CN102491289A - 一种纳米级氮化镁粉末的制备方法 - Google Patents

一种纳米级氮化镁粉末的制备方法 Download PDF

Info

Publication number
CN102491289A
CN102491289A CN2011104099900A CN201110409990A CN102491289A CN 102491289 A CN102491289 A CN 102491289A CN 2011104099900 A CN2011104099900 A CN 2011104099900A CN 201110409990 A CN201110409990 A CN 201110409990A CN 102491289 A CN102491289 A CN 102491289A
Authority
CN
China
Prior art keywords
powder
preparation
gas
magnesium nitride
flask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104099900A
Other languages
English (en)
Other versions
CN102491289B (zh
Inventor
邹建新
郭皓
曾小勤
丁文江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201110409990.0A priority Critical patent/CN102491289B/zh
Publication of CN102491289A publication Critical patent/CN102491289A/zh
Application granted granted Critical
Publication of CN102491289B publication Critical patent/CN102491289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种氮化镁粉末的制备方法,通过将纳米镁粉放入石英管中,并于600~900℃与高纯氮气充分反应制得纳米级的氮化镁粉末,本发明制备工艺简单,克服了现行制备方法中镁易被空气氧化的问题,并制得高纯度的氮化镁粉末。

Description

一种纳米级氮化镁粉末的制备方法
技术领域
本发明涉及一种制备氮化镁粉末的方法,特别涉及一种制备纳米级氮化镁粉末的方法。
背景技术
氮化镁(Mg3N2)是由氮和镁所组成的无机化合物。在室温下为黄绿色的粉末。密度为2712kg/m3,熔点为800℃,沸点为700℃,属于立方晶系。
氮化镁极易与水反应生成氢氧化镁并放出氨气,在空气中即可吸收空气中的水蒸气变质,故氮化镁一般采用真空保存;氮化镁几乎与所有的酸都可发生反应;氮化镁热稳定性好,在空气中800℃以上才与氧气发生反应生成氧化镁。
氮化镁应用范围很广:在制备高硬度、高热导、耐磨、耐腐蚀、耐高温的新型材料氮化硼、氮化硅的固相反应中,氮化镁是不可缺少的烧结助剂。此外,氮化镁还可用于回收核燃料,制备特殊的陶瓷材料,制造特种玻璃等领域;氮化镁作为添加剂可以有效的脱矾,从而提高钢材的密度、强度、拉力及承受力。同时,它还是近几年被广泛关注的M-N-H(M是指I,IV族和一些过渡族金属)系储氢系列材料之一。此外,目前普遍认为氮化镁粉末为直接带隙半导体材料,带宽为2.8eV左右,所以在发光二极管和激光二极管方面,氮化镁也具有潜在应用价值。而纳米氮化镁粉末因为纳米材料比表面积大等特点具有更大的潜在应用价值。
目前氮化镁的主要制备方法有镁粉与氮气直接反应法、镁在氮等离子体中与氮反应法、氮气气氛下镁线圈***法、自蔓延高温合成法和低压化学气相沉积法。其中镁粉直接与氮气反应虽然是具有工业生产价值的方法,但氮化镁粉末的生产需要较高的反应温度(800℃到900℃的高温)和较长的反应时间,且颗粒的形状不完整又容易结块难以达到较为理想的纯度,达不到工业质量要求。其他方法因或成本高、或工艺流程长、或设备操作复杂、或氮化镁的产率比较低等缺点,而限制了其工业化的生产。
近年来,国内外学者在如何制备氮化镁粉末方面做了大量的研究。2004年,G.Soto等人采用脉冲激光淀积的方法,在分子氮的环境中在Si衬底上制备出Mg∶N不同配比的无定型的氮化镁薄膜。在国内,中科院大连化物所的张源魁等人利用温和条件下催化法合成的MgH2热分解制得的活性镁粉,可在较低温度下合成纳米尺寸的氮化镁。山东师范大学的艾玉杰等人用镁粉与氨气直接反应法制备了纯度较高的氮化镁粉末,但是氨气极易溶于水,需要实验保持良好的干燥环境,并且氨气还具有腐蚀性和毒性等危险性质,价格也高于氮气,这些都不利于大规模生产。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种氮化镁粉末的制备方法,本发明制备工艺简单,克服了现行制备方法中镁易被空气氧化的问题,并制得高纯度的氮化镁粉末,且所得氮化镁粉末为纳米级。
为实现上述目的,本发明采用以下技术方案:
一种纳米级的氮化镁粉末的制备方法,包括以下步骤:
将纳米镁粉放入陶瓷舟中装入石英管中,将石英管放入管式炉后先将石英管一端阀门拧紧密封,然后另一端接上真空泵抽真空到-0.1MPa,再通入纯度为99.99%的高纯氮气到1atm,完成一次“洗气”过程,洗气需要进行共五次;洗气完成后在所述石英管两端分别接上防漏气和干燥***;然后保持高纯氮气的流通状态,并保持所述石英管中气压为1atm,加热管式炉到600~900℃,并保温2h使所述纳米镁粉与所述高纯氮气充分反应后,使管式炉在流动的所述高纯氮气气氛中冷却到室温,所制得的粉末为所述纳米级的氮化镁粉末,取出放在手套箱里保存。
本发明所述干燥***包括一个装有硅胶的烧瓶,较佳的所述装有硅胶的烧瓶上带有气体减压阀。
本发明所述防漏气***包括一个液封的缓冲瓶,所述缓冲瓶内装有液体油,较佳的所述防漏气***还包括一个防倒吸的烧瓶。
本发明所述氮气的流动方向依次为:所述装有硅胶的烧瓶、所述石英管、所述防倒吸的烧瓶、所述液封的缓冲瓶。
本发明所述纳米镁粉采用直流电弧等离子体法制备,包括以下具体步骤:将纯镁块作为阳极,钨棒为阴极,置于直流电弧等离子体设备中,当所述直流电弧等离子体设备抽至真空度为5×10-2Pa时,充入0.7atm的氩气和0.1atm的氢气;开启冷却水***后起弧,所述***水压为2Mpa,调节电流为80-120A,继续通氢气保持所述设备气压为0.8-1atm,反应10-20min,熄灭电弧,冷却至室温;将直流电弧等离子体设备抽真空至0.01MPa,然后充入氩气0.6-0.7atm和空气0.3-0.4atm进行钝化操作;钝化后,收集内壁粉末,即为制得的纳米镁粉;
本发明的优点是:
1、本发明通过在石英管的两端分别接上防漏气和干燥***,很好的避免了在反应过程中外界空气的进入,当石英管中进有空气时,镁会优先与空气中的氧气反应生成氧化镁,以至反应所得产物纯度很低,甚至完全生成氧化镁,而本发明很好的避免了这一缺点,使镁可完全、充分的与氮气反应生成高纯度的氮化镁。
2.制得的氮化镁粉末是纳米级的,相较现有的氮化镁反应活性高。
附图说明
图1为在750℃反应制得的氮化镁粉末的XRD图谱。
图2为在750℃反应制得的氮化镁粉末的TEM图,图像由JEOL-2100透射电镜得到。
图3为在800℃反应制得的氮化镁粉末的XRD图谱。
具体实施方式
实施例1
1.将表面光洁的纯镁块(长60mm,宽30mm,高10mm左右)作为阳极,钨棒为阴极,置于直流电弧等离子体设备中;当装置抽至真空度为5×10-2Pa时,充入0.7atm的氩气和0.1atm的氢气;开启冷却水***(水压2Mpa)后起弧,调节电流到120A,继续通氢气保持设备气压为0.8-1atm,反应10min,熄灭电弧,冷却至室温后关闭冷却水***;将直流电弧等离子体设备抽真空至0.01Mpa;然后先充入60KPa氩气,然后每隔半小时充入5KPa空气共充入40Kpa空气,进行粉末的钝化,,钝化时间为12小时;收集内壁粉末,即为制得的纳米镁粉;
2.称取2g上述纳米镁粉,均匀摊在陶瓷舟底部;将装有纳米镁粉的陶瓷舟放入石英管中,再放入管式炉中,先将石英管一端阀门拧紧密封,然后另一端接上真空泵抽真空到-0.1MPa,再换接上氮气瓶,通入纯度为99.99%的高纯氮气到1atm,完成一次“洗气”过程,洗气需要进行共五次;洗气完成后在石英管两端分别接上带有气体减压阀的装有硅胶的烧瓶,以及防倒吸烧瓶和油封的缓冲瓶,防止倒吸和漏气,保持石英管中气压为1atm,并保持高纯氮气的流通状态;
3.设定管式炉加热程序,具体流程为:一个小时加热到600℃,然后保温半个小时,再加热到750℃并保温2个小时;最后在流动的高纯氮气中自然冷却到室温;所制得的粉末为Mg3N2,取出放在手套箱里保存。
将制得的Mg3N2粉末进行表征,附图1的XRD图谱可以看出Mg3N2的纯度很高;附图2的TEM图片可以看出制得的Mg3N2粉末的颗粒都在纳米数量级。
实施例2:
1.将表面光洁的纯镁块(长60mm,宽30mm,高10mm左右)作为阳极,钨棒为阴极,置于直流电弧等离子体设备中;当装置抽至真空度为5×10-2Pa时,充入0.7atm的氩气和0.1atm的氢气;开启冷却水***(水压2Mpa)后起弧,调节电流到120A,继续通氢气并保持设备气压为0.8-1atm反应20min,熄灭电弧,冷却至室温;将直流电弧等离子体设备抽真空至0.01MPa,然后充入氩气0.7atm和空气0.3atm进行钝化操作;钝化后,收集内壁粉末,即为制得的纳米镁粉;
2.称量2g上述纳米镁粉,均匀摊在陶瓷舟底部;将装有镁粉的陶瓷舟放入石英管中,再放入管式炉中,先将石英管一端阀门拧紧密封,然后另一端接上真空泵抽真空到-0.1MPa,再换接上氮气瓶,通入纯度为99.99%的高纯氮气到1atm,完成一次“洗气”过程,洗气需要进行共五次;洗气完成后在石英管两端分别接上带有气体减压阀的装有硅胶的烧瓶,以及防倒吸烧瓶和油封的缓冲瓶,以防止倒吸和漏气,保持石英管中气压为1atm,并保持高纯氮气的流通状态;
3.设定管式炉加热程序,具体流程为:一个小时加热到600℃,然后保温半个小时,再加热到800℃并保温2个小时;最后在流动的高纯氮气中自然冷却到室温;所制得的粉末为Mg3N2,取出放在手套箱里保存。
将制得的Mg3N2粉末进行表征,附图3的XRD图谱可以看到Mg3N2的纯度很高。

Claims (10)

1.一种纳米级的氮化镁粉末的制备方法,包括以下步骤:
将纳米镁粉放入陶瓷舟中装入石英管中,然后将石英管放入管式炉后密封,通入纯度为99.99%的高纯氮气洗气五次,将石英管两端分别接上防漏气和干燥***,然后通入流动的所述高纯氮气至所述石英管中气压为1atm,加热管式炉到600~900℃,并保温2h使所述纳米镁粉与所述高纯氮气充分反应后,使管式炉在流动的所述高纯氮气气氛中冷却到室温,所制得的粉末为所述纳米级的氮化镁粉末。
2.根据权利要求1所述的制备方法,其特征在于:所述干燥***包括一个装有硅胶的烧瓶。
3.根据权利要求2所述的制备方法,其特征在于:所述装有硅胶的烧瓶上带有气体减压阀。
4.根据权利要求1~3任意一项所述的制备方法,其特征在于:所述防漏气***包括一个液封的缓冲瓶。
5.根据权利要求4所述的制备方法,其特征在于:所述缓冲瓶内装有液体油。
6.根据权利要求4所述的制备方法,其特征在于:所述防漏气***还包括一个防倒吸的烧瓶。
7.根据权利要求1所述的制备方法,其特征在于,所述洗气的具体操作步骤为:先将石英管一端阀门拧紧密封,然后另一端接上真空泵抽真空到-0.1MPa,再通入纯度为99.99%的高纯氮气到1atm,完成一次“洗气”过程。
8.根据权利要求1所述的制备方法,其特征在于:所述氮气的流动方向依次为所述干燥***、所述石英管、所述防漏气***。
9.根据权利要求1所述的制备方法,其特征在于:所述管式炉加热方式为先加热到600℃并保温半小时,然后再继续加热。
10.根据权利要求1所述的制备方法,其特征在于,所述纳米镁粉的制备方法为:将纯镁块作为阳极,钨棒为阴极,置于直流电弧等离子体设备中,当所述直流电弧等离子体设备抽至真空度为5×10-2Pa时,充入0.7atm的氩气和0.1atm的氢气;开启冷却水***后起弧,所述***水压为2Mpa,调节电流为80-120A,继续通氢气保持所述设备气压为0.8-1atm,反应10-20min,熄灭电弧,冷却至室温;将直流电弧等离子体设备抽真空至0.01MPa,然后充入氩气0.6-0.7atm和空气0.3-0.4atm进行钝化操作;钝化后,收集内壁粉末,即为制得的纳米镁粉。
CN201110409990.0A 2011-12-09 2011-12-09 一种纳米级氮化镁粉末的制备方法 Active CN102491289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110409990.0A CN102491289B (zh) 2011-12-09 2011-12-09 一种纳米级氮化镁粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110409990.0A CN102491289B (zh) 2011-12-09 2011-12-09 一种纳米级氮化镁粉末的制备方法

Publications (2)

Publication Number Publication Date
CN102491289A true CN102491289A (zh) 2012-06-13
CN102491289B CN102491289B (zh) 2014-02-19

Family

ID=46183160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110409990.0A Active CN102491289B (zh) 2011-12-09 2011-12-09 一种纳米级氮化镁粉末的制备方法

Country Status (1)

Country Link
CN (1) CN102491289B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271138A (zh) * 2015-10-16 2016-01-27 甘肃稀土新材料股份有限公司 一种碱土金属氮化物的制备方法
CN105692571A (zh) * 2014-11-28 2016-06-22 鞍钢股份有限公司 一种激光照射制备氮化镁的装置及方法
CN105845895A (zh) * 2016-05-09 2016-08-10 上海交通大学 锂离子电池负极材料的制备方法
CN106995208A (zh) * 2017-05-11 2017-08-01 吉林大学 一种无定形氮化钒纳米颗粒的制备方法
CN108817379A (zh) * 2018-05-23 2018-11-16 航天材料及工艺研究所 一种提高粉末高温合金产品性能稳定性的填粉装置
CN110329998A (zh) * 2019-07-23 2019-10-15 英特美光电(苏州)有限公司 一种在高压氮化炉中制备氮化锶粉末的方法
CN110817813A (zh) * 2019-12-19 2020-02-21 湖南众鑫新材料科技股份有限公司 一种纳米晶氮化钒粉体的制备方法
CN112872348A (zh) * 2020-12-31 2021-06-01 广东省科学院稀有金属研究所 一种提高稀土-铁合金氮化效率的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109022A (zh) * 1994-03-21 1995-09-27 中国科学院大连化学物理研究所 纳米尺寸氮化镁的合成方法
CN101117211A (zh) * 2006-08-04 2008-02-06 北京大学 氢化镁纳米颗粒及其制备方法和应用
US20080131350A1 (en) * 2006-08-31 2008-06-05 Burkes Douglas E Method for Production of Metal Nitride and Oxide Powders Using an Auto-Ignition Combustion Synthesis Reaction
CN101269978A (zh) * 2007-03-21 2008-09-24 中国科学院理化技术研究所 燃烧合成超细氮化镁粉末的方法
CN102241393A (zh) * 2010-09-28 2011-11-16 南昌大学 气流法制备氮化镁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109022A (zh) * 1994-03-21 1995-09-27 中国科学院大连化学物理研究所 纳米尺寸氮化镁的合成方法
CN101117211A (zh) * 2006-08-04 2008-02-06 北京大学 氢化镁纳米颗粒及其制备方法和应用
US20080131350A1 (en) * 2006-08-31 2008-06-05 Burkes Douglas E Method for Production of Metal Nitride and Oxide Powders Using an Auto-Ignition Combustion Synthesis Reaction
CN101269978A (zh) * 2007-03-21 2008-09-24 中国科学院理化技术研究所 燃烧合成超细氮化镁粉末的方法
CN102241393A (zh) * 2010-09-28 2011-11-16 南昌大学 气流法制备氮化镁的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692571A (zh) * 2014-11-28 2016-06-22 鞍钢股份有限公司 一种激光照射制备氮化镁的装置及方法
CN105271138A (zh) * 2015-10-16 2016-01-27 甘肃稀土新材料股份有限公司 一种碱土金属氮化物的制备方法
CN105845895A (zh) * 2016-05-09 2016-08-10 上海交通大学 锂离子电池负极材料的制备方法
CN106995208A (zh) * 2017-05-11 2017-08-01 吉林大学 一种无定形氮化钒纳米颗粒的制备方法
CN108817379A (zh) * 2018-05-23 2018-11-16 航天材料及工艺研究所 一种提高粉末高温合金产品性能稳定性的填粉装置
CN110329998A (zh) * 2019-07-23 2019-10-15 英特美光电(苏州)有限公司 一种在高压氮化炉中制备氮化锶粉末的方法
CN110817813A (zh) * 2019-12-19 2020-02-21 湖南众鑫新材料科技股份有限公司 一种纳米晶氮化钒粉体的制备方法
CN110817813B (zh) * 2019-12-19 2022-11-04 湖南众鑫新材料科技股份有限公司 一种纳米晶氮化钒粉体的制备方法
CN112872348A (zh) * 2020-12-31 2021-06-01 广东省科学院稀有金属研究所 一种提高稀土-铁合金氮化效率的方法

Also Published As

Publication number Publication date
CN102491289B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN102491289B (zh) 一种纳米级氮化镁粉末的制备方法
CN102689903B (zh) 一种蒸发固体原料制备碳化硅纳米粒子及其复合材料的方法
CN108273541B (zh) 一种绿色高效制备石墨相氮化碳纳米片的方法和应用
CN105836729B (zh) 气相爆轰法合成含铁碳纳米管的方法
CN111203262B (zh) 快速制备氮化碳纳米片负载纳米铜的方法及其产品和应用
CN108545708A (zh) 一种珊瑚状六方氮化硼微纳米管片复合结构的制备方法
Wang et al. Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light
CN107185578A (zh) 在金属片衬底上生长的GaN纳米线光催化材料及制备方法和应用
Li et al. One-step large-scale synthesis of porous ZnO nanofibers and their application in dye-sensitized solar cells
CN105967155B (zh) 二硒化钨纳米花的制备方法
CN110963474A (zh) 一种黑磷基纳米材料的制备方法
CN101746727B (zh) 一种制备LiBH4·xNH3化合物的方法
CN107758633A (zh) 一种长直氮化硼纳米线的制备方法
CN110562982A (zh) 一种纳米碳化二钨颗粒及其制备方法和应用
CN102765723B (zh) 一种合成钾硅储氢合金的方法
CN108063249B (zh) 一种高纯度氮化铜纳米晶体的制备方法
CN110451514B (zh) 一种碳包覆二氧化硅纳米材料的合成方法
Wang et al. NH4Cl-assisted in air, low temperature synthesis of SnS2 nanoflakes with high visible-light-activated photocatalytic activity
CN102226298B (zh) 一种金属氧化物纳米线的制备方法
Zhang et al. Photothermal‐Driven High‐Performance Selective Hydrogenation System Enabled by Delicately Designed IrCo Nanocages
CN109261157A (zh) 一种Ni@LaCO3OH复合材料及其制备方法和应用
Zhu et al. Study on reversible hydrogen sorption behaviors of 3LiBH 4/graphene and 3LiBH 4/graphene–10 wt% CeF 3 composites
CN102583275B (zh) 一种醇热法制备的GaN纳米晶及其制备方法
CN102211184B (zh) 一种由纳米碳管完全包覆的锡纳米棒的制备方法
CN102219195A (zh) 去除多孔氮化铝或多孔氮化镓微粒中氮化镁的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant