicherverbundmaterial, ein derartiges speicherverbundmaterial und ein verfahren zur herstellung eines derartigen speicherverbundmaterials
US6399149B1 (en) * 1997-09-02 2002-06-04 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material
WO1999011455A1 (en) * 1997-09-04 1999-03-11 Hayes, Claude, Q., C. A thermal storage and transfer device
CN1323870A (zh) * 2000-05-15 2001-11-28 默克专利股份有限公司 用于蓄热或蓄冷的蓄能复合材料的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Investigation of latent heat-thermal energy storage materials. IV. Thermoanalytical evaluation of binary eutectic mixtures of NaOH with LiOH or KOH;Takahashi, Y., et al.;《Thermochimica acta》;19871231;第121卷;193-202 *
NaOH/KOH二元体系蓄热性能的研究;庄正宁等;《西安交通大学学报》;20021120;第36卷(第11期);1133-1137 *
ZALBA,B.,et al..Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.《Appl. Thermal Engineering》.2003,第23卷251-283. *
化学储能材料开发与应用;李爱菊等;《广东工业大学学报》;20020325;第19卷(第01期);81-84 *
相变储热材料研究进展;戴彧等;《化学世界》;20011225(第12期);662-665 *

Also Published As

Publication number Publication date
ES2362518A1 (es) 2011-07-07
US20120138849A1 (en) 2012-06-07
AU2010261729A1 (en) 2012-02-02
CN102803426A (zh) 2012-11-28
MA33422B1 (fr) 2012-07-03
CL2011003176A1 (es) 2012-07-06
WO2010146197A1 (es) 2010-12-23
ES2362518B1 (es) 2012-02-02
EP2444468A1 (en) 2012-04-25
ZA201109458B (en) 2012-08-29
EG26399A (en) 2013-10-08
EP2444468A4 (en) 2013-12-11
TN2011000640A1 (en) 2013-05-24
MX2011013460A (es) 2012-04-30

Similar Documents

Publication Publication Date Title
CN102803426B (zh) 用于在高温下储存热能的复合材料
Nazir et al. Recent developments in phase change materials for energy storage applications: A review
Stutz et al. Storage of thermal solar energy
Jouhara et al. Latent thermal energy storage technologies and applications: A review
Huang et al. Advances and applications of phase change materials (PCMs) and PCMs-based technologies
Guo et al. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material
Bauer et al. Thermal energy storage materials and systems
Safari et al. A review on supercooling of Phase Change Materials in thermal energy storage systems
Alva et al. Thermal energy storage materials and systems for solar energy applications
Feng et al. Thermophysical heat storage for cooling, heating, and power generation: A review
Sivasamy et al. Review on heat transfer enhancement of phase change materials (PCMs)
Fernandes et al. Thermal energy storage:“How previous findings determine current research priorities”
Luo et al. Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics
Li et al. High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating
CN102777874B (zh) 直接产生蒸汽的相变储热***及其相变储热剂的制备方法
Murugan et al. Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and melting
Saha et al. Global prospects and challenges of latent heat thermal energy storage: A review
Rakkappan et al. Preparation, characterisation and energy storage performance study on 1-Decanol-Expanded graphite composite PCM for air-conditioning cold storage system
CN103923619B (zh) 一种碳酸纳米熔盐传热蓄热介质及其制备方法与应用
Palacios et al. Hybrid 3 in 1 thermal energy storage system–Outlook for a novel storage strategy
CN106867466A (zh) 利用粉煤灰和水合无机盐合成无机相变储能材料的方法
Sinaga et al. The microencapsulation, thermal enhancement, and applications of medium and high‐melting temperature phase change materials: A review
Diaz Analysis and comparison of different types of thermal energy storage systems: A review
Khyad et al. State of the art review of thermal energy storage systems using PCM operating with small temperature differences: Focus on Paraffin
CN104247144A (zh) 一种锂电池电芯模块及电池包冷却***的设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150812

Termination date: 20160615

CF01 Termination of patent right due to non-payment of annual fee