CN102569382B - 金属氧化半导体元件及其形成方法 - Google Patents

金属氧化半导体元件及其形成方法 Download PDF

Info

Publication number
CN102569382B
CN102569382B CN201010586813.5A CN201010586813A CN102569382B CN 102569382 B CN102569382 B CN 102569382B CN 201010586813 A CN201010586813 A CN 201010586813A CN 102569382 B CN102569382 B CN 102569382B
Authority
CN
China
Prior art keywords
type
metallic
oxide semiconductor
doping
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010586813.5A
Other languages
English (en)
Other versions
CN102569382A (zh
Inventor
朱建文
陈永初
吴锡垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201010586813.5A priority Critical patent/CN102569382B/zh
Publication of CN102569382A publication Critical patent/CN102569382A/zh
Application granted granted Critical
Publication of CN102569382B publication Critical patent/CN102569382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种金属氧化半导体元件及其形成方法,该金属氧化半导体元件是一种金属氧化半导体晶体管,特别是关于低导通电阻降低表面电场横向扩散金属氧化半导体晶体管。低导通电阻降低表面电场横向扩散金属氧化半导体晶体管包括一漂移区域、二隔离区域、一第一掺杂型层、一第二掺杂型层。二隔离区域形成于漂移区域上。第一掺杂型层设置于二隔离区域之间。第二掺杂型层设置于第一掺杂型层之下。

Description

金属氧化半导体元件及其形成方法
技术领域
本发明是有关于一种金属氧化半导体晶体管,且特别是有关于一种低导通电阻的金属氧化半导体晶体管。
背景技术
近年来,横向扩散金属氧化半导体场效应晶体管晶体管(aka LDMOS)广泛地应用于超大规模集成电路的高电压操作。为了提高元件的操作电压,已经改善双降低表面电场横向扩散金属氧化半导体(aka RESURFLDMOS)元件使击穿电压提高以与高电压半导体元件整合。然而,双降低表面的设计亦同时造成击穿电压与导通电阻的折衷(trade-off)。
图1绘示传统的双降低表面电场N型信道横向扩散金属氧化半导体晶体管10。双降低表面电场N型通道横向扩散金属氧化半导体晶体管10有一P型衬底11、一高电压N型阱12、一N型阱121、一N+源极区域122、一P型衬底123、一N+漏极区域124、一P+接触区域125、一P型阱13、一P+区域131、隔离区域14、栅极电极15及一P型顶层16。
由于P型顶层16布植于高电压N型阱12的上部中,因此于P型顶层16及高电压N型阱12的接口有额外的耗损发生。结果,双降低表面电场N型通道横向扩散金属氧化半导体晶体管10的击穿电压因而增加。然而,另一方面,缺点为元件对应地诱导导通电阻增加。因为由于布植P型顶层16,高电压N型阱12的上部的掺杂浓度下降。不止双降低表面电场N型通道横向扩散金属氧化半导体晶体管10,连传统的多重降低表面设计亦有上述缺点。
因此,申请人欲改善现有技术所面对的情形。
发明内容
鉴于现有技术,虽然通过布植P型顶层于传统的双或多重降低表面电场横向扩散金属氧化半导体用以提供高击穿电压来于高电压下操作,但P型顶层亦造成降低表面电场横向扩散金属氧化半导体的导通电阻升高。因此,本发明提供的降低表面电场横向扩散金属氧化半导体晶体管不止具有高击穿电压,亦维持低导通电阻。本发明提供的金属氧化半导体同时具有两种特性,高击穿电压与低导通电阻。
根据本发明的第一方面,提出一种金属氧化半导体元件。金属氧化半导体元件包括一漂移区域、二隔离区域、一第一掺杂型层、一第二掺杂型层。二隔离区域形成于漂移区域上。一第一掺杂型层设置于二隔离区域之间。一第二掺杂型层设置于第一掺杂型层之下。
较佳地,第一掺杂型层是掺杂一第一型杂质,而第二掺杂型层是掺杂一第二型杂质。且金属氧化半导体元件更包括一栅极、一漏极区域及一源极区域。漏极区域掺杂第二型杂质,源极区域掺杂第二型杂质。
较佳地,第一型杂质是一P型杂质,第二型杂质是一N型杂质。
较佳地,漂移区域为掺杂第二型杂质的一高电压阱,且源极区域与漏极区域位于高电压阱中。
较佳地,第一型杂质是一N型杂质,第二型杂质是一P型杂质。
较佳地,金属氧化半导体元件更包括:一衬底掺杂P型杂质。一N型内埋层(N-buried layer)设置于高电压阱与衬底之间。
较佳地,金属氧化半导体元件是通过选自由一绝缘体上硅(silicon-on-insulator,SOI)工艺、一N型外延(N-epitaxy,N-EPI)工艺、一P型外延(P-epitaxy,P-EPI)工艺及一无外延(non-epitaxy,non-EPI)工艺所组成的一群组的其中之一工艺所形成。
较佳地,金属氧化半导体元件更包括一氧化定义(Oxide Definition,OD)区域,隔开二隔离区域,其中第一掺杂型层被设置于氧化定义区域。
较佳地,二隔离区域是通过选自由一硅的局部氧化(local oxidation ofsilicon,LOCOS)工艺、一浅槽隔离(shallow trench isolation,STI)工艺及一深槽隔离(deep trench isolation,DTI)工艺所组成的一群组的其中之一工艺所形成。
较佳地,第一掺杂型层与第二掺杂型层是通过二隔离区域自我对齐。
根据本发明的第二方面,提出一种形成金属氧化半导体元件的方法。方法包括的步骤:提供一漂移区域;形成二隔离区域于漂移区域上;以及形成一第二掺杂型层于该第一掺杂型层之下。
较佳地,第一掺杂型层是掺杂一第一型杂质,而第二掺杂型层是轻掺杂一第二型杂质。且方法更包括:提供一栅极、一漏极区域及一源极区域。漏极区域掺杂第二型杂质,源极区域掺杂第二型杂质。
较佳地,第一型杂质是一P型杂质,而第二型杂质是一N型杂质。
较佳地,漂移区域为掺杂第二型杂质的一高电压阱,且源极区域与漏极区域被形成于高电压阱中。
较佳地,第一型杂质是一N型杂质,而第二型杂质是一P型杂质。
较佳地,方法更包括:提供一衬底掺杂P型杂质;以及提供一N型内埋层,设置于高电压阱与衬底之间。
较佳地,金属氧化半导体元件是通过选自由一绝缘体上硅(silicon-on-insulator,SOI)工艺、一N型外延(N-epitaxy,N-EPI)工艺、一P型外延(P-epitaxy,P-EPI)工艺及一无外延(non-epitaxy,non-EPI)工艺所组成的一群组的其中之一工艺所形成。
较佳地,方法更包括提供一氧化定义区域,隔开二隔离区域,其中第一掺杂型层被设置于氧化定义区域。
较佳地,二隔离区域是通过选自由一硅的局部氧化(local oxidation ofsilicon,LOCOS)工艺、一浅槽隔离(shallow trench isolation,STI)工艺及一深槽隔离(deep trench isolation,DTI)工艺所组成的一群组的其中之一工艺所形成。
较佳地,该第一掺杂型层与该第二掺杂型层是通过该二隔离区域自我对齐。
根据本发明的第三方面,提出一种金属氧化半导体元件。金属氧化半导体元件,包括二隔离区域、一第一掺杂型层、一第二掺杂型层。第一掺杂型层设置于二隔离区域之间。以及第二掺杂型层设置于第一掺杂型层之下。
为了对本发明的上述及其他方面有更佳的了解,下文特举较佳实施例,并配合所附图式,作详细说明如下:
附图说明
图1绘示现有技术的剖面图。
图2绘示依照本发明第一实施例的剖面图。
图3绘示依照本发明第二实施例的剖面图。
图4绘示依照本发明另一实施例的剖面图。
图5绘示依照本发明另一实施例的剖面图。
图6绘示依照本发明一实施例具有多环的双降低表面电场横向扩散金属氧化半导体的设计下的剖面图。
图7绘示依照本发明另一实施例具有多环的双降低表面电场横向扩散金属氧化半导体的设计下的剖面图。
图8绘示依照本发明再一实施例具有多环的双降低表面电场横向扩散金属氧化半导体的设计下的剖面图。
图9绘示依照本发明另一实施例具有多环的双降低表面电场横向扩散金属氧化半导体的设计下的剖面图。
【主要元件符号说明】
10:横向扩散金属氧化半导体晶体管
11:P型衬底
12、22:高电压N型阱
13、23:P型阱
14、24、241:隔离区域
15、25:栅极电极
16、26、261:P型顶层
20:横向扩散金属氧化半导体
21:衬底
27、271、272:N型轻掺杂区域
28、281:氧化定义区域
121、221:N型阱
122、222:N+源极区域
123、223:P型衬底
124、224:N+漏极区域
125、225:P+接触区域
131、231:P+区域
226:前N型阱
227:P型内埋层
具体实施方式
本发明将参照以下的实施例更具体地说明。本文以下提出的本发明的较佳实施例,仅用以说明及作为例子,并非用以彻底的揭露或是限缩揭露范围。
请参照图2,其是一N型通道横向扩散金属氧化半导体晶体管的剖面图,用以绘示根据本发明的第一实施例的低导通电阻双降低表面电场金属氧化半导体晶体管。如图2所示,横向扩散金属氧化半导体20有一衬底21、一高电压N型阱22、一N型阱221、一N+源极区域222、一P型衬底223、一N+漏极区域224、一P+接触区域225、一P型阱23、一P+区域231、隔离区域24、一栅极电极25、一栅极氧化层251、一P型顶层26及一N型轻掺杂区域27。
高电压N型阱22及P型阱23形成于衬底21的上部中。其中较佳地,衬底21是P型衬底或P型外延,且高电压N型阱22作为横向扩散金属氧化半导体20的漂移区域。P型衬底223包括P+接触区域225与N+源极区域224,且N型阱221包括N+漏极区域222。P型衬底223与N型阱221形成于高电压N型阱22中。隔离区域24,较佳为场氧化物(fieldoxides,FOX),通过硅的局部氧化(Local Oxidation of Silicon,LOCOS)工艺、浅槽隔离(Shallow Trench Isolation,STI)工艺或深槽隔离(Deep TrenchIsolation,DTI)工艺形成于高电压N型阱22的上部。
氧化定义(Oxide Definition,OD)区域28被配置于二隔离区域24之间,且包括一P型顶层26及N型轻掺杂区域27。因为P型顶层26的掺杂型态相异于高电压N型阱22,所以可形成漂移区域(高电压N型阱22)中载子漂移的阻碍,因而接近P型顶层26的电阻增加。所以,P型顶层26先布植于氧化定义区域28,氧化定义区域28没有载子通过。此外,N型轻掺杂区域27布植于P型顶层26下方,以补偿高电压N型阱22中因P型顶层26减少的浓度。P型顶层26与N型轻掺杂区域27是通过二隔离区域24自我对齐。
在如此的结构中,可发现本发明的N型通道横向扩散金属氧化半导体20的导通电阻(Rdson)大幅改善,如表1所示。
Figure BSA00000384970600061
表1
从表1可以见到N型通道横向扩散金属氧化半导体20相较于传统双降低表面电场横向扩散金属氧化半导体,在导通电阻减少了40.09%。也就是说,本发明的载子漂浮能力优于传统双降低表面电场横向扩散金属氧化半导体。因此,本发明不止相较于传统双降低表面电场横向扩散金属氧化半导体晶体管有高击穿电压,亦保持了低导通电阻,因此保有了击穿电压及导通电阻两者。
此外,上述的横向扩散金属氧化半导体晶体管是由多道工艺制作,例如是N型外延工艺、P型外延工艺或无外延工艺。
当然,些微的改变前述第一实施例的结构,本发明可进一步应用于降低表面电场横向扩散金属氧化半导体上。请参照图3,其绘示本发明的第二实施例。第一和第二实施例的结构差异因为工艺的不同,图3中的N+源极区域224与P+区域231两者被P型阱23环绕。所有图3中其他的标号与图2中的相同。
图4及图5分别为相似于图2及图3的实施例,且绘示本发明应用于具有不同结构的降低表面电场横向扩散金属氧化半导体。其中前N型阱226形成于高电压N型阱22及衬底21之间,且P型内埋层227形成于高电压N型阱22及前N型阱226之间。
本发明亦可应用于具有多环的双降低表面电场横向扩散金属氧化半导体。图6显示具有多环的双降低表面电场横向扩散金属氧化半导体60是从图2中的双降低表面电场横向扩散金属氧化半导体修改而来。可见到共有四隔离区域241被三个氧化定义区域281隔开来,其中三P型顶层261与三N型轻掺杂区域271分别布植于三个氧化定义区域281之下。由于多重P型顶层,图6中双降低表面电场横向扩散金属氧化半导体称为具有多P型环的双降低表面电场横向扩散金属氧化半导体。
相似地,图7绘示具有多P型环的另一双降低表面电场横向扩散金属氧化半导体70是从图3中的双降低表面电场横向扩散金属氧化半导体修改而来。双降低表面电场横向扩散金属氧化半导体70亦有四隔离区域241被三个氧化定义区域281隔开来,其中三P型顶层261分别布植于三个氧化定义区域281,三N型轻掺杂区域271布植于氧化定义区域281之下。隔离区域241、P型顶层261及N型轻掺杂区域271的数量非限缩于上述的实施例。
图8及图9根据本发明更进一步绘示其他二实施例,除了有第二N型轻掺杂区域272布植于隔离区域241下方处外,分别与图6及图7所示的实施例相似。
本领域技术人员可理解称为N型及P型的掺杂型态,在如上所述的实施例中是可交换。然而,也可于高电压P型阱与P型衬底之间形成一额外的N型内埋层,用以隔离高电压P型阱与衬底。如此一来P型衬底不会直接”看到”高电压施加于高电压P型阱上。
本领域技术人员亦可理解本发明可应用于一延伸漏极金属氧化半导(extended drain MOS,EDMOS)。
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本领域技术人员在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。

Claims (9)

1.一种金属氧化半导体元件,其特征在于,包括: 
一漂移区域; 
二隔离区域,形成于该漂移区域上; 
一第一掺杂型层,设置于该二隔离区域之间,其掺杂类型相异于该漂移区域,能够形成该漂移区域中载子漂移的阻碍,使接近该第一掺杂型层的电阻增加;以及 
一第二掺杂型层,设置于该第一掺杂型层之下,以补偿该漂移区域中因该第一掺杂型层减少的浓度; 
其中,该第一掺杂型层与该第二掺杂型层是通过该二隔离区域自我对齐。 
2.根据权利要求1所述的金属氧化半导体元件,其特征在于,该第一掺杂型层是掺杂一第一型杂质,而该第二掺杂型层是掺杂一第二型杂质,且该金属氧化半导体元件更包括一栅极、一漏极区域及一源极区域,该漏极区域掺杂该第二型杂质,该源极区域掺杂该第二型杂质。 
3.根据权利要求2所述的金属氧化半导体元件,其特征在于,该第一型杂质是一P型杂质,该第二型杂质是一N型杂质。 
4.根据权利要求2所述的金属氧化半导体元件,其特征在于,该漂移区域为掺杂该第二型杂质的一高电压阱,且该源极区域与该漏极区域位于该高电压阱中。 
5.根据权利要求4所述的金属氧化半导体元件,其特征在于,该第一型杂质是一N型杂质,该第二型杂质是一P型杂质。
6.根据权利要求5所述的金属氧化半导体元件,其特征在于,更包括: 
一衬底,掺杂该P型杂质;以及 
一N型内埋层(N-buried layer),设置于该高电压阱与该衬底之间。 
7.根据权利要求1所述的金属氧化半导体元件,其特征在于,该金属氧化半导体元件是通过选自由一绝缘体上硅(silicon-on-insulator,SOI)工艺、一N型外延(N-epitaxy,N-EPI)工艺、一P型外延(P-epitaxy,P-EPI)工艺 及一无外延(non-epitaxy,non-EPI)工艺所组成的一群组的其中之一工艺所形成。 
8.根据权利要求1所述的金属氧化半导体元件,其特征在于,更包括一氧化定义(Oxide Definition,OD)区域,隔开该二隔离区域,其中该第一掺杂型层被设置于该氧化定义区域。 
9.根据权利要求1所述的金属氧化半导体元件,其特征在于,该二隔离区域是通过选自由一硅的局部氧化(local oxidation of silicon,LOCOS)工艺、一浅槽隔离(shallow trench isolation,STI)工艺及一深槽隔离(deep trench isolation,DTI)工艺所组成的一群组的其中之一工艺所形成。 
CN201010586813.5A 2010-12-09 2010-12-09 金属氧化半导体元件及其形成方法 Active CN102569382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010586813.5A CN102569382B (zh) 2010-12-09 2010-12-09 金属氧化半导体元件及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010586813.5A CN102569382B (zh) 2010-12-09 2010-12-09 金属氧化半导体元件及其形成方法

Publications (2)

Publication Number Publication Date
CN102569382A CN102569382A (zh) 2012-07-11
CN102569382B true CN102569382B (zh) 2014-04-23

Family

ID=46414353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010586813.5A Active CN102569382B (zh) 2010-12-09 2010-12-09 金属氧化半导体元件及其形成方法

Country Status (1)

Country Link
CN (1) CN102569382B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811547B (zh) * 2012-11-15 2016-12-21 上海华虹宏力半导体制造有限公司 降低ldmos器件峰值电场的版图结构及方法
CN106158921B (zh) 2015-04-10 2019-07-23 无锡华润上华科技有限公司 具resurf结构的横向扩散金属氧化物半导体场效应管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146298A (en) * 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US6326656B1 (en) * 1998-06-24 2001-12-04 Siemens Aktiengesellschaft Lateral high-voltage transistor
CN101036231A (zh) * 2004-09-16 2007-09-12 飞兆半导体公司 具有堆叠的异质-掺杂缘及缓变漂移区的增强的resurf hvpmos器件
US7626233B2 (en) * 2007-04-23 2009-12-01 Infineon Technologies Ag LDMOS device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956391B2 (en) * 2002-08-14 2011-06-07 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146298A (en) * 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US6326656B1 (en) * 1998-06-24 2001-12-04 Siemens Aktiengesellschaft Lateral high-voltage transistor
CN101036231A (zh) * 2004-09-16 2007-09-12 飞兆半导体公司 具有堆叠的异质-掺杂缘及缓变漂移区的增强的resurf hvpmos器件
US7626233B2 (en) * 2007-04-23 2009-12-01 Infineon Technologies Ag LDMOS device

Also Published As

Publication number Publication date
CN102569382A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
US20120104492A1 (en) Low on-resistance resurf mos transistor
US8722477B2 (en) Cascoded high voltage junction field effect transistor
US9666700B2 (en) Vertical bipolar junction transistor and manufacturing method thereof
US7602037B2 (en) High voltage semiconductor devices and methods for fabricating the same
US8278710B2 (en) Guard ring integrated LDMOS
US8592274B2 (en) LDMOS with accumulation enhancement implant
US20110260247A1 (en) Ldmos transistors with a split gate
EP2860762B1 (en) High voltage junction field effect transistor
JP2011512676A (ja) ブレークダウン電圧を向上するエッジ終端
US20110248342A1 (en) Semiconductor integrated circuit device and method of fabricating the same
US10038082B2 (en) Cascoded high voltage junction field effect transistor
US9716169B2 (en) Lateral double diffused metal oxide semiconductor field-effect transistor
CN107425046B (zh) 一种ldmos器件及其制作方法
TWI408810B (zh) 低導通電阻降低表面電場橫向擴散金屬氧化半導體電晶體
US20160099346A1 (en) Semiconductor device
CN103872054B (zh) 一种集成器件及其制造方法、分立器件、cdmos
US11049938B2 (en) P-type lateral double diffused MOS transistor and method of manufacturing the same
CN102569382B (zh) 金属氧化半导体元件及其形成方法
CN102694020B (zh) 一种半导体装置
CN102891088A (zh) 垂直双扩散金属氧化物半导体场效应晶体管器件制造方法
US8354716B2 (en) Semiconductor devices and methods of manufacturing the same
CN208240684U (zh) 一种半导体器件
US7829954B2 (en) PMOS depletable drain extension made from NMOS dual depletable drain extensions
CN103199110B (zh) 一种nldmos器件及其制造方法
US8691653B2 (en) Semiconductor structure with reduced surface field effect and manufacturing process thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant