CN102758140A - 高碳微合金化钢球及其生产工艺 - Google Patents

高碳微合金化钢球及其生产工艺 Download PDF

Info

Publication number
CN102758140A
CN102758140A CN2012102291958A CN201210229195A CN102758140A CN 102758140 A CN102758140 A CN 102758140A CN 2012102291958 A CN2012102291958 A CN 2012102291958A CN 201210229195 A CN201210229195 A CN 201210229195A CN 102758140 A CN102758140 A CN 102758140A
Authority
CN
China
Prior art keywords
steel ball
production technique
carbon
carbon microalloying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102291958A
Other languages
English (en)
Other versions
CN102758140B (zh
Inventor
韩振宇
刘泓平
徐权
郭华
邹明
王俊
谭仕荣
娄绍春
邓勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201210229195.8A priority Critical patent/CN102758140B/zh
Publication of CN102758140A publication Critical patent/CN102758140A/zh
Application granted granted Critical
Publication of CN102758140B publication Critical patent/CN102758140B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

本发明的高碳微合金化钢球的生产工艺包括以下步骤:将钢球坯加热至1200-1250℃后锻造为所需尺寸的钢球;对钢球进行预冷至钢球的表层温度为800-850℃;将钢球投入30-60℃的清水中淬火至钢球的表层温度降至280-340℃后取出;间隔1-2s后将钢球投入30-50℃的机油中淬火至钢球的表面温度降至60℃以下;取出钢球并置于200-240℃的机械油中回火不小于4小时;取出钢球,经精整处理即可得到成品钢球,其中,以重量百分比计,钢球坯含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。本发明的高碳微合金化钢球则采用上述生产工艺制得。本发明不仅可以有效避免钢球淬火开裂,而且所获的高碳微合金化钢球与现有高碳高合金钢球具有相同的性能,合金含量及生产成本显著降低。

Description

高碳微合金化钢球及其生产工艺
技术领域
本发明涉及球磨机用的钢球,更具体地讲,涉及一种高碳微合金化钢球及其生产工艺。
背景技术
对于锻轧余热类球磨机用钢球的制造,目前钢球的主要成分通常采用0.60-0.85%的C含量,并添加适当的Si、Mn元素,同时根据钢球的直径以及对钢球表层和心部硬度差的不同要求,在钢球中辅以添加适量的Cr、Mo、Ni、Cu、V、Nb等元素,以提高钢球的硬度、耐磨损性能及耐腐蚀性能等。
碳是钢中最廉价、最有效的强化元素,但若进一步提高钢球中的碳含量,将使钢球在清水等单一淬火介质的淬火过程中开裂,导致钢球无法使用,由此限制了钢球中碳含量的提高,而合金元素由于价格昂贵且使用过程无法回收,导致高性能钢球的制造成本和使用效率难以有效提高。
因此,对于高碳含量的钢球,亟需一种生产工艺,来达到通过热处理工艺的作用来替代钢球中合金元素的作用,从而达到提高钢球利用率、降低生产成本的目的。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供一种针对高碳微合金化钢球的生产工艺,以有效避免钢球热处理过程中的淬火开裂。
为了实现上述目的,本发明的一方面提供了一种高碳微合金化钢球的生产工艺,所述生产工艺包括以下步骤:将钢球坯加热至1200-1250℃后锻造为所需尺寸的钢球;对钢球进行预冷至钢球的表层温度为800-850℃;将钢球投入30-60℃的清水中淬火至钢球的表层温度降至280-340℃后取出;间隔1-2s后将钢球投入30-50℃的机油中淬火至钢球的表面温度降至60℃以下;取出钢球并置于200-240℃的机械油中回火不小于4小时;取出钢球,经精整处理即可得到成品钢球,其中,以重量百分比计,所述钢球坯含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,采用转炉冶炼、二次精炼、连铸的工艺路线制造所述钢球坯。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述钢球坯为断面尺寸为60mm×60mm-75mm×75mm的方钢坯。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述钢球的直径为100-150mm。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述钢球在清水或机油中淬火时需连续不停地滚动。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述机油为10号机油。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述机械油为50-100号机械油。
根据本发明的高碳微合金化钢球的生产工艺的一个实施例,所述将钢球坯加热至1200-1250℃的步骤还包括在锻造前将温度为1200-1250℃的钢球坯保温10分钟以上。
本发明的另一方面还提供了一种高碳微合金化钢球,所述高碳微合金化钢球采用上述生产工艺制得。
根据本发明的高碳微合金化钢球的一个实施例,所述高碳微合金化钢球按重量计含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。
本发明的高碳微合金化钢球的生产工艺采用了0.90-1.05%的C含量范围的钢坯,为了避免高碳含量带来的钢球淬火开裂等问题,进一步采用了清水机油双液淬火工艺,不仅可以有效避免钢球淬火开裂,而且所获得的高碳微合金化钢球与原高碳高合金钢球具有相同的性能,合金含量及生产成本显著降低,具有极佳的推广意义。
附图说明
图1是本发明的高碳微合金化钢球的生产工艺示意图。
具体实施方式
下面结合附图对本发明的高碳微合金化钢球的生产工艺进行详细地描述。
以重量百分比计,本发明的高碳微合金化钢球的生产工艺所采用的高碳微合金化钢球坯含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。其中,碳含量较高,合金元素含量较低。具体地,制造该钢球坯时,可以采用转炉冶炼、二次精炼、连铸的工艺路线制造。为了得到所需尺寸的钢球,还需要对钢球坯进行定尺切割后加热并轧制成一定尺寸的方钢坯,方钢坯的尺寸应与钢球的所需尺寸对应,例如,方钢坯的断面尺寸为60mm×60mm-75mm×75mm,钢球的直径为100-150mm。
图1是本发明的高碳微合金化钢球的生产工艺示意图。如图1所示,本发明的生产工艺包括如下几个步骤,首先,将钢球坯加热至1200-1250℃后锻造为所需尺寸的钢球。锻造是为获得所需直径或形状的钢球的必要工序,目前锻造一般采用250kg或500kg空气锤完成,如果加热温度超过1250℃,钢球坯的奥氏体晶粒度将有显著长大甚至过热、过烧的趋势,不利于钢球最终的性能;若加热温度低于1200℃后锻造,则终锻温度过低,变形抗力增大,不利于提高钢球的圆度。
对钢球进行预冷至钢球的表层温度为800-850℃。通常,钢球终锻后的温度大约为900-950℃,如果此时直接进行淬火的话,一方面由于热容较高导致热应力过大,钢球容易开裂而造成破球,另一方面钢球整个断面的过冷度将减少,不利于提高钢球的性能,故需对钢球进行预冷至钢球的表面温度为800-850℃,这将有利于淬火后钢球性能的提高。通常,将锻造后的钢球直接置于底部带有通孔的台架上进行预冷。
之后,将钢球投入30-60℃的清水中淬火至钢球的表层温度降至280-340℃后将取出。其中,为了保证水温的均匀性,优选地,清水槽需配备水循环冷却装置或散热装置,以确保连续生产时的水温恒定在30-60℃范围内。间隔1-2s后将钢球投入30-50℃的机油中淬火至钢球的表面温度降至60℃以下。需注意的是,钢球在清水或机油中淬火时需连续不停地滚动,以保证淬火的均匀度。具体地,机油可以为10号机油。这里,本发明采用不同于以往的单液淬火工艺,而采用先水后油的双液淬火工艺,通过精细的操作提高钢球的性能,进而降低钢球的合金含量并最终降低钢球的生产成本。
具体地,改变淬火介质的温度范围选定为280-340℃的原因在于:由于清水的冷却能力很强,处于奥氏体相区的钢球需在清水中快速冷却至接近Ms点的温度,以避免过冷奥氏体发生珠光体和贝氏体转变。而10号机油的冷却能力弱于清水,在清水淬火之后再用机油淬火,可使钢球在机油中继续冷却,确保过冷奥氏体在缓慢冷却条件下转变为马氏体,采用上述双液淬火工艺既可以保证钢球获得马氏体组织,提高钢球的硬度和耐磨损性能,又可以降低钢球在马氏体转变区的冷却速度,减小组织应力,从而降低钢球变形开裂的倾向。如果钢球从水中取出的温度高于340℃,则钢球在水中的冷却时间过短,可能引起奥氏体分解,导致钢球硬度不足;如果钢球从水中取出的温度低于280℃,则钢球在水中的冷却时间过长,钢球的表层在水中已发生马氏体相变,会产生较大的组织应力,增加钢球变形开裂的倾向。
对于钢球在水中淬火时的表层温度测定方法,由于钢球在水中无法利用接触式或红外测温方式进行,需采用实验进行测定。由于不同直径的钢球冷却至上述温度范围的时间不同,计算表明,对于高碳球类工件,假设开淬温度为820℃,水温为45℃,在水中冷却的速率可以2.5mm/s计算冷却时间,例如直径100mm钢球在水中的冷却时间是40s,直径120mm钢球冷却时间是48s,直径150mm钢球冷却时间是60s等。
由于本发明中钢球的C含量高达0.90-1.05%,则经过热处理后钢球表层及表层以下一定深度可以获得足够高的硬度,采用上述双液淬火工艺还可以提高钢球的韧塑性,使钢球获得优良的综合性能指标。
当钢球冷却至280-340℃并从水中取出后,钢球表层的水将在1-2s内蒸发为水蒸气并扩散至空气中,此时,可将钢球迅速投入30-50℃的10号机油中继续滚动淬火。双液淬火间隔时间设置为1-2s的原因在于如果钢球在空气中停留时间过长,由于钢球心部的温度高于钢球表层,通过热传递使钢球表层温度迅速升高,导致成品钢球硬度偏低,不利于提高钢球的磨损性能;如果停留时间过短,则钢球表层未蒸发的水将带入油槽中,引起迸溅,同时,在长期生产中,钢球带入的水分将降低淬火机油的清洁度及使用寿命,提高生产成本。然后,当钢球的表层温度降至60℃以下时将钢球从机油油槽中取出。
最后,将淬火处理后的钢球置于200-240℃的机械油中回火不小于4h,优选为4-6h,回火后待钢球空冷至常温并经精整处理即可得到成品钢球。为了能够及时清除淬火应力,防止炸裂,应及时对淬火后的钢球进行回火。具体的,回火介质为50-100号机械油。
采用上述生产工艺制造的高碳微合金化钢球按重量计含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质,并且上述高碳微合金化钢球的合金消耗量及生产成本显著降低,钢球表面硬度可达60-64HRC,心部硬度可达56-60HRC,无缺口试样冲击韧性不低于14J。同时,有效避免了因内应力过大造成的开裂,使用过程中破球率显著降低。
下面通过实施例来说明本发明的高碳微合金化钢球的生产工艺。
实施例一
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制等工序后得到包含如下化学成分的钢球坯:C:1.02%、Si:0.55%、Mn:0.92%、Cr:0.30%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1200℃并保温10min后取出在500kg空气锤中模锻为直径100mm的钢球,待钢球表层温度降至835℃时投入35℃的清水槽中连续滚动淬火约38s后取出,此时钢球的表层温度约为310℃,在2s内迅速再将钢球投入45℃的10号高速机油中滚动淬火40s后,此时钢球的表层温度为55℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为4h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为64HRC、球心硬度为60HRC,球心部位的无缺口冲击韧性为14J。
实施例二
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制等工序后得到包含如下化学成分的钢球坯:C:0.95%、Si:0.61%、Mn:0.88%、Cr:0.35%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1230℃并保温9min后取出在500kg空气锤中模锻为直径100mm的钢球,待钢球表层温度降至812℃时投入42℃的清水槽中连续滚动淬火约43s后取出,此时钢球的表层温度约为297℃,在2s内迅速再将钢球投入48℃的10号高速机油中滚动淬火40s后,此时钢球的表层温度为57℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为4.5h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为62HRC、球心硬度为59HRC,球心部位的无缺口冲击韧性为16J。
实施例三
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制及定尺锯切等工序后得到包含如下化学成分的钢球坯:C:0.98%、Si:0.55%、Mn:1.05%、Cr:0.35%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1220℃并保温10min后取出在500kg空气锤中模锻为直径120mm的钢球,待钢球表层温度降至820℃时投入40℃的清水槽中连续滚动淬火约50s后取出,此时钢球的表层温度约为290℃,在2s内迅速再将钢球投入35℃的10号高速机油中滚动淬火50s后,此时钢球的表层温度为52℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为5h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为63HRC、球心硬度为58HRC,球心部位的无缺口冲击韧性为15J。
实施例四
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制及定尺锯切等工序后得到包含如下化学成分的钢球坯:C:1.00%、Si:0.49%、Mn:0.98%、Cr:0.39%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1210℃并保温10min后取出在500kg空气锤中模锻为直径120mm的钢球,待钢球表层温度降至806℃时投入48℃的清水槽中连续滚动淬火约55s后取出,此时钢球的表层温度约为286℃,在2s内迅速再将钢球投入41℃的10号高速机油中滚动淬火52s后,此时钢球的表层温度为56℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为5.5h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为62HRC、球心硬度为59HRC,球心部位的无缺口冲击韧性为18J。
实施例五
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制及定尺锯切等工序后得到包含如下化学成分的钢球坯:C:0.96%、Si:0.52%、Mn:1.13%、Cr:0.38%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1240℃并保温15min后取出在500kg空气锤中模锻为直径150mm的钢球,待钢球表层温度降至810℃时投入42℃的清水槽中连续滚动淬火约65s后取出,此时钢球的表层温度约为315℃,在2s内迅速再将钢球投入40℃的10号高速机油中滚动淬火80s后,此时钢球的表层温度为50℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为6h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为61HRC、球心硬度为56HRC,球心部位的无缺口冲击韧性为20J。
实施例六
采用转炉冶炼、LF炉精炼、连铸、铸坯清理、铸坯加热、方钢轧制及定尺锯切等工序后得到包含如下化学成分的钢球坯:C:0.92%、Si:0.61%、Mn:1.07%、Cr:0.36%以及余量的Fe和不可避免的杂质。采用煤气加热炉将钢球坯迅速升温至1225℃并保温15min后取出在500kg空气锤中模锻为直径150mm的钢球,待钢球表层温度降至818℃时投入45℃的清水槽中连续滚动淬火约68s后取出,此时钢球的表层温度约为307℃,在2s内迅速再将钢球投入45℃的10号高速机油中滚动淬火84s后,此时钢球的表层温度为52℃,再将钢球取出置于220℃的50号机械油中回火,回火时间为6h,取出钢球后空冷至室温并进行精整处理得到成品钢球。经检验,成品钢球表层下2mm处的硬度为62HRC、球心硬度为57HRC,球心部位的无缺口冲击韧性为16J。
对比例一
国内某厂钢球坯具有如下化学成分:C:0.80%、Si:0.75%、Mn:0.95%、Cr:0.70%、V:0.10%、Mo:0.10%、Al:0.04%,余量为Fe及其它残余元素,采用煤气加热炉将钢球坯迅速升温至1200℃并保温15min后取出在500kg空气锤中模锻为直径100mm钢球,待钢球表层温度降至830℃时投入38℃清水槽中连续滚动淬火约60s后钢球表层温度为75℃,取出后置于220℃的50#机械油中回火,回火时间4h;取出后进行精整处理。经检验,钢轨表层下2mm处硬度为63HRC、球心硬度为59HRC,球心部位无缺口冲击韧性15J。
对比例二
国内某厂钢球坯具有如下化学成分:C:0.78%、Si:0.69%、Mn:1.01%、Cr:0.68%、V:0.09%、Mo:0.12%、Al:0.03%,余量为Fe及其它残余元素,采用煤气加热炉将钢球坯迅速升温至1210℃并保温15min后取出在500kg空气锤中模锻为直径120mm钢球,待钢球表层温度降至830℃时投入41℃清水槽中连续滚动淬火约80s后钢球表层温度为70℃,取出后置于220℃的50#机械油中回火,回火时间5h;取出后进行精整处理。经检验,钢轨表层下2mm处硬度为64HRC、球心硬度为57HRC,球心部位无缺口冲击韧性14J。
对比例三
国内某厂钢球坯具有如下化学成分:C:0.81%、Si:0.77%、Mn:0.99%、Cr:0.74%、V:0.12%、Mo:0.10%、Al:0.04%,余量为Fe及其它残余元素,采用煤气加热炉将钢球坯迅速升温至1230℃并保温15min后取出在500kg空气锤中模锻为直径150mm钢球,待钢球表层温度降至830℃时投入41℃清水槽中连续滚动淬火约105s后钢球表层温度为85℃,取出后置于220℃的50#机械油中回火,回火时间6h;取出后进行精整处理。经检验,钢轨表层下2mm处硬度为60HRC、球心硬度为56HRC,球心部位无缺口冲击韧性16J。
综上所述,本发明的高碳微合金化钢球的生产工艺不仅可以有效避免钢球淬火开裂,而且所获得的高碳微合金化钢球与现有高碳高合金钢球具有相同的性能,合金含量及生产成本显著降低,具有极佳的推广意义。
尽管已经具体描述了本发明的高碳微合金化钢球及其生产工艺,但是本领域的技术人员应该知道,在不脱离本发明的精神和范围的情况下,可以对本发明做出各种形式的改变。

Claims (10)

1.一种高碳微合金化钢球的生产工艺,其特征在于,所述生产工艺包括以下步骤:
将钢球坯加热至1200-1250℃后锻造为所需尺寸的钢球;
对钢球进行预冷至钢球的表层温度为800-850℃;
将钢球投入30-60℃的清水中淬火至钢球的表层温度降至280-340℃后取出;
间隔1-2s后将钢球投入30-50℃的机油中淬火至钢球的表面温度降至60℃以下;
取出钢球并置于200-240℃的机械油中回火不小于4小时;
取出钢球,经精整处理即可得到成品钢球,
其中,以重量百分比计,所述钢球坯含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。
2.根据权利要求1所述的高碳微合金化钢球的生产工艺,其特征在于,采用转炉冶炼、二次精炼、连铸的工艺路线制造所述钢球坯。
3.根据权利要求1或2所述的高碳微合金化钢球的生产工艺,其特征在于,所述钢球坯为断面尺寸为60mm×60mm-75mm×75mm的方钢坯。
4.根据权利要求3所述的高碳微合金化钢球的生产工艺,其特征在于,所述钢球的直径为100-150mm。
5.根据权利要求1所述的高碳微合金化钢球的生产工艺,其特征在于,所述钢球在清水或机油中淬火时需连续不停地滚动。
6.根据权利要求1所述的高碳微合金化钢球的生产工艺,其特征在于,所述机油为10号机油。
7.根据权利要求1所述的高碳微合金化钢球的生产工艺,其特征在于,所述机械油为50-100号机械油。
8.根据权利要求1所述的高碳微合金化钢球的生产工艺,其特征在于,所述将钢球坯加热至1200-1250℃的步骤还包括在锻造前将温度为1200-1250℃的钢球坯保温10分钟以上。
9.一种高碳微合金化钢球,其特征在于,所述高碳微合金化钢球采用如权利要求1至8中任意一项所述的生产工艺制得。
10.根据权利要求9所述的高碳微合金化钢球,其特征在于,所述高碳微合金化钢球按重量计含有0.90-1.05%的C、0.30-0.70%的Si、0.80-1.20%的Mn、0.25-0.40%的Cr以及余量的Fe和不可避免的杂质。
CN201210229195.8A 2012-07-04 2012-07-04 高碳微合金化钢球及其生产工艺 Active CN102758140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210229195.8A CN102758140B (zh) 2012-07-04 2012-07-04 高碳微合金化钢球及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210229195.8A CN102758140B (zh) 2012-07-04 2012-07-04 高碳微合金化钢球及其生产工艺

Publications (2)

Publication Number Publication Date
CN102758140A true CN102758140A (zh) 2012-10-31
CN102758140B CN102758140B (zh) 2014-03-26

Family

ID=47052787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210229195.8A Active CN102758140B (zh) 2012-07-04 2012-07-04 高碳微合金化钢球及其生产工艺

Country Status (1)

Country Link
CN (1) CN102758140B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014289A (zh) * 2013-01-09 2013-04-03 米易华星钒钛科技有限责任公司 锻钢球的制造方法
CN103740898A (zh) * 2014-01-02 2014-04-23 内蒙古北方重工业集团有限公司 一种高硬5Cr13MoV耐磨衬板压力淬火方法
CN103834773A (zh) * 2012-11-27 2014-06-04 大连经济技术开发区圣洁真空技术开发有限公司 一种金属淬火方法
CN103834865A (zh) * 2012-11-21 2014-06-04 山东兴盛矿业有限责任公司 一种耐磨、耐腐蚀钢球的锻造方法
CN104611528A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化70号钢奥氏体晶粒的加热方法
CN104975148A (zh) * 2015-07-20 2015-10-14 江阴东邦钢球机械有限公司 一种钢球或钢锻的双液淬火的方法
CN104985095A (zh) * 2015-07-20 2015-10-21 江阴东邦钢球机械有限公司 钢球轧制工艺
CN107955904A (zh) * 2017-11-30 2018-04-24 攀钢集团攀枝花钢铁研究院有限公司 含V、Nb、Ti微合金建筑钢棒材及其生产方法
CN112176260A (zh) * 2020-09-30 2021-01-05 江苏钰特耐磨科技有限公司 一种超高碳轧制钢球用钢及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418044A (zh) * 2011-11-15 2012-04-18 攀钢集团研究院有限公司 一种钢球用钢及制造该钢球的方法
CN102443741A (zh) * 2011-11-15 2012-05-09 攀钢集团工程技术有限公司 用于球磨机的钢球及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418044A (zh) * 2011-11-15 2012-04-18 攀钢集团研究院有限公司 一种钢球用钢及制造该钢球的方法
CN102443741A (zh) * 2011-11-15 2012-05-09 攀钢集团工程技术有限公司 用于球磨机的钢球及其制造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834865A (zh) * 2012-11-21 2014-06-04 山东兴盛矿业有限责任公司 一种耐磨、耐腐蚀钢球的锻造方法
CN103834773A (zh) * 2012-11-27 2014-06-04 大连经济技术开发区圣洁真空技术开发有限公司 一种金属淬火方法
CN103014289A (zh) * 2013-01-09 2013-04-03 米易华星钒钛科技有限责任公司 锻钢球的制造方法
CN103014289B (zh) * 2013-01-09 2014-04-09 米易华星钒钛科技有限责任公司 锻钢球的制造方法
CN103740898A (zh) * 2014-01-02 2014-04-23 内蒙古北方重工业集团有限公司 一种高硬5Cr13MoV耐磨衬板压力淬火方法
CN103740898B (zh) * 2014-01-02 2015-07-22 内蒙古北方重工业集团有限公司 一种高硬5Cr13MoV耐磨衬板压力淬火方法
CN104611528A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化70号钢奥氏体晶粒的加热方法
CN104975148A (zh) * 2015-07-20 2015-10-14 江阴东邦钢球机械有限公司 一种钢球或钢锻的双液淬火的方法
CN104985095A (zh) * 2015-07-20 2015-10-21 江阴东邦钢球机械有限公司 钢球轧制工艺
CN107955904A (zh) * 2017-11-30 2018-04-24 攀钢集团攀枝花钢铁研究院有限公司 含V、Nb、Ti微合金建筑钢棒材及其生产方法
CN112176260A (zh) * 2020-09-30 2021-01-05 江苏钰特耐磨科技有限公司 一种超高碳轧制钢球用钢及其制备方法
CN112176260B (zh) * 2020-09-30 2021-11-23 江苏钰特耐磨科技有限公司 一种超高碳轧制钢球用钢及其制备方法

Also Published As

Publication number Publication date
CN102758140B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN102758140B (zh) 高碳微合金化钢球及其生产工艺
CN102534134B (zh) 一种中碳轴承钢贝氏体等温淬火热处理工艺方法
JP5135562B2 (ja) 浸炭用鋼、浸炭鋼部品、及び、その製造方法
CN102392124B (zh) 一种改善高速钢强韧性的热处理工艺方法
JP5135563B2 (ja) 浸炭用鋼、浸炭鋼部品、及び、その製造方法
CN102803522B (zh) 谐波齿轮用基材的制造方法
CN102953006B (zh) 整体硬贝氏体轴承钢及其制造方法
CN103981451B (zh) 一种热轧加回火型无Mo塑料模具钢钢板及其制造方法
CN101613835A (zh) 一种合金热轧钢板及用其制造高压气瓶的方法
CN103266212A (zh) 一种提高25Cr2Ni4MoV钢锻件低温冲击韧性的热处理工艺
CN101660036B (zh) 一种高强高韧性钢管热处理的方法
CN101348878A (zh) 等温淬火贝氏体球墨铸铁及其应用
CN104073814A (zh) 一种高碳铬轴承钢的热处理工艺
CN102505067A (zh) 一种高碳铬轴承钢贝氏体变温淬火方法
CN118007026B (zh) 热轧1300MPa级含B弹簧钢盘条及其生产工艺
CN104451437A (zh) 一种高性能大型冷轧辊的制备方法
CN111593173A (zh) 一种非调质钢制件的稳定控制冷却的新方法
CN104164548B (zh) 一种厚大断面低碳低合金钢铸锻件的热处理工艺
CN105714190A (zh) 一种耐冲击载荷轴承用钢及其热处理方法
CN106086360A (zh) 一种工业汽轮机转子锻件的热处理方法
CN109182680B (zh) 一种冷镦用马氏体不锈钢棒线材的退火硬度的控制方法
CN101994120A (zh) 一种滚动轴承的热处理工艺方法
CN101724736A (zh) 铬锰硅系低合金结构钢热处理上贝氏体淬火强化工艺
CN107685129B (zh) 一种重型电动机轴的锻件制备方法
CN105132815A (zh) 高强度大尺寸螺栓用冷镦钢及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant