CN102739173B - 一种跨导放大器、电阻、电感以及滤波器 - Google Patents

一种跨导放大器、电阻、电感以及滤波器 Download PDF

Info

Publication number
CN102739173B
CN102739173B CN201210212287.5A CN201210212287A CN102739173B CN 102739173 B CN102739173 B CN 102739173B CN 201210212287 A CN201210212287 A CN 201210212287A CN 102739173 B CN102739173 B CN 102739173B
Authority
CN
China
Prior art keywords
pmos
trsanscondutance amplifier
drain electrode
grid
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210212287.5A
Other languages
English (en)
Other versions
CN102739173A (zh
Inventor
程序
郭桂良
阎跃鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruili Flat Core Microelectronics Guangzhou Co Ltd
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210212287.5A priority Critical patent/CN102739173B/zh
Publication of CN102739173A publication Critical patent/CN102739173A/zh
Application granted granted Critical
Publication of CN102739173B publication Critical patent/CN102739173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本申请公开了一种跨导放大器、电阻、电感以及滤波器,本申请的跨导放大器采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管、第八PMOS管、第五PMOS管以及第六PMOS管组成,第二组放大器由第九PMOS管、第十PMOS管、第十一PMOS管以及第十二PMOS管组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度。进而由所述跨导放大器模拟得到的电阻、电感、以及由所述电阻和/或电感构成的电路也可以实现低功耗高线性度。

Description

一种跨导放大器、电阻、电感以及滤波器
技术领域
本申请涉及电路领域,尤其涉及一种跨导放大器、电阻、电感以及滤波器。
背景技术
随着通信技术,尤其是移动通信技术和计算技术的飞速发展,作为现代接收机尤其是零中频接受机中的一个关键模块,跨导-电容(Gm-C)滤波器能在混频器之后进行信号的滤波处理,为后级的可变增益放大器提供杂散频谱较少的信号,既能有效地在可变增益放大器(VGA,VariableGainAmplifier)、模拟/数字转换器(ADC,Analog-to-DigitalConverter)之前初步处理信号,又能防止后级的可变增益放大器由于带外信号过大而饱和。
在移动数字视频广播***中,位于接收机中频部分的Gm-C滤波器,需要处理较大的输入信号,要求滤波器在功耗很低的情况下保证较高的线性度。
发明内容
有鉴于此,本申请要解决的技术问题是,提供一种跨导放大器、电阻、电感以及滤波器,能够使得滤波器在功耗很低的情况下保证较高的线性度。
为此,本申请实施例采用如下技术方案:
一种跨导放大器,包括:
第一NMOS管的栅极连接跨导放大器的调谐电压输入端;第一NMOS管的源极接地,漏极连接第二PMOS管的漏极;
第二PMOS管、第三PMOS管、第四PMOS管、第十三PMOS管、第十四PMOS管、第十五PMOS管、第十六PMOS管的栅极、源极分别对应连接;且,第二PMOS管的栅极与第二PMOS管的漏极连接;第二PMOS管的源极连接跨导放大器的电源电压输入端;
第三PMOS管的漏极分别连接第五PMOS管的漏极、第六PMOS管的源极以及第七PMOS管的源极;
第四PMOS管的漏极分别连接第五PMOS管的源极、第六PMOS管的漏极以及第八PMOS管的源极;
第十三PMOS管的漏极分别连接第九PMOS管的源极、第十一PMOS管的源极以及第十二PMOS管的漏极;
第十四PMOS管的漏极分别连接第十PMOS管的源极、第十一PMOS管的漏极以及第十二PMOS管的源极;
第十五PMOS管的漏极分别连接第十七PMOS管的漏极、第十八PMOS管的源极以及第十九PMOS管的源极;
第十六PMOS管的漏极分别连接第十七PMOS管的源极、第十八PMOS管的漏极以及第二十PMOS管的源极;
第六PMOS管的栅极、第八PMOS管的栅极、第九PMOS管的栅极以及第十一PMOS管的栅极均与跨导放大器的正相输入端连接;
第十PMOS管的栅极、第十二PMOS管的栅极、第十八PMOS管的栅极以及第十九PMOS管的栅极均与跨导放大器的负相输入端连接;
第五PMOS管的栅极、第七PMOS管的栅极、第十七PMOS管的栅极以及第二十PMOS管的栅极均接地;
第二十一NMOS管的栅极与第二十二NMOS管的栅极连接,且连接跨导放大器的共模反馈电压端;第二十一NMOS管的源极以及第二十二NMOS管的源极接地;
第七PMOS管的漏极、第九PMOS管的漏极、第十九PMOS管的漏极以及第二十一NMOS管的漏极均与跨导放大器的负相输出端连接;
第八PMOS管的漏极、第十PMOS管的漏极、第二十PMOS管的漏极以及第二十二NMOS管的漏极均与跨导放大器的正相输出端连接。
还包括:第二十三PMOS管的源极以及第二十四PMOS管的源极连接跨导放大器的电源电压输入端;第二十三PMOS管的栅极与第二十四PMOS管的栅极连接偏置电压端;
第二十三PMOS管的漏极分别连接第二十五PMOS管的源极以及第二十六PMOS管的源极;第二十四PMOS管的漏极分别连接第二十七PMOS管的源极以及第二十八PMOS管的源极;
第二十五PMOS管的栅极连接跨导放大器的正相输出端,漏极连接第三十NMOS管的漏极以及第二十八PMOS管的漏极;
第二十六PMOS管的栅极与第二十七PMOS管的栅极连接参考电压端,漏极分别连接第二十七PMOS管的漏极以及第二十九NMOS管的漏极;
第二十八PMOS管的栅极连接跨导放大器的负相输出端;
第二十九NMOS管的栅极与漏极连接共模反馈电压端;第二十九NMOS管的源极接地;
第三十NMOS管的栅极与漏极连接,源极接地。
一种电阻,包括权利要求1所述的跨导放大器,其中,
跨导放大器的负相输出端与跨导放大器的共模反馈电压端连接;
跨导放大器的正相输出端与跨导放大器的负相输入端连接,该连接的连接点作为电阻的第一端;
跨导放大器的负相输入端作为电阻的第二端。
一种电阻,包括权利要求2所述的跨导放大器,其中,
跨导放大器的正相输入端与跨导放大器的负相输出端连接,该连接的连接点作为所述电阻的第一端;
跨导放大器的负相输入端与跨导放大器的正相输出端连接,该连接的连接点作为所述电阻的第二端。
一种电感,包括两个权利要求1所述的跨导放大器,分别为第一跨导放大器和第二跨导放大器,其中,
第一跨导放大器的负相输出端与第一跨导放大器的共模反馈电压端连接;第二跨导放大器的负相输出端与第二跨导放大器的共模反馈电压端连接;
电感的第一端通过第一电容接地,且分别与第一跨导放大器的正相输出端、第二跨导放大器的正相输入端连接;电感的第二端分别与第一跨导放大器的正相输入端、第二跨导放大器的正相输出端连接;
第一跨导放大器的负相输入端接地,第二跨导放大器的负相输入端接地。
一种滤波器,包括权利要求1至2任一项所述的跨导放大器,和/或,权利要求3至4任一项所述的电阻,和/或,权利要求5所述的电感。
还包括锁相环调谐器,其中,
压控振荡器的输出端连接鉴频鉴相器的第一输入端,鉴频鉴相器的第二输入端接收参考频率信号;鉴频鉴相器的输出端通过电荷泵连接环路滤波器的输入端,环路滤波器的输出端分别连接压控振荡器的输入端以及滤波器中的调谐电压输入端。
对于上述技术方案的技术效果分析如下:
本申请的跨导放大器采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管、第八PMOS管、第五PMOS管以及第六PMOS管组成,第二组放大器由第九PMOS管、第十PMOS管、第十一PMOS管以及第十二PMOS管组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度,进而能够使得使用所述跨导放大器的滤波器在功耗很低的情况下保证较高的线性度。
附图说明
图1为本申请跨导放大器第一实施例示意图;
图2为本申请共模反馈电路结构示意图;
图3为本申请电阻第一实施例示意图;
图4为本申请电感的第一实施例示意图;
图5为本申请电阻第三实施例示意图;
图6为本申请一种7阶椭圆滤波器结构示意图;
图7为本申请滤波器第一实施例示意图;
图8为本申请滤波器第二实施例示意图;
图9为本申请所述跨导放大器的简化电路结构图。
具体实施方式
以下,结合附图详细说明本申请跨导放大器、电阻、电感以及滤波器的实现。
图1是本申请跨导放大器结构示意图,如图1所述,该跨导放大器包括:
第一NMOS管M1的栅极连接跨导放大器的调谐电压输入端VTUNE;第一NMOS管M1的源极接地,漏极连接第二PMOS管M2的漏极;
第二PMOS管M2、第三PMOS管M3、第四PMOS管M4、第十三PMOS管M13、第十四PMOS管M14、第十五PMOS管M15、第十六PMOS管M16的栅极、源极分别对应连接;且,第二PMOS管M2的栅极与第二PMOS管M2的漏极连接;第二PMOS管M2的源极连接跨导放大器的电源电压输入端VC;
第三PMOS管M3的漏极分别连接第五PMOS管M5的漏极、第六PMOS管M6的源极以及第七PMOS管M7的源极;
第四PMOS管M4的漏极分别连接第五PMOS管M5的源极、第六PMOS管M6的漏极以及第八PMOS管M8的源极;
第十三PMOS管M13的漏极分别连接第九PMOS管M9的源极、第十一PMOS管M11的源极以及第十二PMOS管M12的漏极;
第十四PMOS管M14的漏极分别连接第十PMOS管M10的源极、第十一PMOS管M11的漏极以及第十二PMOS管M12的源极;
第十五PMOS管M15的漏极分别连接第十七PMOS管M17的漏极、第十八PMOS管M18的源极以及第十九PMOS管M19的源极;
第十六PMOS管M16的漏极分别连接第十七PMOS管M17的源极、第十八PMOS管M18的漏极以及第二十PMOS管M20的源极;
第六PMOS管M6的栅极、第八PMOS管M8的栅极、第九PMOS管M9的栅极以及第十一PMOS管M11的栅极均与跨导放大器的正相输入端VINP连接;
第十PMOS管M10的栅极、第十二PMOS管M12的栅极、第十八PMOS管M18的栅极以及第十九PMOS管M19的栅极均与跨导放大器的负相输入端VINN连接;
第五PMOS管M5的栅极、第七PMOS管M7的栅极、第十七PMOS管M17的栅极以及第二十PMOS管M20的栅极均接地;
第二十一NMOS管M21的栅极与第二十二NMOS管M22的栅极连接,且连接跨导放大器的共模反馈电压端VCMFB;第二十一NMOS管M21的源极以及第二十二NMOS管M22的源极接地;
第七PMOS管M7的漏极、第九PMOS管M9的漏极、第十九PMOS管M19的漏极以及第二十一NMOS管M21的漏极均与跨导放大器的负相输出端VOUTN连接;
第八PMOS管M8的漏极、第十PMOS管M10的漏极、第二十PMOS管M20的漏极以及第二十二NMOS管M22的漏极均与跨导放大器的正相输出端VOUTP连接。
图1所示的跨导放大器结构采用三组源简并差分放大器构成,其中一组放大器由第七PMOS管M7、第八PMOS管M8、第五PMOS管M5以及第六PMOS管M6组成,第二组放大器由第九PMOS管M9、第十PMOS管M10、第十一PMOS管M11以及第十二PMOS管M12组成,第三组放大器由第十七PMOS管、第十八PMOS管、第十九PMOS管以及第二十PMOS管组成,三组放大器的输出端交叉连接,从而可以利用电流相减的方式消除三次项谐波,从而实现跨导放大器的低功耗高线性度。
进而,所述跨导放大器应用于滤波器,例如Gm-C滤波器中时,可以实现滤波器的低功耗高线性度。
图1所示的跨导放大器在实际应用场景中,需要跨导放大器实现双端输入单端输出时,则跨导放大器的负相输出端可以与跨导放大器的共模反馈电压端VCMFB连接,实现跨导放大器的双端输入单端输出。
或者,在实际应用场景中,需要跨导放大器实现双端输入双端输出时,一般需要对图1所示的跨导放大器的共模电平进行控制,也即对跨导放大器的共模反馈电压端VCMFB的电压进行控制,此时,图1所示的跨导放大器可以进一步包括如图2所示的共模反馈电路,形成另一种跨导放大器结构,如图2所示,所述共模反馈电路包括:
第二十三PMOS管M23的源极以及第二十四PMOS管M24的源极连接跨导放大器的电源电压输入端VC;第二十三PMOS管M23的栅极与第二十四PMOS管M24的栅极连接跨导放大器的偏置电压端VBIAS;
第二十三PMOS管M23的漏极分别连接第二十五PMOS管M25的源极以及第二十六PMOS管M26的源极;第二十四PMOS管M24的漏极分别连接第二十七PMOS管M27的源极以及第二十八PMOS管M28的源极;
第二十五PMOS管M25的栅极连接跨导放大器的正相输出端VOUTP,漏极连接第三十NMOS管M30的漏极以及第二十八PMOS管M28的漏极;
第二十六PMOS管M26的栅极与第二十七PMOS管M27的栅极连接跨导放大器的参考电压端VREF,漏极分别连接第二十七PMOS管M27的漏极以及第二十九NMOS管M29的漏极;
第二十八PMOS管M28的栅极连接跨导放大器的负相输出端VOUTN;
第二十九NMOS管M29的栅极与漏极连接跨导放大器的共模反馈电压端VCMFB;第二十九NMOS管M29的源极接地;
第三十NMOS管M30的栅极与漏极连接,源极接地。
对于图1和图2所示的电路,跨导放大器的调谐电压输入端VTUNE输入的电压可以为某一恒定电压,或者,也可以为某一范围内的可调电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。
一般的,所述偏置电压端VBIAS可以连接第二PMOS管M2的栅极,使得偏置电压端VBIAS的电压随调谐电压输入端VTUNE的电压数值进行变化;或者,也可以为偏置电压端VBIAS输入某一固定值的电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。
一般的,可以为参考电压端VREF输入某一固定值的电压,具体的电压数值可以在实际应用中根据应用环境确定,这里不限制。
电源电压输入端VC一般连接跨导放大器的电源,用于为跨导放大器中的各个器件供电。
其中,在实际应用中如电路例如滤波器中需要使用电阻或者电感时,可以使用上述图1所示的跨导放大器、或者图1和图2结合得到的跨导放大器进行电阻或者电感的模拟。
具体的,在需要使用双端输入单端输出的跨导放大器的应用场景中,可以通过图1所示的跨导放大器模拟电阻或者电感,使得电路中的电阻和电感从无源器件变为有源器件;如图4所示为图1的跨导放大器模拟得到的电阻结构示意图,如图5所示为图1的跨导放大器模拟得到的电感结构示意图;
在需要使用双端输入双端输出的跨导放大器的应用场景中,可以通过图1和图2结合得到的跨导放大器模拟电阻或者电感;如图6所示为图1和图2结合得到的跨导放大器模拟得到的电阻结构示意图。
如图3所示,跨导放大器模拟得到的电阻结构包括:
跨导放大器gm,所述跨导放大器gm可以使用图1所示的结构实现;
另外,该电阻还包括:
跨导放大器gm的负相输出端与跨导放大器gm的共模反馈电压端连接(图中未示出);
跨导放大器gm的正相输出端与跨导放大器gm的负相输入端连接,该连接的连接点作为电阻的第一端;
跨导放大器gm的正相输入端作为电阻的第二端。
其中,该电阻可以作为接地电阻或者浮地电阻,当图3中所述电阻第一端和第二端中有一端接地,另一端连接其他器件时,该电阻为接地电阻;当电阻的第一端和第二端均连接其他器件时,该电阻为浮地电阻。
图4为图1所示的跨导放大器模拟得到的电感,如图4所示,该电感包括:
两个图1中所示的跨导放大器,分别为第一跨导放大器gm1和第二跨导放大器gm2,其中,
第一跨导放大器gm1的负相输出端与第一跨导放大器gm1的共模反馈电压端连接(图中未示出);第二跨导放大器gm2的负相输出端与第二跨导放大器gm2的共模反馈电压端连接(图中未示出);
所述电感的第一端通过第一电容C1接地,且分别与第一跨导放大器gm1的正相输出端、第二跨导放大器gm2的正相输入端连接;电感的第二端分别与第一跨导放大器gm1的正相输入端、第二跨导放大器gm2的正相输出端连接;
第一跨导放大器gm1的负相输入端接地,第二跨导放大器gm2的负相输入端接地。
图5为跨导放大器模拟得到的电阻示意图,包括:
跨导放大器gm,该跨导放大器可以通过图1和图2结合得到的跨导放大器实现;
该电阻还包括:
跨导放大器gm的正相输入端与跨导放大器gm的负相输出端连接,该连接的连接点作为所述电阻的第一端;
跨导放大器gm的负相输入端与跨导放大器gm的正相输出端连接,该连接的连接点作为所述电阻的第二端。
以上图3~图5所示的电阻和电感均为有源器件,在实际应用中可以对应替换电路中的无源电阻和无源电感,例如在图6所示的7阶椭圆滤波器结构中,即可以使用图3或图5所示的电阻实现图6中的电阻R1和R2,而不使用无源电阻,使用图4中的电感实现图6中的电感L1、L2、L3,而不使用无源电感。由于其中的跨导放大器的低功耗高线性度,因此,保证了由所述跨导放大器实现的所述电阻以及电感的低功耗和高线性度,进而相对于使用无源电阻和/或电感的电路,例如滤波器,包含所述电阻和/电感的滤波器的截止频率、线性度等特性不随温度、工艺角等因素的影响,使得滤波器功耗低且线性度高。
当然,图6所示的滤波器仅为举例,本申请的电阻和电感还可以应用到其他滤波器,甚至其他的包含电阻和/或电感的电路结构中,同样可以降低这些电路的功耗,提高线性度。
对于包含本申请所述电阻和/或电感的滤波器,所述滤波器可以进一步包括:锁相环调谐器,如图7所示,所述锁相环调谐器可以包括:
压控振荡器810的输出端连接鉴频鉴相器820的第一输入端,鉴频鉴相器820的第二输入端接收参考频率信号;鉴频鉴相器820的输出端通过电荷泵830连接环路滤波器840的输入端,环路滤波器840的输出端分别连接压控振荡器810的输入端以及滤波器中各个跨导放大器的调谐电压输入端VTUNE。
所述压控振荡器810用于产生一个信号源。所述压控振荡器810的振荡频率随滤波器截止频率变化而变化。
本申请实施例所述跨导放大器组成两个非阻尼积分器,连接成正反馈形式,就组成了所述压控振荡器810。它的振荡频率随着跨导放大器的各种特性,例如增益带宽积,共模抑制比等等改变,从而通过其输出电压频率跟踪并反映了跨导放大器和滤波器整体截止频率特性。
鉴频鉴相器820用于将压控振荡器810输出的输出信号和参考频率信号的频率和相位在数字域进行比较,输出一连串数字高低信号,通过所述数字高低信号控制电荷泵830的充电和放电。
电荷泵830用于在鉴频鉴相器820的输出信号控制下进行充电和放电,具体的,是将数字信号转换为模拟信号,再将这个模拟信号通过环路滤波器840滤波后回馈给压控振荡器810,形成闭环工作。
环路滤波器840用于对电荷泵830输出的模拟信号进行平滑滤波。
通过所述滤波可以减少电荷泵830输出的模拟信号的毛刺和信号抖动,从而降低相位噪声、提升整个锁相环调谐电路的精确性。
其中,所述压控振荡器810、鉴频鉴相器820、电荷泵830以及环路滤波器840构成了锁相环调谐器,能够实现跨导放大器中调谐电压输入端VTUNE中输入电压的调谐,进而在较小的功耗条件下保证调谐精度和滤波器截止频率的精度。
例如,所述锁相环调谐器具体可以通过图8所示的结构实现,其中:
压控振荡器的输出端连接乘法器的第一输入端,乘法器的第二输入端接收参考频率信号,乘法器的输出端连接低通滤波器的输入端,低通滤波器的第一输出端连接压控振荡器的输入端,低通滤波器的第二输出端连接滤波器中各个跨导放大器的调谐电压输入端。环路滤波器840通过所述低通滤波器实现,所述鉴频鉴相器820、电荷泵830通过所述乘法器实现。
最后,对于图1中所示的跨导放大器能够消除三次项谐波的原理进行说明:
为简化分析,将图1所示的跨导放大器电路简化为如图9所示的电路图结构。其中每个小模块代表跨导放大器中的一组差分放大器,其上的数值代表其跨导的相对比例大小。
由于输入信号由差模信号和共模信号分量构成,由图9可见,其中两个差分放大器的一个输入端接地,通过推导可知,由于输出的交叉耦合连接方式,整体电路仍然可以作为一个全差分电路使用。
假设电流大小和流向如图1所示,跨导放大器总的输出电流io为:
io=i01-i02-i03(1)
其中,io表示跨导放大器的总的输出电流,由于图1中的跨导放大器采用的是双端输入双端输出形式,输出的总电流io为三个输出支路电流之差,io1表示第七PMOS管M7和第八PMOS管M8构成的第一组放大器输出电流的一半,io2表示第九PMOS管M9和第十PMOS管M10构成的第二组放大器输出电流的一半;io3表示第十九PMOS管M9和第二十PMOS管M10构成的第二组放大器输出电流的一半;这里定义三个放大器的输出电流是为了从数学上论证高线性度的可行性。
假设电路中所有的MOS管都工作于饱和区,则根据漏电流饱和区公式:
id=K(vg-vs-Vth)2(2)
K = 1 2 μC o x ( W L ) - - - ( 3 )
其中,id表示单根MOS管的漏极输出电流;K表示MOS管在某种工艺下的电流系数,它是由工艺和MOS管的宽长比W/L决定的参数,只要工艺和宽长比确定,它就是一个定值;Vg是指MOS管的栅极电压;Vs指MOS管的源级电压;Vth指MOS管的阈值电压,它也是由工艺决定的参数;W表示MOS管的宽度,L表示MOS管的长度;μ为载流子迁移率,Cox为单位面积栅氧化区电容。
根据gm与直流饱和电压的关系:
gm=2KVdssat(4)
V d s s a t = V g - V s - V t h = I d 2 K - - - ( 5 )
其中,W表示MOS管的宽度,L表示MOS管的长度;Vdssat表示MOS管的直流饱和电压,在图1中,每一根MOS管都有它的直流饱和电压,这个直流饱和电压会影响每根MOS管的工作状态(饱和区、线性区、亚阈值区、截止区),进而影响跨导放大器的各项性能。
为了简化分析过程,采用泰勒级数在vin=0将vin展开可得到
i 0 = Σ n = 0 G M ( 2 n + 1 ) · v i n 2 n + 1 - - - ( 6 )
其中 G M j = g m 2 2 ( j - 1 ) V d s s a t j - 1 - - - ( 7 ) ;
定义源简并因子 N r 1 , 2 = G M 1 · 1 g m 5 , 6 , 11 , 12 , 17 , 18 , 其中为工作于深三极管区五PMOS管M5、第六PMOS管M6、第十一PMOS管M11、第十二PMOS管M12、第十七PMOS管M17、第十八PMOS管M18的等效电阻。将式(6)和式(7)代入(1)进行简化分析可得(只考虑一次项和三次项):
i o = G M 1 G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ( 3 7 ( v i n 2 + v c m ) - 3 7 ( - v i n 2 + v c m ) - 1 7 v i n ) - G M 3 ( G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ) 4 ( 3 7 ( v i n 2 + v c m ) 3 - 3 7 ( - v i n 2 + v c m ) 3 - 1 7 v i n 3 ) - G M 5 + 1 g 5 , 6 , 11 , 12 , 17 , 18 ( G M 1 G M 5 - 3 G M 3 2 ) ( G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ) 7 ( 3 7 ( v i n 2 + v c m ) 5 - 3 7 ( - v i n 2 + v c m ) 5 - 1 7 v i n 5 ) - - - ( 8 )
化简可得:
i o = 2 7 G M 1 ( G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ) v i n - 6 7 G M 3 ( G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ) 4 v i n v c m 2 + 13 112 G M 5 + 1 g 5 , 6 , 11 , 12 , 17 , 18 ( G M 1 G M 5 - 3 G M 3 2 ) ( G M 1 1 g 5 , 6 , 11 , 12 , 17 , 18 + 1 ) 7 v i n 5
在深亚微米工艺下,vcm远小于1,则跨导放大器的三次谐波项可近似消除,只剩下较小的五次谐波分量,总谐波失真(THD)就会大大降低。总谐波失真可以近似如下所示:
T H D = 13 ( G M 5 + 1 g 5 , 6 , 11 , 12 , 17 , 18 ( G M 1 G M 5 - 3 G M 3 2 ) ) 28 G M 1 ( 1 + G M 1 1 g m 5 , 6 , 11 , 12 , 17 , 18 ) 6 v i n 4 .
基于以上分析可知,图1所示的跨导放大器能够近似消除三次谐波项,提高THD。进而,能够在低功耗下保证高的线性度。
另外,本申请实施例的跨导放大器,由三个不同比例的源简并跨导放大器交叉耦合而成,能在深亚微米CMOS工艺条件下,以较低的功耗条件实现很高的线性度,其线性度随环境条件变化很小。
本申请实施例的跨导放大器和/或电阻和/或电感,能够适用于各种现有的电路中,尤其是滤波器,例如Gm-C滤波器中,以满足接收机***尤其是零中频接收机***线性度高的要求;另外,所述跨导放大器还可以应用于移动视频信号传输和开关电容电路中,满足两者对高线性度的要求。而且,应用于Gm-C滤波器中时,能在较小的功耗条件下保证调谐精度和滤波器截止频率精度。
跨导放大器电路的元件全部采用CMOS晶体管,没有使用电阻等其他元件,从而能达到较好的片内匹配。
另外,本申请实施例的跨导放大器在深亚微米CMOS标准工艺下,能适应较低的电源电压,符合当今低压CMOS趋势,且较低的电源电压有助于提升跨导放大器线性度。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (7)

1.一种跨导放大器,其特征在于,包括:
第一NMOS管的栅极连接跨导放大器的调谐电压输入端;第一NMOS管的源极接地,漏极连接第二PMOS管的漏极;
第二PMOS管、第三PMOS管、第四PMOS管、第十三PMOS管、第十四PMOS管、第十五PMOS管、第十六PMOS管的栅极、源极分别对应连接;且,第二PMOS管的栅极与第二PMOS管的漏极连接;第二PMOS管的源极连接跨导放大器的电源电压输入端;
第三PMOS管的漏极分别连接第五PMOS管的漏极、第六PMOS管的源极以及第七PMOS管的源极;
第四PMOS管的漏极分别连接第五PMOS管的源极、第六PMOS管的漏极以及第八PMOS管的源极;
第十三PMOS管的漏极分别连接第九PMOS管的源极、第十一PMOS管的源极以及第十二PMOS管的漏极;
第十四PMOS管的漏极分别连接第十PMOS管的源极、第十一PMOS管的漏极以及第十二PMOS管的源极;
第十五PMOS管的漏极分别连接第十七PMOS管的漏极、第十八PMOS管的源极以及第十九PMOS管的源极;
第十六PMOS管的漏极分别连接第十七PMOS管的源极、第十八PMOS管的漏极以及第二十PMOS管的源极;
第六PMOS管的栅极、第八PMOS管的栅极、第九PMOS管的栅极以及第十一PMOS管的栅极均与跨导放大器的正相输入端连接;
第十PMOS管的栅极、第十二PMOS管的栅极、第十八PMOS管的栅极以及第十九PMOS管的栅极均与跨导放大器的负相输入端连接;
第五PMOS管的栅极、第七PMOS管的栅极、第十七PMOS管的栅极以及第二十PMOS管的栅极均接地;
第二十一NMOS管的栅极与第二十二NMOS管的栅极连接,且连接跨导放大器的共模反馈电压端;第二十一NMOS管的源极以及第二十二NMOS管的源极接地;
第七PMOS管的漏极、第九PMOS管的漏极、第十九PMOS管的漏极以及第二十一NMOS管的漏极均与跨导放大器的负相输出端连接;
第八PMOS管的漏极、第十PMOS管的漏极、第二十PMOS管的漏极以及第二十二NMOS管的漏极均与跨导放大器的正相输出端连接。
2.根据权利要求1所述的跨导放大器,其特征在于,还包括:
第二十三PMOS管的源极以及第二十四PMOS管的源极连接跨导放大器的电源电压输入端;第二十三PMOS管的栅极与第二十四PMOS管的栅极连接偏置电压端;
第二十三PMOS管的漏极分别连接第二十五PMOS管的源极以及第二十六PMOS管的源极;第二十四PMOS管的漏极分别连接第二十七PMOS管的源极以及第二十八PMOS管的源极;
第二十五PMOS管的栅极连接跨导放大器的正相输出端,漏极连接第三十NMOS管的漏极以及第二十八PMOS管的漏极;
第二十六PMOS管的栅极与第二十七PMOS管的栅极连接参考电压端,漏极分别连接第二十七PMOS管的漏极以及第二十九NMOS管的漏极;
第二十八PMOS管的栅极连接跨导放大器的负相输出端;
第二十九NMOS管的栅极与漏极连接共模反馈电压端;第二十九NMOS管的源极接地;
第三十NMOS管的栅极与漏极连接,源极接地。
3.一种电阻,其特征在于,包括权利要求1所述的跨导放大器,其中,
跨导放大器的负相输出端与跨导放大器的共模反馈电压端连接;
跨导放大器的正相输出端与跨导放大器的负相输入端连接,该连接的连接点作为电阻的第一端;
跨导放大器的正相输入端作为电阻的第二端。
4.一种电阻,其特征在于,包括权利要求2所述的跨导放大器,其中,
跨导放大器的正相输入端与跨导放大器的负相输出端连接,该连接的连接点作为所述电阻的第一端;
跨导放大器的负相输入端与跨导放大器的正相输出端连接,该连接的连接点作为所述电阻的第二端。
5.一种电感,其特征在于,包括两个权利要求1所述的跨导放大器,分别为第一跨导放大器和第二跨导放大器,其中,
第一跨导放大器的负相输出端与第一跨导放大器的共模反馈电压端连接;第二跨导放大器的负相输出端与第二跨导放大器的共模反馈电压端连接;
电感的第一端通过第一电容接地,且分别与第一跨导放大器的正相输出端、第二跨导放大器的正相输入端连接;电感的第二端分别与第一跨导放大器的正相输入端、第二跨导放大器的正相输出端连接;
第一跨导放大器的负相输入端接地,第二跨导放大器的负相输入端接地。
6.一种滤波器,其特征在于,包括权利要求1至2任一项所述的跨导放大器,和/或,权利要求3至4任一项所述的电阻,和/或,权利要求5所述的电感。
7.如权利要求6所述的滤波器,其特征在于,还包括锁相环调谐器,其中,
压控振荡器的输出端连接鉴频鉴相器的第一输入端,鉴频鉴相器的第二输入端接收参考频率信号;鉴频鉴相器的输出端通过电荷泵连接环路滤波器的输入端,环路滤波器的输出端分别连接压控振荡器的输入端以及滤波器中的调谐电压输入端。
CN201210212287.5A 2012-06-21 2012-06-21 一种跨导放大器、电阻、电感以及滤波器 Active CN102739173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210212287.5A CN102739173B (zh) 2012-06-21 2012-06-21 一种跨导放大器、电阻、电感以及滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210212287.5A CN102739173B (zh) 2012-06-21 2012-06-21 一种跨导放大器、电阻、电感以及滤波器

Publications (2)

Publication Number Publication Date
CN102739173A CN102739173A (zh) 2012-10-17
CN102739173B true CN102739173B (zh) 2016-04-13

Family

ID=46994088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210212287.5A Active CN102739173B (zh) 2012-06-21 2012-06-21 一种跨导放大器、电阻、电感以及滤波器

Country Status (1)

Country Link
CN (1) CN102739173B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103957004A (zh) * 2014-04-16 2014-07-30 中科芯集成电路股份有限公司 一种应用于直接发射机的锁相环环路滤波器电路
CN104201992B (zh) * 2014-09-02 2017-02-15 南京工业职业技术学院 基于锁定放大器的双环补偿抑制正交信号源相位噪声电路
EP3358744B1 (en) * 2015-10-29 2020-08-05 Mitsubishi Electric Corporation Transconductance amplifier and phase shifter
CN107395146B (zh) * 2017-07-22 2021-04-27 上海军陶科技股份有限公司 一种恒定跨导放大器电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394702A3 (en) * 1989-04-28 1991-09-04 STMicroelectronics S.r.l. A circuit arrangement for increasing the band-gain product of a cmos amplifier
CN101917168A (zh) * 2010-06-30 2010-12-15 西安电子科技大学 用于有源功率因数校正器中的高转换速率跨导放大器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394702A3 (en) * 1989-04-28 1991-09-04 STMicroelectronics S.r.l. A circuit arrangement for increasing the band-gain product of a cmos amplifier
CN101917168A (zh) * 2010-06-30 2010-12-15 西安电子科技大学 用于有源功率因数校正器中的高转换速率跨导放大器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
46MHz可调谐高线性八阶Gm-C带通滤波器的设计与实现;阴玥;《万方数据库》;20110328;第15-40页 *
CMOS跨导放大器及其构成的滤波器的研究与设计;李安;《万方数据库》;20110928;第25-53页 *
Wideband Reconfigurable CMOS Gm-C Filter For Wireless Applications;Gao Zhiqiang等;《Electronics,Circuits, and Systems,2009.ICECS 2009. 16th IEEE International Conference on》;20091230;第179-182页 *
片上锁相环调谐的低功耗中频复数滤波器设计;贠磊等;《半导体技术》;20080903;第33卷(第9期);第821-824页 *

Also Published As

Publication number Publication date
CN102739173A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN102790596B (zh) 一种消除直流失调的自动增益控制放大器
CN102739173B (zh) 一种跨导放大器、电阻、电感以及滤波器
CN104242830B (zh) 基于有源电感的可重配置超宽带低噪声放大器
CN102723918B (zh) 一种跨导放大器、电阻、电感以及滤波器
Kuntman et al. New possibilities and trends in circuit design for analog signal processing
Lo et al. A Wide Tuning Range $ G_ {m} $–$ C $ Continuous-Time Analog Filter
Monsurro et al. Linearization technique for source-degenerated CMOS differential transconductors
Gatti et al. A novel CMOS linear transconductance cell for continuous-time filters
Lo et al. A 40-MHz Double Differential-Pair CMOS OTA With $-{\hbox {60-dB}} $ IM3
CN102723919B (zh) 一种跨导放大器、电阻、电感以及滤波器
CN101425791B (zh) 一种用于实现零极点型高阶滤波器的双二阶单元
Liu et al. A 0.5-V ultra-low-power low-pass filter with a bulk-feedback technique
CN204928758U (zh) 一种增益提升的运算跨导放大器
CN102739174B (zh) 一种跨导放大器、电阻、电感以及滤波器
CN111835304B (zh) 一种用于传感器模拟前端的跨导运算放大器
Ismail et al. Cascaded third-order tunable low-pass filter using low voltage low power OTA
Upathamkuekool et al. A compensation technique for compact low-voltage low-power active-RC filters
CN108462479A (zh) 基于改进型Gm-C的镜像抑制滤波器及其构建方法
Lo et al. Low-Voltage Multi-Mode G 𝓂-C Channel Selection Filter for Mobile Applications
Almazan et al. A 3rd order butterworth Gm-C filter for WiMAX receivers in a 90nm CMOS process
Yodprasit et al. A compact low-power vertical filter for very-high-frequency applications
Deeb et al. A CMOS gm-C low-pass filter for direct conversion receivers with tuning capability
Adrang et al. A low-power CMOS Gm-C filter for wireless receiver applications with on-chip automatic tuning system
Li et al. A novel OTA with digitally controlled and linearly tunable transconductance
Rezaei 0.3 V Tunable OTA and Gm-C Filter in 0.13 µm CMOS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201218

Address after: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: AoXin integrated circuit technology (Guangdong) Co.,Ltd.

Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3

Patentee before: Institute of Microelectronics, Chinese Academy of Sciences

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220506

Address after: 510000 room 710, Jianshe building, No. 348, Kaifa Avenue, Huangpu District, Guangzhou, Guangdong

Patentee after: Ruili flat core Microelectronics (Guangzhou) Co.,Ltd.

Address before: 510000 601, building a, 136 Kaiyuan Avenue, Huangpu District, Guangzhou City, Guangdong Province

Patentee before: AoXin integrated circuit technology (Guangdong) Co.,Ltd.