CN102585282B - 一种有机/无机复合纳米线过滤膜的制备方法 - Google Patents

一种有机/无机复合纳米线过滤膜的制备方法 Download PDF

Info

Publication number
CN102585282B
CN102585282B CN 201210064541 CN201210064541A CN102585282B CN 102585282 B CN102585282 B CN 102585282B CN 201210064541 CN201210064541 CN 201210064541 CN 201210064541 A CN201210064541 A CN 201210064541A CN 102585282 B CN102585282 B CN 102585282B
Authority
CN
China
Prior art keywords
nanowire
solution
membrane
preparation
heparin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201210064541
Other languages
English (en)
Other versions
CN102585282A (zh
Inventor
朱利平
朱丽静
易砖
徐又一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201210064541 priority Critical patent/CN102585282B/zh
Publication of CN102585282A publication Critical patent/CN102585282A/zh
Application granted granted Critical
Publication of CN102585282B publication Critical patent/CN102585282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种有机/无机复合纳米线过滤膜的制备方法。包括如下步骤:将金属盐溶解在乙醇胺的水溶液中制备金属氢氧化物纳米线;将肝素溶液加入到金属氢氧化物纳米线溶液中,制备核壳结构复合纳米线溶液;将聚合物多孔膜固定在过滤容器中,膜面朝上,过滤容器中加入核壳结构复合纳米线溶液,减压过滤;干燥。本发明将荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,形成以纳米线为核,以肝素为壳的核壳结构复合纳米线,再通过动态制膜法,将复合纳米线沉积在聚合物多孔膜表面,形成具有抗菌性和血液相容性双重功效的有机/无机复合纳米线滤膜。纳米线直径小,负载时形成的孔径小,孔密度高,制备工艺简单、成本低。

Description

一种有机/无机复合纳米线过滤膜的制备方法
技术领域
本发明涉及复合过滤膜技术领域,尤其涉及一种有机/无机复合纳米线过滤膜的制备方法。
背景技术
膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门新技术,膜分离技术既兼有分离、浓缩、纯化和精制的功能,又有高效,节能、环保,分子级过滤及过滤过程简单、易于控制等特征。目前,膜分离技术已经被广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,成为当今分离科学中最重要的手段之一。目前已开发的膜过程有微滤、超滤、纳滤、反渗透、电渗析、渗析、气体分离、渗透汽化等。膜材料是膜技术的核心,膜材料的性质直接影响着膜的物化稳定性和分离性能,根据组成可将其分为有机高分子膜(即聚合物膜)和无机膜两大类。
高分子膜具有制备简便、机械性能好、选材种类多等优点,因此,目前纳滤膜产品多以高分子纳滤膜为主,占95%以上,常用的高分子膜材料主要有改性纤维素类、聚烯烃、聚砜类、聚酰胺、聚碳酸酯、聚丙烯腈类、丙烯酸共聚物和含氟聚合物等。聚合物多孔膜在实际应用过程中也存在着一些急需解决的问题,如容易形成严重的膜污染、截留性能跨度大难于分离特定物系,渗透通量小和机械强度不高等。因此,各国研究者都在努力寻求和研制新型多孔膜。
随着纳米技术的发展,利用静电纺丝法制备微滤/超滤膜日益受到关注。静电纺丝,又称电纺,是一种简单、高效而快速制备超细纤维的纺丝技术,所得到的纤维膜孔隙率高、比表面积大、孔贯通性和均一性好等优点,广泛应用于各个领域,但是,纳米线的直径很难减少到100nm以内,膜孔径大,因此纳米纤维膜很难用于超/纳滤膜,因此,制备直径更小以形成更小通孔的纳米线成为研究的目标。
最近,Izumi Ichinose课题组陆续报道了氢氧化镉、氢氧化铜、氢氧化锌和氢氧化锰纳米线,纳米线直径小,表面带有大量的正电荷,能够直接或者间接的负载荷负电物质,如:阴离子表面活性剂,阴离子染料,蛋白质,聚合物等。其中,铜和锌离子又是一种常用的杀菌物质,虽然杀菌能力略低于银离子,但是价格却更合理,因此,应用领域日益扩大。肝素,是一种聚阴离子多糖,具有优越的抗凝血性能,能够通过特定的方法固定到医用生物材料的表面上,可以改善和提高材料的表面抗凝性能和生物相容性,达到拓展其应用范围、提高其在临床应用中的安全性和实用性的目的。
因此,为了克服传统过滤膜表面改性的不足,本发明充分利用金属氢氧化物纳米线和肝素的特性,制备具有抗菌性和血液相容性双重功效的有机/无机复合纳米线过滤膜。
发明内容
本发明的目的是克服现有技术的不足,提供一种有机/无机复合纳米线过滤膜的制备方法。
有机/无机复合纳米线过滤膜的制备方法包括如下步骤:
(1)肝素溶液的配制:
将肝素钠溶解在pH值为6.0~10的磷酸盐缓冲溶液中,溶液浓度为0.2~2.5克/升;
(2)金属氢氧化物纳米线溶液的制备:
将1~6毫摩尔/升的金属盐溶解在等体积的的0.4~2.4毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,在4~25摄氏度下,生长1~30天,制备出澄清透明的金属氢氧化物纳米线溶液;
(3)核壳结构复合纳米线溶液的制备:
将肝素溶液缓慢加到金属氢氧化物纳米线溶液中,磁力搅拌0.5~24小时,使荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,形成核壳结构的复合纳米线溶液;
(4)复合过滤膜的制备:
将聚合物多孔基膜固定在过滤容器中,膜面朝上,过滤容器中加入10~200毫升核壳结构复合纳米线溶液,0.01~0.1兆帕斯卡压力下减压过滤,冲洗,干燥得到有机/无机复合纳米线过滤膜。
所述的聚合物多孔基膜为聚偏氟乙烯、聚砜或聚醚砜多孔基膜。所述的金属氢氧化物纳米线为金属铜、金属锌、金属镉或金属锰氢氧化物纳米线。所述的金属盐为三水硝酸铜、氯化镉、硝酸锌或硝酸锰。,所说的有机/无机复合纳米线过滤膜为微滤膜、超滤膜或纳滤膜。
本发明通过动态制膜法在聚合物多孔膜表面过滤沉积金属氢氧化物纳米线-肝素核壳结构复合纳米线,实现对聚合物多孔膜的表面改性,以制备综合性能优良的复合过滤膜,既充分利用纳米线直径小,负载时形成的孔径小,孔密度高,又充分利用金属离子的抗菌性和肝素的血液相容特性。制备工艺简单、成本低、可实现大规模生产。
附图说明
图1是氢氧化铜纳米线的扫描电镜图;
图2(a)是聚偏氟乙烯微滤膜的表面扫描电镜图;
图2(b)是聚偏氟乙烯微滤膜改性后的表面扫描电镜图;
图3(a)是聚砜超滤膜血小板粘附后扫描电镜图;
图3(b)是聚砜超滤膜改性后血小板粘附后扫描电镜图;
图4(a)是聚醚砜超滤膜杀菌性能照片;
图4(b)是聚醚砜超滤膜改性后的杀菌性能照片。
具体实施方式
本发明首先制备荷正电金属氢氧化物纳米线,再将荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,制备出核壳结构的复合纳米线,再通过动态制膜法将其减压过滤沉积在聚合物多孔膜上,形成具有抗菌性和血液相容性双重功效的有机/无机复合纳米线过滤膜。
有机/无机复合纳米线过滤膜的制备方法包括如下步骤:
(1)肝素溶液的配制:
将肝素钠溶解在pH值为6.0~10的磷酸盐缓冲溶液中得浓度为0.2~2.5克/升的肝素溶液;
(2)金属氢氧化物纳米线溶液的制备:
将1~6毫摩尔/升的金属盐溶解在等体积的的0.4~2.4毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,在4~25摄氏度下,生长1~30天,制备出澄清透明的金属氢氧化物纳米线溶液;
(3)核壳结构复合纳米线溶液的制备:
将肝素溶液缓慢加到金属氢氧化物纳米线溶液中,磁力搅拌0.5~24小时,使荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,形成核壳结构的复合纳米线溶液;
(4)复合过滤膜的制备:
将聚合物多孔基膜固定在过滤容器中,膜面朝上,过滤容器中加入10~200毫升核壳结构复合纳米线溶液,0.01~0.1兆帕斯卡压力下减压过滤,冲洗,干燥得到有机/无机复合纳米线过滤膜。
所述的聚合物多孔基膜为聚偏氟乙烯、聚砜或聚醚砜多孔基膜。所述的金属氢氧化物纳米线为金属铜、金属锌、金属镉或金属锰氢氧化物纳米线。所述的金属盐为三水硝酸铜、氯化镉、硝酸锌或硝酸锰。所述的有机/无机复合纳米线过滤膜为微滤膜、超滤膜或纳滤膜。
通过膜孔结构观察、表面化学组成分析、水接触角测量、水通量测定、血小板粘附实验和抗菌实验对改性聚合物微孔膜的结构和性能进行表征。表征方法分别为:
膜孔结构表征:采用扫描电子显微镜(S-4800)观察,观察之前先将样品真空镀金;
水通量:平板膜的水通量测量在超滤杯中进行,测量压力均为0.1兆帕斯卡,测定之前用乙醇浸泡30分钟;
水接触角:聚合物多孔膜的表面水接触角采用接触角测量仪(Dataphysics OCA20,德国),通过座滴法测定。
血小板粘附实验:将冷冻的富含血小板的成人血浆在37摄氏度水浴中快速解冻后,滴加在膜片上孵化30分钟,用磷酸缓冲溶液清洗膜片3次,除去吸附不牢固的血小板。将膜片浸入戊二醛溶液中固定30分钟,然后用超纯水清洗膜片,并用乙醇/水混合液梯度脱水干燥,并用扫描电镜观察。
抗菌实验:将膜片加入到细菌溶液中,在37摄氏度恒温振荡水浴中孵化24小时,依次稀释后在琼脂培养基上培养48小时,数菌落数,拍照。
下面将结合实施例和附图对本发明做更详细的描述,但所述实施例不构成对本发明的限制。从本发明公开的内容联想到或导出的所有变形,均认为是本发明的保护范围。
实施例1:
将肝素钠溶解在pH为7.4的磷酸盐缓冲溶液中,得到浓度为0.2~2.5克/升的肝素水溶液;将4毫摩尔/升的三水硝酸铜溶解于等体积的的1.6毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,4~25摄氏度下生长1~7天,制备出澄清透明的氢氧化铜纳米线溶液;将0~7毫升肝素溶液加入到40毫升氢氧化铜纳米线溶液中,磁力搅拌0.5~3小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚偏氟乙烯微滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入10~40毫升上述核壳结构复合纳米线溶液,0.08~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。聚偏氟乙烯微滤膜改性前后性能表征结果见表1,氢氧化铜纳米线的形貌见附图1,聚偏氟乙烯微滤膜表面形貌及1-5号样品的形貌分别如附图2(a)和(b)所示。
表1:聚偏氟乙烯微滤膜经氢氧化铜纳米线改性前后性能比较
Figure BDA0000142812860000041
实施例2:
将肝素钠溶解在pH为6的磷酸盐缓冲溶液中,得到浓度为1.0~2.5克/升的肝素水溶液;将4毫摩尔/升的三水硝酸铜溶解于等体积的的1.6毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,4~25摄氏度生长3~30天,制备出澄清透明的氢氧化铜纳米线溶液;将0~20毫升肝素溶液加入到40毫升氢氧化铜纳米线溶液中,磁力搅拌1~5小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚砜超滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入10~60毫升上述核壳结构复合纳米线溶液,0.04~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。聚砜超滤膜改性前后性能表征结果见表2,图3(a)是PSF超滤膜血小板粘附后的扫描电镜图,图3(b)是2-4血小板粘附后的扫描电镜图。
表2:聚砜超滤膜经氢氧化铜纳米线改性前后性能比较
实施例3:
将肝素钠溶解在pH为10的磷酸盐缓冲溶液中,得到浓度为1.0~2.5克/升的肝素水溶液;将4毫摩尔/升的三水硝酸铜溶解于等体积的的1.6毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,15~25摄氏度生长1~30天,制备出澄清透明的氢氧化铜纳米线溶液;将0~100毫升肝素溶液加入到100毫升氢氧化铜纳米线溶液中,磁力搅拌5~24小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚醚砜超滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入0~200毫升上述核壳结构复合纳米线溶液,0.04~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。聚醚砜超滤膜改性前后性能表征结果见表3,图4(a)是PES超滤膜杀菌性能照片,图4(b)是3-2改性膜的杀菌性能照片。
表3:聚醚砜超滤膜经氧化铜纳米线改性前后性能比较
Figure BDA0000142812860000061
实施例4:
将肝素钠溶解在pH为7.4的磷酸盐缓冲溶液中,得到浓度为1.0~2.5克/升的肝素水溶液;将4毫摩尔/升的氯化镉溶解于等体积的的1.6毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,15~25摄氏度生长1~30天,制备出澄清透明的氢氧化镉纳米线溶液;将0~50毫升肝素溶液加入到50毫升氢氧化铜纳米线溶液中,磁力搅拌5~10小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚醚砜超滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入0~100毫升上述核壳结构复合纳米线溶液,0.05~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。
表4:聚醚砜超滤膜经氧化镉纳米线改性前后性能比较
实施例5:
将肝素钠溶解在pH为7.1的磷酸盐缓冲溶液中,得到浓度为0.2~1.5克/升的肝素水溶液;将4毫摩尔/升的硝酸锌溶解于等体积的的0.8毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,4~25摄氏度下生长1~3天,制备出澄清透明的氢氧化铜纳米线溶液;将0~10毫升肝素溶液加入到80毫升氢氧化锌纳米线溶液中,磁力搅拌0.5~1小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚偏氟乙烯微滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入10~90毫升上述核壳结构复合纳米线溶液,0.05~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。
表5:聚偏氟乙烯微滤膜经氢氧化锌纳米线改性前后性能比较
Figure BDA0000142812860000071
实施例6:
将肝素钠溶解在pH为8.5的磷酸盐缓冲溶液中,得到浓度为0.5~2.5克/升的肝素水溶液;将4毫摩尔/升的硝酸锰溶解于等体积的的1.2毫摩尔/升的的乙醇胺中,磁力搅拌1分钟,4~15摄氏度生长1~10天,制备出澄清透明的氢氧化铜纳米线溶液;将0~80.0毫升肝素溶液加入到80毫升氢氧化铜纳米线溶液中,磁力搅拌1~12小时,制备核壳结构复合纳米线溶液;剪取直径为5厘米的聚砜超滤膜,洗净烘干,在95%乙醇中浸泡1小时,去离子水冲洗3次,再将其固定在过滤容器中,膜面朝上,向容器中加入40~160毫升上述核壳结构复合纳米线溶液,0.02~0.1兆帕斯卡减压过滤;取出,去离子水冲洗3次,室温晾干,备用。
表2:聚砜超滤膜经氢氧化锰纳米线改性前后性能比较

Claims (5)

1.一种有机/无机复合纳米线过滤膜的制备方法其特征包括如下步骤: 
(1) 肝素溶液的配制:
将肝素钠溶解在pH值为6.0~10的磷酸盐缓冲溶液中得浓度为0.2~2.5克/升的肝素溶液;
(2) 金属氢氧化物纳米线溶液的制备:
将1~6毫摩尔/升的金属盐溶解在等体积的0.4~2.4毫摩尔/升的乙醇胺中,磁力搅拌1分钟,在4~25摄氏度下,生长1~30天,制备出澄清透明的金属氢氧化物纳米线溶液;
(3) 核壳结构复合纳米线溶液的制备:
将肝素溶液缓慢加到金属氢氧化物纳米线溶液中,磁力搅拌0.5~24小时,使荷负电的肝素通过静电作用固定在荷正电的金属氢氧化物纳米线表面,形成核壳结构的复合纳米线溶液;
(4) 复合过滤膜的制备:
将聚合物多孔基膜固定在过滤容器中,膜面朝上,过滤容器中加入10~200毫升核壳结构复合纳米线溶液,0.01~0.1兆帕斯卡压力下减压过滤,冲洗,干燥,得到有机/无机复合纳米线过滤膜。
2.根据权利要求1所述的一种有机/无机复合纳米线过滤膜的制备方法,其特征在于,所述的聚合物多孔基膜为聚偏氟乙烯或聚醚砜多孔基膜。
3.根据权利要求1所述的一种有机/无机复合纳米线过滤膜的制备方法,其特征在于,所述的金属氢氧化物纳米线为金属铜、金属锌、金属镉或金属锰氢氧化物纳米线。
4.根据权利要求1所述的一种有机/无机复合纳米线过滤膜的制备方法,其特征在于,所述的金属盐为三水硝酸铜、氯化镉、硝酸锌或硝酸锰。
5.根据权利要求1所述的一种有机/无机复合纳米线过滤膜的制备方法,其特征在于,所说的有机/无机复合纳米线过滤膜为微滤膜、超滤膜或纳滤膜。
CN 201210064541 2012-03-13 2012-03-13 一种有机/无机复合纳米线过滤膜的制备方法 Active CN102585282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210064541 CN102585282B (zh) 2012-03-13 2012-03-13 一种有机/无机复合纳米线过滤膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210064541 CN102585282B (zh) 2012-03-13 2012-03-13 一种有机/无机复合纳米线过滤膜的制备方法

Publications (2)

Publication Number Publication Date
CN102585282A CN102585282A (zh) 2012-07-18
CN102585282B true CN102585282B (zh) 2013-06-12

Family

ID=46474563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210064541 Active CN102585282B (zh) 2012-03-13 2012-03-13 一种有机/无机复合纳米线过滤膜的制备方法

Country Status (1)

Country Link
CN (1) CN102585282B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100308A (zh) * 2013-01-17 2013-05-15 浙江大学 一种明胶薄膜和明胶单壁碳纳米管复合薄膜的制备方法
CN103223299B (zh) * 2013-05-17 2015-03-11 厦门大学 高分子荷负电超滤膜及其制备方法
CN105771695B (zh) * 2016-04-13 2018-09-21 南京工业大学 一种表面改性提高聚酰胺反渗透膜性能的方法
CN106582330B (zh) * 2016-12-12 2019-05-31 安徽启迪清源新材料有限公司 一种含重金属浮油过滤膜
CN109304099A (zh) * 2018-11-02 2019-02-05 南京工业大学 一种聚合物-金属氢氧化物纳米线复合薄膜及其制备方法
CN114502263A (zh) * 2019-07-15 2022-05-13 新加坡国立大学 用于水处理和废水处理的陶瓷膜
CN111664970B (zh) * 2020-05-28 2021-06-11 浙江大学 一种自供电柔性压力传感器件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278939B2 (ja) * 2007-07-11 2013-09-04 独立行政法人物質・材料研究機構 柔らかで自立性があるタンパク質ナノ薄膜、その製造法及び応用
CN101508458B (zh) * 2009-01-04 2010-06-02 吉林大学 一种制备氢氧化锌纳米线的方法

Also Published As

Publication number Publication date
CN102585282A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102585282B (zh) 一种有机/无机复合纳米线过滤膜的制备方法
Pang et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles
Rahimpour et al. Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes
Jiang et al. Deep eutectic solvent as novel additive for PES membrane with improved performance
CN106731841B (zh) 一种超分子复合纳滤膜及其制备方法和应用
CN105617882B (zh) 一种壳聚糖修饰氧化石墨烯纳米复合正渗透膜及其制备方法
CN103418250B (zh) 一种在分离膜表面原位生成纳米粒子的方法
Mobarakabad et al. Fabrication and characterization of poly (phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination
CN100335156C (zh) 纳米抗菌材料-聚砜复合微孔滤膜的制备方法
CN103394293B (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
CN104548969A (zh) 一种自组装固载金属离子制备抗污染聚砜类多孔膜的方法
CN104474920B (zh) 一种平板式醋酸纤维素/纳米二氧化钛共混正渗透膜
CN106731886B (zh) 一种介孔复合膜的制备方法
CN101249387B (zh) 具有层状孔结构的高通量、耐压超滤膜及其制备方法
CN104474925A (zh) 一种高水通量聚酰胺反渗透复合膜的制备方法
CN106474936A (zh) 高分子改性自支撑碳纳米管组装膜的制备方法
CN110773007A (zh) 一种含黑磷/氧化石墨烯的海藻酸钙水凝胶过滤膜及其制备方法
CN105582816A (zh) 一种氧化石墨烯改性正渗透膜的制备方法
JP2015024373A (ja) 無機/有機ハイブリッド化合物からなる分離膜およびその製造方法
CN209317459U (zh) 一种新型有机超滤膜
CN102512997B (zh) 一种亲水性酚酞基聚芳醚砜合金超滤膜及其制备方法
CN113731190A (zh) 一种纳米纤维素层层自组装膜及其制备方法
CN104107641A (zh) 正渗透有机-无机复合膜及其制备方法
Hasheminasab et al. High-performance hemodialysis membrane: Influence of polyethylene glycol and polyvinylpyrrolidone in the polyethersulfone membrane
CN115025620B (zh) 一种盐湖提锂用纳滤膜及其生产工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant