CN102662208A - 柱透镜光栅、液晶光栅及显示器件 - Google Patents

柱透镜光栅、液晶光栅及显示器件 Download PDF

Info

Publication number
CN102662208A
CN102662208A CN2012101569612A CN201210156961A CN102662208A CN 102662208 A CN102662208 A CN 102662208A CN 2012101569612 A CN2012101569612 A CN 2012101569612A CN 201210156961 A CN201210156961 A CN 201210156961A CN 102662208 A CN102662208 A CN 102662208A
Authority
CN
China
Prior art keywords
electrode
post
liquid crystal
lens
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101569612A
Other languages
English (en)
Other versions
CN102662208B (zh
Inventor
魏伟
武延兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201210156961.2A priority Critical patent/CN102662208B/zh
Publication of CN102662208A publication Critical patent/CN102662208A/zh
Priority to JP2014561262A priority patent/JP6262671B2/ja
Priority to KR1020137009791A priority patent/KR101512578B1/ko
Priority to PCT/CN2012/084238 priority patent/WO2013135063A1/zh
Priority to EP12832704.6A priority patent/EP2662725B1/en
Priority to US13/824,626 priority patent/US10215895B2/en
Application granted granted Critical
Publication of CN102662208B publication Critical patent/CN102662208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明涉及3D显示技术领域,提供了一种柱透镜光栅、液晶光栅及显示器件。该柱透镜光栅包括:平行排列的多个柱透镜,其中,至少两个相邻的柱透镜之间具有一间隔部,所述间隔部为与柱透镜中心轴垂直的第一平面,和/或至少一个柱透镜的上表面的中间部分为与柱透镜中心轴垂直且以柱透镜中心轴为对称轴对称的第二平面。在本发明中,通过改进柱透镜光栅的结构使得彩色滤光片上的黑矩阵图形不会被柱透镜折射而变形,有效抑制了摩尔纹现象,显著提高了3D显示效果。此外,本发明进一步公开了柱透镜光栅的制作方式,可以根据显示器结构特点和实际工艺灵活调节光栅参数达到理想的显示效果,大大降低了工艺开发难度,简化开发流程并提高了产品良率。

Description

柱透镜光栅、液晶光栅及显示器件
技术领域
本发明涉及3D显示技术领域,特别涉及一种柱透镜光栅、液晶光栅及显示器件。
背景技术
随着数字图像处理技术和设备制造水平的进步,3D显示已经成为显示行业的一大流行趋势。现在的3D显示的基本原理是“视差产生立体”,通过一定的设施或技术使观看者两眼看到不同的图像,即左眼只看到左眼图,右眼只看到右眼图,左眼图和右眼图是对于某一空间景象的两个角度拍摄而得,这二者被称为立体图像对;人的大脑会把两眼看到的这两幅图融合起来,从而产生3D效果。
由于通过3D眼镜获得3D显示效果的方式需要用户佩戴3D眼镜,这严重影响了用户体感,限制了用户的自由,同时对近视或远视的用户效果不佳,因而裸眼3D显示成为更受用户青睐的选择。裸眼3D显示技术可以分为视差挡板(parallax barrier,又称狭缝光栅)和柱透镜光栅(lenticular lens)两种主流技术。视差挡板是通过显示屏前方设置的带一系列狭缝的挡板使得用户双眼分别看到不同的图像;狭缝光栅由于挡板的存在,必然会将显示屏发出的光线遮挡住一部分,除不能充分利用显示屏的光线造成能量损耗之外,其透光率有限还会对显示效果造成一定影响。因而虽然狭缝光栅的技术出现较早但其普及率并不高。
而柱透镜光栅则是在显示屏前方设置紧密排列的柱透镜(柱透镜,可以为凸透镜也可以为凹透镜),显示屏上一部分子像素单元显示左眼图像,另一部分显示右眼图像,因为柱透镜光栅上透镜的折射作用,左右眼子像素单元所发出的光经过柱透镜光栅后,光线传播方向发生偏折,从而使左眼像素的光射入观看者的左眼,右眼像素的光射入观看者的右眼。
在现有技术的柱透镜光栅中,图1(a)所示的柱透镜光栅采用凸透镜结构,多个半圆柱透镜平行且紧密地排列在一起对光线进行折射;图1(b)所示的柱透镜光栅采用凹透镜结构,多个凹面柱透镜平行且紧密地排列在一起对光线进行折射。由于使用透镜原理使光线偏折,彩色滤光片各子像素单元之间存在的黑矩阵在透镜的作用下会变形,这些变形的黑矩阵在用户看到的图像中会形成摩尔纹(即干扰条纹),严重影响了图像的视觉效果。
发明内容
(一)要解决的技术问题
针对现有技术的缺点,本发明为了解决现有技术中柱透镜光栅成像时摩尔纹影响显示效果的问题,提供了一种柱透镜光栅、液晶光栅及显示器件,有效降低了显示时的摩尔纹现象。
(二)技术方案
为解决上述技术问题,本发明具体采用如下方案进行:
首先,本发明提供一种柱透镜光栅,包括平行排列的多个柱透镜;其中,至少两个相邻的柱透镜之间具有一间隔部,所述间隔部为与所述柱透镜中心轴垂直的第一平面,和/或至少一个柱透镜的上表面的中间部分为与所述柱透镜中心轴垂直且以所述柱透镜中心轴为对称轴对称的第二平面。
优选地,所述第一平面的宽度N1等于彩色滤光片上彩色子像素单元之间的黑矩阵的宽度W;和/或所述第二平面的宽度N2=S/(S+h)*W,其中,h为光栅距离彩色滤光片的距离,S为3D显示时的最佳观看距离。
优选地,所述柱透镜为凸透镜或凹透镜。
优选地,所述柱透镜的上表面为光滑的曲面或表面不规则的曲面。
另一方面,本发明还同时提供一种显示器件,包括,显示面板、偏振片,还包括,如上所述的柱透镜光栅,所述柱透镜光栅设置在所述偏振片上,所述偏振片设置于所述显示面板的彩色滤光片基板的外表面之上。
优选地,所述柱透镜光栅采用上表面朝向所述显示器件的显示面板或者采用上表面背向所述显示器件的显示面板的安装方式。
优选地,所述柱透镜光栅的栅距P为:
P = 2 S p 1 + S p / L ;
其中,Sp为彩色滤光片子像素单元的宽度,L为用户的半瞳距。
再一方面,本发明还同时提供一种液晶光栅,包括上、下基板以及设置在所述上、下基板之间的液晶层,其特征在于,所述液晶光栅还包括:设置在所述上基板内表面的第一电极层和设置在所述下基板内表面的第二电极层,其中,
所述第一电极层为面状电极,所述第二电极层包括多个电极单元,所述电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组成;
或,所述第二电极层为面状电极,所述第一电极层包括多个电极单元,所述电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组成。
优选地,所述电极单元由两个平行等间距的等宽度的单层条状电极组成;
或者,所述电极单元由两个以上平行等间距的单层条状电极组成,且任意相邻两个电极单元所共用的那个条状电极的宽度大于每个电极单元中的其它条状电极的宽度。
优选地,所述电极单元由两个被透明绝缘层隔离的上下两层电极结构组成,且上层电极的宽度小于下层电极的宽度。
优选地,所述液晶光栅所形成的透镜为凸透镜或凹透镜。
最后,本发明还提供一种显示器件,包括,显示面板、偏振片,还包括如上所述的液晶光栅,所述液晶光栅设置在所述偏振片上,所述偏振片设置于所述显示面板的彩色滤光片基板的外表面之上。
优选地,所述柱透镜光栅的栅距P为:
P = 2 S p 1 + S p / L ;
其中,Sp为彩色滤光片子像素单元的宽度,L为用户的半瞳距。
(三)有益效果
在本发明中,通过改进柱透镜光栅的结构使得彩色滤光片上的黑矩阵图形不会被柱透镜折射变形,有效抑制了摩尔纹现象,显著提高了3D显示效果。此外,本发明进一步公开了柱透镜光栅的制作方式,可以根据显示器结构特点和实际工艺灵活调节光栅参数达到理想的显示效果,大大降低了工艺开发难度,简化开发流程也提高产品良率。
附图说明
图1(a)为现有技术中凸面柱透镜光栅的摩尔纹产生原理示意图;
图1(b)为现有技术中凹面柱透镜光栅的摩尔纹产生原理示意图;
图2(a)为本发明的实施例1中凸面柱透镜光栅的截面结构局部放大图;
图2(b)为本发明的实施例2中凹面柱透镜光栅的截面结构局部放大图;
图3(a)为实施例1的凸面柱透镜光栅抑制摩尔纹的原理示意图;
图3(b)为实施例2的凹面柱透镜光栅抑制摩尔纹的原理示意图;
图4为本发明的柱透镜光栅表面向外安装的结构示意图;
图5为本发明的柱透镜光栅表面向内安装的结构示意图;
图6为本发明的实施例3中液晶光栅的电极结构示意图;
图7为实施例3中对液晶光栅的电极施加电压后在液晶层中等效形成柱透镜光栅的示意图;
图8为本发明的实施例4中液晶光栅的电极结构示意图;
图9为实施例4中对液晶光栅的电极施加电压后在液晶层中等效形成柱透镜光栅的示意图;
图10为本发明的凸面柱透镜光栅3D显示的光路图;
图11为本发明中表面向内安装的凸面柱透镜光栅单个柱透镜的光路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
由于现有技术中的柱透镜光栅的圆柱透镜在对光线进行偏折的同时也会放大用户看到的黑矩阵区域,因而本发明中对透镜的结构做了进一步改进,使得柱透镜光栅在成像时不会对黑矩阵折射而变形,从而有效地抑制了摩尔纹的产生。
实施例1
图2是本发明的柱透镜光栅的截面的局部放大图,在图2(a)的实施例1中,为了抑制凸透镜效应对黑矩阵的放大作用,本发明的柱透镜光栅变更了现有技术中圆柱透镜紧密排列的方式,在柱透镜光栅中还包括与柱透镜的中心轴(指连接透镜两侧焦点的直线,通常位于透镜的正中间,此方向穿过透镜的光线不会发生偏折)相垂直的多个平面部分。具体地,多个凸面柱透镜104平行排列形成在衬底103上,其中,每两个柱透镜104之间由第一平面101相隔,第一平面101与柱透镜中心轴垂直,第一平面101的宽度为N1;或者,每个柱透镜104的上表面105的中间部分形成有第二平面102,第二平面102与柱透镜104中心轴垂直且以柱透镜中心轴为对称轴对称,第二平面102的宽度为N2。更进一步的,上述第一平面的宽度N1等于彩色滤光片上彩色子像素单元之间的黑矩阵的宽度W;第二平面的宽度N2=S/(S+h)*W,其中,h为光栅距离彩色滤光片的距离,S为3D显示时的最佳观看距离。
实施例2
图2(a)以凸透镜为例进行说明,图2(b)的实施例2中进一步展示了本发明中以凹透镜形成柱透镜光栅的实施方式。该实施例2中,多个凹面柱透镜104′平行排列形成在衬底103上,在凹面柱透镜光栅中还包括与柱透镜104′的中心轴相垂直的多个平面部分,其中,每两个凹面柱透镜104′之间由第一平面101相隔,第一平面101与柱透镜中心轴垂直,第一平面101的宽度为N1;或者,每个凹面柱透镜104′的上表面105′的中间部分形成有第二平面102,第二平面102与凹面柱透镜104′中心轴垂直且以柱透镜中心轴为对称轴对称,第二平面102的宽度为N2。各平面的优选宽度同凸透镜的实施例。本领域相关技术人员应能理解,上述凸透镜或凹透镜的实施例中,两柱透镜之间的第一平面101的高度与透镜底部的基板齐平只是优选的实施方式,事实上只要保证第一平面101顶部是与柱透镜中心轴垂直的平面即可,其实际高度可以根据制备工艺的需要进行控制。
需要说明的是,上述凸透镜或凹透镜的实施例(实施例1或实施例2)所涉及的技术方案中,每两个柱透镜(凸透镜104或凹透镜104′)之间由第一平面101相隔的同时,每个柱透镜(凸透镜104或凹透镜104′)的上表面105或105′的中间部分也可以同时形成有第二平面102,即所述第一平面101和所述第二平面102可以同时设置在所述柱透镜光栅之中。
此外,虽然各图中柱透镜的柱面均为光滑曲面,但本领域相关技术人员应能理解,光滑曲面只是为绘图方便进行的示例,在本发明中,只要透镜整体能让光线发生预期的折射即可,柱面为表面不规则(如表面有波浪形、三角形或其他任意形状的凸起或凹陷的)的曲面的柱透镜可同样应用于本发明中。各附图不应理解为对本发明实施方式的限定,上述各替代方式均应视作是本发明的具体实施方式。
图3进一步展示了具有图2结构的柱透镜光栅抑制摩尔纹的工作原理,其中,图3(a)是凸面柱透镜光栅实施例1的光路图,图3(b)是凹面柱透镜光栅实施例2的光路图。从图3可以看出,当采用本发明图2中的柱透镜光栅进行裸眼3D显示时,由于第一、第二平面的存在,从柱透镜光栅的这两个平面处经过的光线并不发生偏折变形;这样,在这些方向上,黑矩阵在用户眼中的成像并不会被放大,只会形成与黑矩阵实际宽度基本相当的条纹,由于黑矩阵的实际宽度非常小,该条纹造成的实际影响可被忽略,因而摩尔纹得到了有效的抑制。
本发明中的柱透镜光栅存在多种安装方式,如图4所示,可以采用柱透镜光栅的上表面背向显示面板的安装方式;或者如图5所示,还可以采用柱透镜光栅的上表面面向显示面板的安装方式。在图4中,柱透镜光栅1的柱面向外,底面通过OCA光学胶2粘接在偏振片3上并与偏振片保持一定距离,偏振片形成于显示面板4之上。在图5中,柱透镜光栅1的柱面向内面向偏振片3,同样通过OCA光学胶2粘接在显示面板4的偏振片3上并与偏振片3保持一定距离,偏振片3形成于显示面板4之上;采用图5的表面向内的方式安装可以进一步地保护柱透镜光栅膜层。
实施例3
图6的实施例3中还公开了液晶光栅的实施方式,在液晶光栅中,主要通过对液晶层两侧基板内表面的电极施加电压来控制各个区域液晶分子的偏转程度,从而在液晶层中等效形成柱透镜光栅和第一平面对光线的处理效果,使得光线在经过液晶层的各个区域时有不同的偏转方向。
具体地,在图6的实施例3中,液晶光栅包括上基板106、下基板107以及设置在上、下基板之间的液晶层108,此外,在所述上基板106内表面设置有第一电极层109,在所述下基板107内表面设置有第二电极层110,所述第一电极层109为面状电极,所述第二电极层110包括多个平行等间距布置的条状电极,或者,所述第一电极层109包括多个平行等间距布置的条状电极,所述第二电极层110为面状电极,本实施例以所述第一电极层109为面状电极,所述第二电极层110包括多个平行等间距布置的条状电极为例进行说明,结合图7所示,通过对所述第一电极层109和第二电极层110施加电压引起液晶分子偏转,在所述液晶层108中等效形成平行排列的多个柱透镜104″,至少两个相邻的柱透镜之间等效形成一与所述柱透镜中心轴垂直的第一平面101′。具体的,所述第二电极层110为多个周期性平行等间距布置的条状电极,至少两个相邻的所述条状电极组成一个电极单元。当所述电极单元由两个相邻所述条状电极构成时,每个电极单元内的两条所述条状电极的宽度相同,且当需要形成的所述第一平面101′的宽度为N时,所述条状电极的宽度A大于所需要形成的第一平面101′的宽度N;当所述电极单元由两个以上相邻的条状电极构成时,以本实施例为例进行说明,如图6所示,任意相邻两个电极单元所共用的那个条状电极110′的宽度大于每个电极单元中的其它条状电极110″的宽度,且当需要形成的所述第一平面101′的宽度为N时,所述条状电极110’的宽度A大于所需要形成的第一平面101′的宽度N。
下面以本实施例为例对所述液晶光栅的工作方法进行说明,在所述液晶光栅处于工作状态时,对所述第一电极层109和第二电极层110施加电压,其中,为位于所述第二电极层中任意一个电极单元内中间区域的条状电极条所施加的电压为零或者低于液晶偏转的阈值电压,如图6所示,即为条状电极110″施加零伏电压或者低于液晶偏转的阈值电压,由所述位于电极单元中间区域的条状电极开始,位于其两侧的条状电极的电压逐渐增大,其中位于任意所述电极单元共用的条状电极的电压最高,如图6所示,即为条状电极110′所施加的电压最高,从而控制位于第一电极层109和第二电极层110之中条状电极110′之间的液晶分子进行偏转,使得通过该部分液晶分子的光线的传播方向不发生改变,从而等效形成所述第一平面,控制其它部分的液晶分子的偏转,使得通过该部分液晶分子的光线的传播方向发生改变,从而在该部分液晶区域等效形成所述平行排列的多个柱透镜。
所述第二电极层的电极单元由两个周期性平行等间距的等宽度的条状电极组成,在所述液晶光栅处于工作状态时,对所述第一电极层和第二电极层施加电压,其中,为所述第二电极层中任意一个电极单元内的条状电极施加一电压,从而控制条状电极正上方的液晶分子进行偏转,使得通过该部分液晶分子的光线的传播方向不发生改变,从而等效形成所述第一平面,控制其它部分的液晶分子的偏转,使得通过该部分液晶分子的光线的传播方向发生改变,从而在该部分液晶区域等效形成所述平行排列的多个柱透镜。
需要说明的是,本实施例对所述的电极单元中条状电极的数目不做限制,本领域技术人员根据设计需要在不付出创造性劳动的情况下可以对该条状电极的数目进行任意设置。
实施例4
图8的实施例4中还公开了另一种液晶光栅的实施方式,该实施例4与图6的实施例3的主要区别在于,第二电极层110的条状电极结构为双层电极结构。具体地,实施例4中,上基板106内表面的第一电极层109为面状电极,下基板107内表面的第二电极层110为多个平行等间距布置的双层条状电极结构,即每一条状双电极都是被一透明绝缘层111(如氮化硅等)隔离的上下两层电极结构,如图8和图9所示,第二电极层110的上层电极结构110-1的宽度A(指条状电极矩形图案短边的长度)小于下层电极110-2的宽度B。通过控制双层条状电极的宽度和调整第一、二电极层的电压,在液晶层108中任意相邻的两个条状电极110之间等效形成平行排列的多个柱透镜,至少两个相邻的柱透镜之间等效形成一与柱透镜中心轴垂直的第一平面101′,当需要形成的所述第一平面101′的宽度为N时,所述电极的宽度110-1的宽度A大于所需要形成的第一平面101′的宽度N;。图9进一步展示了实施例4在液晶层中等效形成凸面柱透镜光栅104″和第一平面101′的实施效果图。
本发明中,液晶光栅的电极设置有多种方式,如图6和图8所示,可以采用位于上基板内表面的电极为面状电极,位于下基板内表面的电极为多个平行等间距布置的条状电极结构的设置方式,此时,通过对所述电极施加电压引起液晶分子偏转,在液晶层中等效形成平行排列的多个凸透镜;或者采用位于上基板内表面的电极为多个平行等间距布置的条状电极结构,位于下基板内表面的电极为面状电极的设置方式(附图中并未示出),此时,通过对所述电极施加电压引起液晶分子偏转,在液晶层中等效形成平行排列的多个凹透镜。此外,考虑到现有技术中各显示器件的尺寸、分辨率、玻璃厚度、边框厚度等参数完全不同,进行3D显示时的光栅设计工艺复杂且只能针对某一特定的显示器件,本发明中进一步公开了上述柱透镜光栅的制作工艺,根据该工艺可以针对不同参数的显示器件对柱透镜光栅进行调整,从而简化了通过柱透镜光栅进行3D显示的设计工艺。
具体地,首先参见图10,该图显示了凸面柱透镜光栅3D显示的光路图,其中,光栅距离彩色滤光片的距离为h,彩色滤光片子像素单元的宽度为Sp(图中未示出),光栅栅距(指相邻两柱透镜中心轴之间的距离,在本发明中即为相邻两个第一平面的中心点之间的距离、或相邻两个第二平面的中心点之间的距离)为P,用户的瞳距为2L(即L为半瞳距——瞳距的一半,该瞳距是根据统计结果选取的近似值,并非某一用户的真实瞳距值),3D显示时的最佳观看距离为S,根据光路图中所示的几何图形之间的关系可以有:
h S = S p L - - - ( 1 )
P 2 S p = S S + h - - - ( 2 )
由式(1)可以求出光栅距离彩色滤光片的距离h,代入式(2)后可以求出光栅栅距P有:
P = 2 S p 1 + S p / L - - - ( 3 )
再根据图11,图11为表面向内安装的柱透镜光栅单个柱透镜的光路图,如果想要显示器件的显示效果最佳,需要将柱透镜的焦点设置在彩色滤光片5的透光处(即滤光片玻璃之后的实际光线发出处),其中,彩色滤光片玻璃5和偏振片3的厚度合计为e,光栅距离偏振片3的距离为t,从焦点发出的光线出射角为θ,经彩色滤光片玻璃折射后角度为α,入射到柱透镜时入射角为β,经柱透镜折射后角度为δ,玻璃(彩色滤光片及柱透镜)的折射率为n,其倒数η=1/n,由折射定律及三角函数关系有:
sinα=ηsinθ                        (4)
sinδ=ηsinβ                        (5)
1+cot2α=csc2α                      (6)
由式(4)至(6)可得 tan α = η tan θ 1 + ( 1 - η 2 ) tan 2 θ - - - ( 7 )
随后,再由图形之间的几何关系可得:
etanθ+ttanα=P/2                    (8)
tη tan θ 1 + ( 1 - η 2 ) ta n 2 θ = P / 2 - e tan θ - - - ( 9 )
sinδ=P/2r                           (10)
由式(9)可求出出射角θ,又因为sinθ=n*sinα,sinβ=sin(α+δ)=nsinδ,可求出角度δ,再由式(10)可求出柱透镜圆弧的半径r,即半径r可以由栅距P、光栅距离偏振片的距离t、彩色滤光片玻璃和偏振片的合计厚度e、彩色滤光片及柱透镜的折射率n表示。
根据上面的公式,再结合显示器件设计及使用时的具体参数,如光栅距离偏振片的距离t(该距离会影响显示器件的整体厚度),最佳观看距离S,最佳观看距离处连续水平观看距离(指人站在最佳观看距离S处可以看到正常3D图像时,人眼的水平距离)等计算出的光栅栅距P,即上式(3),可以得到柱透镜柱面圆弧的半径的实际值,从而实现该具体参数下柱透镜光栅的设计。
最后,本发明还提供了一种显示器件,采用上述柱透镜光栅或液晶光栅进行3D显示,所述显示器件可以为:液晶面板、电子纸、OLED面板、等离子体面板、液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
在本发明中,通过改进柱透镜光栅的结构使得彩色滤光片上的黑矩阵图形不会因柱透镜对光线的偏折而变形,有效抑制了摩尔纹现象,显著提高了3D显示效果。此外,本发明进一步公开了柱透镜光栅的制作方式,可以根据显示器结构特点和实际工艺灵活调节光栅参数达到理想的显示效果,大大降低了工艺开发难度,简化开发流程也提高产品良率。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的实际保护范围应由权利要求限定。

Claims (13)

1.一种柱透镜光栅,包括平行排列的多个柱透镜,其特征在于,
至少两个相邻的柱透镜之间具有一间隔部,所述间隔部为与所述柱透镜中心轴垂直的第一平面,和/或至少一个柱透镜的上表面的中间部分为与所述柱透镜中心轴垂直且以所述柱透镜中心轴为对称轴对称的第二平面。
2.根据权利要求1所述的柱透镜光栅,其特征在于,所述第一平面的宽度N1等于彩色滤光片上彩色子像素单元之间的黑矩阵的宽度W;和/或所述第二平面的宽度N2=S/(S+h)*W,其中,h为光栅距离彩色滤光片的距离,S为3D显示时的最佳观看距离。
3.根据权利要求1所述的柱透镜光栅,其特征在于,所述柱透镜为凸透镜或凹透镜。
4.根据权利要求1所述的柱透镜光栅,其特征在于,所述柱透镜的上表面为光滑的曲面或表面不规则的曲面。
5.一种显示器件,包括,显示面板、偏振片,其特征在于,还包括,如权利要求1-4中任一项所述的柱透镜光栅,所述柱透镜光栅设置在所述偏振片上,所述偏振片设置于所述显示面板的彩色滤光片基板的外表面之上。
6.根据权利要求5所述的显示器件,其特征在于,所述柱透镜光栅采用上表面朝向所述显示器件的显示面板或者采用上表面背向所述显示器件的显示面板的安装方式。
7.根据权利要求5所述的显示器件,其特征在于,所述柱透镜光栅的栅距P为:
P = 2 S p 1 + S p / L ;
其中,Sp为彩色滤光片子像素单元的宽度,L为用户的半瞳距。
8.一种液晶光栅,包括上、下基板以及设置在所述上、下基板之间的液晶层,其特征在于,所述液晶光栅还包括:设置在所述上基板内表面的第一电极层和设置在所述下基板内表面的第二电极层,其中,
所述第一电极层为面状电极,所述第二电极层包括多个电极单元,所述电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组成;
或,所述第二电极层为面状电极,所述第一电极层包括多个电极单元,所述电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组成。
9.根据权利要求8所述的液晶光栅,其特征在于,所述电极单元由两个平行等间距的等宽度的单层条状电极组成;
或者,所述电极单元由两个以上平行等间距的单层条状电极组成,且任意相邻两个电极单元所共用的那个条状电极的宽度大于每个电极单元中的其它条状电极的宽度。
10.根据权利要求8所述的液晶光栅,其特征在于,所述电极单元由两个被透明绝缘层隔离的上下两层电极结构组成,且上层电极的宽度小于下层电极的宽度。
11.根据权利要求8-10任一项所述的液晶光栅,其特征在于,所述液晶光栅所形成的透镜为凸透镜或凹透镜。
12.一种显示器件,包括,显示面板、偏振片,其特征在于,还包括,如权利要求8-11中任一项所述的液晶光栅,所述液晶光栅设置在所述偏振片上,所述偏振片设置于所述显示面板的彩色滤光片基板的外表面之上。
13.根据权利要求11所述的显示器件,其特征在于,所述柱透镜光栅的栅距P为:
P = 2 S p 1 + S p / L ;
其中,Sp为彩色滤光片子像素单元的宽度,L为用户的半瞳距。
CN201210156961.2A 2012-03-15 2012-05-18 柱透镜光栅、液晶光栅及显示器件 Active CN102662208B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201210156961.2A CN102662208B (zh) 2012-03-15 2012-05-18 柱透镜光栅、液晶光栅及显示器件
JP2014561262A JP6262671B2 (ja) 2012-03-15 2012-11-07 レンチキュラーレンズ、液晶回折格子及びディスプレー装置
KR1020137009791A KR101512578B1 (ko) 2012-03-15 2012-11-07 렌티큘라 렌즈 격자, 액정 격자 및 디스플레이 장치
PCT/CN2012/084238 WO2013135063A1 (zh) 2012-03-15 2012-11-07 柱透镜光栅、液晶光栅及显示器件
EP12832704.6A EP2662725B1 (en) 2012-03-15 2012-11-07 Lenticular lens, liquid crystal lens, and display component
US13/824,626 US10215895B2 (en) 2012-03-15 2012-11-07 Liquid crystal grating forming lenticular lenses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210069353.8 2012-03-15
CN2012100693538 2012-03-15
CN201210069353 2012-03-15
CN201210156961.2A CN102662208B (zh) 2012-03-15 2012-05-18 柱透镜光栅、液晶光栅及显示器件

Publications (2)

Publication Number Publication Date
CN102662208A true CN102662208A (zh) 2012-09-12
CN102662208B CN102662208B (zh) 2015-05-20

Family

ID=46771733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210156961.2A Active CN102662208B (zh) 2012-03-15 2012-05-18 柱透镜光栅、液晶光栅及显示器件

Country Status (5)

Country Link
EP (1) EP2662725B1 (zh)
JP (1) JP6262671B2 (zh)
KR (1) KR101512578B1 (zh)
CN (1) CN102662208B (zh)
WO (1) WO2013135063A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928904A (zh) * 2012-11-16 2013-02-13 京东方科技集团股份有限公司 透镜光栅及显示装置
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN102998729A (zh) * 2012-12-07 2013-03-27 深圳超多维光电子有限公司 一种透镜光栅及立体显示装置
WO2013135063A1 (zh) * 2012-03-15 2013-09-19 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件
CN103345068A (zh) * 2013-07-10 2013-10-09 京东方科技集团股份有限公司 一种立体显示装置
CN103558704A (zh) * 2013-11-22 2014-02-05 深圳超多维光电子有限公司 液晶透镜的驱动方法和相应的立体显示装置
CN103926704A (zh) * 2013-06-09 2014-07-16 天马微电子股份有限公司 透镜显示设备、液晶显示设备和驱动显示的方法
CN104064123A (zh) * 2014-07-05 2014-09-24 福州大学 一种无莫尔条纹的3d-led显示***
CN104597607A (zh) * 2014-12-29 2015-05-06 咏巨科技有限公司 3d显示层、3d显示结构及其制作方法
CN104808850A (zh) * 2015-04-24 2015-07-29 咏巨科技有限公司 触控装置及其制作方法
CN104898321A (zh) * 2015-06-25 2015-09-09 京东方科技集团股份有限公司 显示面板及显示设备
WO2015172676A1 (zh) * 2014-05-15 2015-11-19 北京康得新三维科技有限责任公司 动态电子光栅及高分辨率立体显示器
CN105824159A (zh) * 2016-06-02 2016-08-03 京东方科技集团股份有限公司 辅助面板和显示装置
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN105866865A (zh) * 2016-05-27 2016-08-17 京东方科技集团股份有限公司 一种显示面板、显示装置
US10215895B2 (en) 2012-03-15 2019-02-26 Boe Technology Group Co., Ltd. Liquid crystal grating forming lenticular lenses
CN113031299A (zh) * 2021-03-29 2021-06-25 四川虹微技术有限公司 一种桌面真三维显示方法
CN113302549A (zh) * 2019-01-03 2021-08-24 霍利克斯Ag 自动立体显示器
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
CN115113416A (zh) * 2022-07-22 2022-09-27 吉林省钜鸿智能技术有限公司 一种户外裸眼3d显示屏
WO2022217489A1 (zh) * 2021-04-14 2022-10-20 深圳市立体通科技有限公司 基于斜排光栅的裸眼3d显示模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166502B1 (ko) 2014-09-16 2020-10-16 삼성디스플레이 주식회사 유기 발광 표시 장치
CN104898292B (zh) * 2015-06-30 2018-02-13 京东方科技集团股份有限公司 3d显示基板及其制作方法、3d显示装置
KR102556848B1 (ko) 2016-02-11 2023-07-18 삼성디스플레이 주식회사 표시 장치
CN112485921B (zh) * 2021-01-11 2022-05-17 成都工业学院 基于偏振光栅的双视3d显示装置
CN112596261B (zh) * 2021-01-27 2022-06-03 成都工业学院 一种基于双光栅的多视区立体显示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200335B2 (ja) * 1995-08-04 2001-08-20 キヤノン株式会社 光学変調装置及びそれを用いたカラー画像表示装置
DE10252830B3 (de) * 2002-11-13 2004-05-27 Albert Maly-Motta Autostereoskopischer Adapter
CN101025490A (zh) * 2006-02-20 2007-08-29 三星电子株式会社 立体图像转换面板和具有其的立体图像显示设备
CN101566729A (zh) * 2008-04-22 2009-10-28 三星电子株式会社 显示装置和显示装置的透镜片
CN102109706A (zh) * 2011-02-11 2011-06-29 深圳超多维光电子有限公司 一种立体显示器及其光栅
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102279500A (zh) * 2011-08-26 2011-12-14 深圳市华星光电技术有限公司 液晶透镜及3d显示装置
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN102305984A (zh) * 2011-08-26 2012-01-04 深圳市华星光电技术有限公司 液晶透镜及液晶显示装置
CN202183086U (zh) * 2011-07-04 2012-04-04 天马微电子股份有限公司 一种触控式三维立体显示装置及其显示面板
CN102707471A (zh) * 2012-05-03 2012-10-03 北京京东方光电科技有限公司 液晶光栅、其制作方法、3d显示器件及3d显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994965B2 (ja) * 1994-08-19 1999-12-27 三洋電機株式会社 立体表示装置
JPH0973077A (ja) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd 液晶表示パネル
JP2966780B2 (ja) * 1995-11-09 1999-10-25 三洋電機株式会社 レンチキュラレンズ及びこれを用いた立体表示装置
WO2001020386A2 (en) * 1999-09-17 2001-03-22 Mems Optical, Inc. An autostereoscopic display and method of displaying three-dimensional images, especially color images
JP4968655B2 (ja) * 2003-11-06 2012-07-04 Nltテクノロジー株式会社 立体画像表示装置、携帯端末装置
JP3708112B2 (ja) * 2003-12-09 2005-10-19 シャープ株式会社 マイクロレンズアレイ付き表示パネルの製造方法および表示装置
US8614782B2 (en) * 2006-06-27 2013-12-24 Lg Display Co., Ltd. Liquid crystal lens and image display device including the same
JP2008026654A (ja) * 2006-07-21 2008-02-07 Hitachi Displays Ltd 立体表示装置
JP4981394B2 (ja) 2006-09-28 2012-07-18 株式会社ジャパンディスプレイイースト 表示装置
JP4967731B2 (ja) * 2007-03-15 2012-07-04 セイコーエプソン株式会社 画像表示装置及びそのための光学部材
KR101362157B1 (ko) * 2007-07-05 2014-02-13 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 표시 장치
KR101493082B1 (ko) * 2007-10-24 2015-02-13 엘지디스플레이 주식회사 표시장치
JP2009157302A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 光学部材、光学部材の製造方法、表示装置及び電子機器
US8558961B2 (en) * 2008-04-22 2013-10-15 Samsung Display Co., Ltd. Display device and lenticular sheet of the display device
JP2010231010A (ja) * 2009-03-27 2010-10-14 Seiko Epson Corp 電気光学装置
KR20110052241A (ko) * 2009-11-12 2011-05-18 엘지디스플레이 주식회사 터치 패널 일체형 입체 영상 표시 장치 및 이의 제조 방법
KR101274717B1 (ko) * 2009-12-24 2013-06-12 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 영상 표시 장치
JP5439686B2 (ja) * 2010-07-07 2014-03-12 国立大学法人東京農工大学 立体画像表示装置及び立体画像表示方法
CN102289016A (zh) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 一种显示装置、液晶面板、彩色滤光片及其制造方法
CN102662208B (zh) * 2012-03-15 2015-05-20 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200335B2 (ja) * 1995-08-04 2001-08-20 キヤノン株式会社 光学変調装置及びそれを用いたカラー画像表示装置
DE10252830B3 (de) * 2002-11-13 2004-05-27 Albert Maly-Motta Autostereoskopischer Adapter
CN101025490A (zh) * 2006-02-20 2007-08-29 三星电子株式会社 立体图像转换面板和具有其的立体图像显示设备
CN101566729A (zh) * 2008-04-22 2009-10-28 三星电子株式会社 显示装置和显示装置的透镜片
CN102109706A (zh) * 2011-02-11 2011-06-29 深圳超多维光电子有限公司 一种立体显示器及其光栅
CN202183086U (zh) * 2011-07-04 2012-04-04 天马微电子股份有限公司 一种触控式三维立体显示装置及其显示面板
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102279500A (zh) * 2011-08-26 2011-12-14 深圳市华星光电技术有限公司 液晶透镜及3d显示装置
CN102305984A (zh) * 2011-08-26 2012-01-04 深圳市华星光电技术有限公司 液晶透镜及液晶显示装置
CN102707471A (zh) * 2012-05-03 2012-10-03 北京京东方光电科技有限公司 液晶光栅、其制作方法、3d显示器件及3d显示装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013135063A1 (zh) * 2012-03-15 2013-09-19 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件
US10215895B2 (en) 2012-03-15 2019-02-26 Boe Technology Group Co., Ltd. Liquid crystal grating forming lenticular lenses
CN102928904B (zh) * 2012-11-16 2015-09-23 京东方科技集团股份有限公司 透镜光栅及显示装置
US9229240B2 (en) 2012-11-16 2016-01-05 Boe Technology Group Co., Ltd. Lens grating and display device
CN102928904A (zh) * 2012-11-16 2013-02-13 京东方科技集团股份有限公司 透镜光栅及显示装置
CN102998729A (zh) * 2012-12-07 2013-03-27 深圳超多维光电子有限公司 一种透镜光栅及立体显示装置
CN102998729B (zh) * 2012-12-07 2015-11-25 深圳超多维光电子有限公司 一种透镜光栅及立体显示装置
US20140160380A1 (en) * 2012-12-07 2014-06-12 Superd Co. Ltd. Lens grating based stereoscopic display system
US9857600B2 (en) * 2012-12-07 2018-01-02 Superd Co. Ltd. Lens grating based stereoscopic display system
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN103926704A (zh) * 2013-06-09 2014-07-16 天马微电子股份有限公司 透镜显示设备、液晶显示设备和驱动显示的方法
US9891441B2 (en) 2013-07-10 2018-02-13 Boe Technology Group Co., Ltd. Stereoscopic display device
CN103345068A (zh) * 2013-07-10 2013-10-09 京东方科技集团股份有限公司 一种立体显示装置
CN103558704B (zh) * 2013-11-22 2016-05-11 深圳超多维光电子有限公司 液晶透镜的驱动方法和相应的立体显示装置
CN103558704A (zh) * 2013-11-22 2014-02-05 深圳超多维光电子有限公司 液晶透镜的驱动方法和相应的立体显示装置
WO2015172676A1 (zh) * 2014-05-15 2015-11-19 北京康得新三维科技有限责任公司 动态电子光栅及高分辨率立体显示器
CN104064123A (zh) * 2014-07-05 2014-09-24 福州大学 一种无莫尔条纹的3d-led显示***
CN104597607A (zh) * 2014-12-29 2015-05-06 咏巨科技有限公司 3d显示层、3d显示结构及其制作方法
CN104808850B (zh) * 2015-04-24 2017-11-28 咏巨科技有限公司 触控装置及其制作方法
CN104808850A (zh) * 2015-04-24 2015-07-29 咏巨科技有限公司 触控装置及其制作方法
CN104898321A (zh) * 2015-06-25 2015-09-09 京东方科技集团股份有限公司 显示面板及显示设备
CN105866865A (zh) * 2016-05-27 2016-08-17 京东方科技集团股份有限公司 一种显示面板、显示装置
US11002888B2 (en) 2016-05-27 2021-05-11 Boe Technology Group Co., Ltd. Display panel and display device
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN105824159A (zh) * 2016-06-02 2016-08-03 京东方科技集团股份有限公司 辅助面板和显示装置
CN113302549B (zh) * 2019-01-03 2024-04-26 霍利克斯Ag 自动立体显示器
CN113302549A (zh) * 2019-01-03 2021-08-24 霍利克斯Ag 自动立体显示器
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
CN114545650B (zh) * 2020-11-24 2024-07-26 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
CN113031299A (zh) * 2021-03-29 2021-06-25 四川虹微技术有限公司 一种桌面真三维显示方法
WO2022217489A1 (zh) * 2021-04-14 2022-10-20 深圳市立体通科技有限公司 基于斜排光栅的裸眼3d显示模组
CN115113416B (zh) * 2022-07-22 2023-08-25 吉林省钜鸿智能技术有限公司 一种户外裸眼3d显示屏
CN115113416A (zh) * 2022-07-22 2022-09-27 吉林省钜鸿智能技术有限公司 一种户外裸眼3d显示屏

Also Published As

Publication number Publication date
WO2013135063A1 (zh) 2013-09-19
JP6262671B2 (ja) 2018-01-17
EP2662725A4 (en) 2015-11-25
KR101512578B1 (ko) 2015-04-15
JP2015511730A (ja) 2015-04-20
EP2662725B1 (en) 2020-03-04
KR20130124488A (ko) 2013-11-14
CN102662208B (zh) 2015-05-20
EP2662725A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
CN102662208A (zh) 柱透镜光栅、液晶光栅及显示器件
US9897816B2 (en) Glasses-free 3D liquid crystal display device and manufacturing method thereof
CN102141714B (zh) 显示装置
JP5377960B2 (ja) オートステレオスコピックディスプレイシステム
US10203510B2 (en) Fresnel liquid crystal lens panel, manufacturing method thereof and 3D display
CN103163652B (zh) 偏振眼镜型立体图像显示器
CN103424874B (zh) 3d显示驱动方法
CN102253562B (zh) 立体显示装置及其液晶透镜
US9229240B2 (en) Lens grating and display device
KR20140115487A (ko) 무안경 방식의 입체영상 표시장치
CN104459856B (zh) 一种光栅图形膜、立体光栅和裸眼3d显示装置
WO2015180401A1 (zh) 裸眼3d显示控制方法、装置及***
CN101950085B (zh) 液晶菲涅尔透镜
CN102944961A (zh) 裸眼3d显示装置及其液晶透镜
WO2015165170A1 (zh) 液晶光栅及显示设备
CN104267525B (zh) 立体显示装置及其制作方法
CN103513311A (zh) 一种立体光栅和裸眼3d显示装置
KR102144733B1 (ko) 입체 영상 디스플레이 장치
CN102998729B (zh) 一种透镜光栅及立体显示装置
CN102981196A (zh) 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN102955302A (zh) 立体显示装置
US10884262B2 (en) Liquid crystal lens, method for producing the same, and display apparatus
US8988618B2 (en) Stereoscopic display comprising a phase retarder having a plurality of first and second strip shapes and a plurality of board-like structures disposed in a liquid-crystal layer
CN103412359A (zh) 光栅透镜、透镜式光栅及显示装置
CN102449539A (zh) 具有聚焦布置的液晶显示设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant