CN102489312B - 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法 - Google Patents

基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法 Download PDF

Info

Publication number
CN102489312B
CN102489312B CN2011103787941A CN201110378794A CN102489312B CN 102489312 B CN102489312 B CN 102489312B CN 2011103787941 A CN2011103787941 A CN 2011103787941A CN 201110378794 A CN201110378794 A CN 201110378794A CN 102489312 B CN102489312 B CN 102489312B
Authority
CN
China
Prior art keywords
metal component
porous material
cobalt
catalyst
fischer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011103787941A
Other languages
English (en)
Other versions
CN102489312A (zh
Inventor
方章建
陈义龙
张岩丰
詹晓东
薛永杰
陶磊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Original Assignee
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Kaidi Engineering Technology Research Institute Co Ltd filed Critical Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority to CN2011103787941A priority Critical patent/CN102489312B/zh
Publication of CN102489312A publication Critical patent/CN102489312A/zh
Priority to BR112014012492A priority patent/BR112014012492B1/pt
Priority to KR1020147014655A priority patent/KR101625987B1/ko
Priority to AP2014007678A priority patent/AP2014007678A0/xx
Priority to AU2012343061A priority patent/AU2012343061B2/en
Priority to PCT/CN2012/083091 priority patent/WO2013075559A1/zh
Priority to MYPI2014001481A priority patent/MY166549A/en
Priority to SG11201402557PA priority patent/SG11201402557PA/en
Priority to IN970MUN2014 priority patent/IN2014MN00970A/en
Priority to JP2014542687A priority patent/JP5947912B2/ja
Priority to CA2856748A priority patent/CA2856748A1/en
Priority to EP12851601.0A priority patent/EP2783750A4/en
Priority to MX2014006257A priority patent/MX366574B/es
Priority to RU2014124012A priority patent/RU2624441C2/ru
Application granted granted Critical
Publication of CN102489312B publication Critical patent/CN102489312B/zh
Priority to US14/285,665 priority patent/US9266097B2/en
Priority to ZA2014/04572A priority patent/ZA201404572B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供一种基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法,本发明的催化剂是以有机凝胶为模板,通过溶胶凝胶法制备得到;以金属组分为核,多孔材料为壳;其中金属组分包括第一种金属组分Co,第二种金属组分为Ce、La、Zr中的一种,第三种金属组分Pt、Ru、Rh、Re中的一种;在成品催化剂中,各金属组分的重量百分比为:第一种金属组分:10~35%,第二种金属组分:0.5~10%;第三种组分:0.02~2%,余量为载体;载体为多孔材料,其组分是纳米二氧化硅或氧化铝,形状为球形;其孔径在1~20nm,比表面积为300~500m2/g,其中活性组分的粒径在0.5~20nm。本发明的核壳结构钴基多孔催化剂具有甲烷选择性低,催化反应活性高,C5+选择性好,以柴油和石蜡为主要产物。

Description

基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
技术领域
本发明涉及催化合成、纳米材料应用领域,具体地指一种基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法。
背景技术
近年来,随着世界石油资源的萎缩和石油价格的上涨,寻求使用替代品的相关研究和技术进步方兴未艾。以煤、石油气和生物质气化获得合成气(CO+H2),然后通过费托合成将合成气转变成碳氢化合物受到广泛的关注。费托合成是指合成气(CO+H2)在催化剂上转化生成烃类的反应,其合成产物主要是具有较高碳数的重质烃(C5+),通过产物蜡的精制和裂解可以获得高品质的柴油和航空煤油,这些产物中几乎不含硫化物和氮化物,是非常洁净的马达燃料。它是1923年德国化学家Frans Fischer和HansTropsch发明的。费托合成技术是增加液体燃料供给最有效的途径之一,有望在不久的将来成为生产发动机燃料的主要渠道之一,具有重要的经济意义和商业价值。
活性金属粒子的类型、尺寸、分散度、可还原性对反应性能的影响,载体的孔道效应(限域效应、择形效应等)和助剂的促进作用等都与费托反应机理的问题相关,这些因素对反应机理中的具体步骤产生影响,并从而影响反应活性以及产物的类型和分布。众多的研究结果表明,催化材料的构筑,包括活性组分的分散程度、活性中心结构、微环境、落位、载体的孔道结构等,极大地影响其在合成气转化反应中的活性和选择性。孙予罕等制备了具有核壳结构的易于还原,活性相稳定的催化剂Co3O4MCM-41。他们首先利用热分解法制备了Co3O4粒子,采用PVP作为两亲试剂,设计制备了介孔硅包裹Co3O4粒子核壳结构的钴基催化剂,该催化剂可抑制钴活性中心的相互团聚。但其制备工艺复杂,催化材料的金属组分单一,CO转化率较低,产物主要是轻质烃,甲烷选择性高。(孙予罕,化工进展,2010,380)
专利CN 101698152A提供一种钴基费托合成催化剂及其制备方法和应用,该催化剂包括载体和金属组分,载体采用球形粉体氧化铝;金属组分包括第一种金属组分Co,第二种金属组分为Ce、La、Zr中的一种,第三种金属组分Pt、Ru、Rh、Re中的一种,该催化剂适应于鼓泡浆态床或连续搅拌浆态床反应器。但这种材料价格昂贵,活性中心易团聚,失活。
微囊反应器是近年来在纳米组装和催化领域中提出的一个新概念,它解决了传统纳米催化剂存在的难回收、稳定性差、选择性差等问题。对于该反应器而言,在反应过程中不仅客体分子可以选择性的进入囊内空腔,并与囊内活性物种发生催化反应,而且其产物也将选择性地扩散离开微反应器。
发明内容
本发明的目的就是借鉴了微囊反应器制备催化剂的优点,结合多孔材料限域的纳米催化剂的优点提供一种基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法。使催化剂的制备方法简单,成本低,甲烷选择性低,催化反应活性高,C5+选择性好,以柴油和石蜡为主要产物。
本发明的技术方案:本发明的基于多孔材料限域的费托合成钴基纳米催化剂是以一种有机凝胶为模板,通过溶胶凝胶法制备得到;以金属组分为核,多孔材料为壳;其中金属组分包括第一种金属组分Co,第二种金属组分为Ce、La、Zr中的一种,第三种金属组分Pt、Ru、Rh、Re中的一种;在成品催化剂中,各金属组分的重量百分比为:第一种金属组分:10~35%,第二种金属组分:0.5~10%;第三种组分:0.02~2%,余量为载体;载体为多孔材料,其组分是纳米二氧化硅或氧化铝,其形状为球形;其孔径在1~20nm,比表面积为300~500m2/g,其中活性组分的粒径在0.5~20nm。
优选金属组分重量百分比为:第一种金属组分:15~30%,第二种金属组分1%~5%;第三种金属组分:0.05%~2%,余量为载体。
为了获得主要产物为轻质烃,所述的载体多孔材料优选孔径在1~10nm,比表面积为300~400m2/g,其中活性组分的粒径在0.5~5nm。
为了获得主要产物为中间馏分(C5-C18),所述的载体多孔材料优选孔径在10~15nm,比表面积为400~500m2/g,其中活性组分的粒径在6nm~15nm。
为了使产物中C18+产物含量较高,所述的载体多孔材料优选孔径在10~20nm,比表面积为400~500m2/g,其中活性组分的粒径在16~20nm。
所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其制备方法采用有机凝胶模板法,包括如下步骤:
1)原料选取:按各组份重量百分比选取正硅酸乙酯或硝酸铝、第一种金属钴的水溶性盐类、第二种金属组分和第三种金属组分的硝酸盐或亚硝酰基硝酸盐及凝胶模板剂备用;
2)将模板剂溶解在极性溶剂中,然后在恒温下向上述溶液中加入含有各种金属盐的水溶液,加入适量氨水调节pH值到8~10,恒温搅拌0.1~3小时;
3)向上述溶液中加入计算量的正硅酸乙酯或硝酸铝,并继续恒温搅拌3-24小时;
4)对上述反应物在90~150℃下进行喷雾干燥,得到有机-无机杂化材料;
5)将喷雾干燥后的粉末放入马弗炉中,在300~750℃焙烧3h-12h,制得成品催化剂。
优选地,步骤4)利用溶胶凝胶模板法制备得到的凝胶在110~150℃喷雾干燥得到有机-无机杂化材料。
优选地,步骤5)将喷雾干燥后的粉末放入马弗炉中,在350~700℃焙烧5h~10h,制得成品催化剂。
优选地,所用的凝胶模板剂是含有胺基的两亲性线形高分子。
优选地,配置溶液时,所用的第一种活性金属组分钴的盐为硝酸钴、乙酸钴或碳酸钴;第二种金属组分的盐为金属的硝酸盐;第三种金属组分的盐为金属的硝酸盐。
本发明所涉及的催化剂具有以下优点:
1.本发明涉及的费托合成催化剂起主要催化作用的活性金属是Co,理论上来说,在分散度相同的情况下,Co的含量越高,催化剂的活性就越高,但实际上载体的比表面积,孔径和孔道等性质限制了Co的最大负载量;同时如果Co的负载量过大,则很容易聚集成团,反而会降低催化剂活性。所以,本领域技术人员一直在尝试添加助剂以改善Co在催化剂载体上的分散,从而尽可能的发挥Co的催化作用。本发明中,通过选择合适的有机凝胶模板剂、反应时间及反应物的量,可以得到形状、粒径和孔径可控的多孔纳米催化剂,由于活性组分在多孔材料中均匀分散,抑制了活性组分的相互团聚,有助于提高催化剂的催化活性、反应产物的选择性。同时,通过添加助剂可进一步改善催化剂的反应活性和选择性。利用这种方法可以降低金属活性组分的含量,降低催化剂的成本。该催化剂适用于鼓泡浆态床或连续搅拌浆态床反应器。
2.费托合成产物分布过宽,合成的产物从甲烷一直到分子量很大的石蜡,选择性差是该反应的一个缺点。催化材料中钴颗粒的大小不仅明显改变费托反应的活性而且改变产物选择性。本发明通过选用特定孔径和比表面积的多孔材料为载体,可调节费托合成的产物分布,生成的产物中柴油和石蜡组分的选择性高。我们通过研究发现,核壳结构纳米催化剂的核具有催化活性,壳对核层有稳定作用,而且由于壳层结构的存在,其封闭的内腔将形成一个微环境,在催化反应过程中,内腔往往通过对反应物的积累而形成局部的高浓度,促进反应更高效地进行,提高催化剂的整体活性,也可明显改善产物的选择性,以及提高催化剂抗积碳、抗烧结、水热稳定性等性能,当催化剂活性组分粒径在0.5~20nm,比表面积在300~500m2/g时,更有利于生成柴油和石蜡组分。
3.本发明涉及的多孔材料限域的钴基纳米催化剂是通过溶胶凝胶法原位生成,因而催化剂活性组分和作为载体的多孔材料可同步合成,制备流程简单,便于操作,更适合工业化生产。
本发明借鉴了微囊反应器制备催化剂的优点,结合多孔材料限域的纳米催化剂的优点发明了新的催化剂,本发明的催化剂以有机凝胶为模板,活性组分在模板表面生长,设计制备的核壳结构钴基多孔催化剂具有高反应活性,甲烷选择性较低,以柴油和石蜡为主要产物。与专利CN101698152A相比该催化剂中各活性组分更易于在多孔载体中均匀分散,从而导致材料的活性更高,CO转化率高,甲烷选择性更低。同时,本发明中加入较少的贵金属助剂便可实现高的催化性能,因而成本更低。
附图说明
图1为本发明中基于多孔材料限域的费托合成钴基纳米催化剂制备方法的工艺流程图。
具体实施方式
本发明的基于多孔材料限域的费托合成钴基纳米催化剂是以一种有机凝胶为模板,通过溶胶凝胶法制备得到;以金属组分为核,多孔材料为壳;其中金属组分包括第一种金属组分Co,第二种金属组分为Ce、La、Zr中的一种,第三种金属组分Pt、Ru、Rh、Re中的一种;在成品催化剂中,各金属组分的重量百分比为:第一种金属组分:10~35%,第二种金属组分:0.5~10%;第三种组分:0.02~2%,余量为载体;载体为多孔材料,其组分是纳米二氧化硅或氧化铝,其形状为球形;其孔径在1~20nm,比表面积为300~500m2/g,其中活性组分的粒径在0.5~20nm。
优选地,金属组分重量百分比为:第一种金属组分:15~30%,第二种金属组分1%~5%;第三种金属组分:0.05%~2%,余量为载体。
优选地,为了获得主要产物为轻质烃,所述的催化剂载体为多孔材料,其孔径在1~10nm,比表面积为300~400m2/g,其中活性组分的粒径在0.5~5nm。
优选地,为了获得主要产物为中间馏分(C5-C18),所述的催化剂载体为多孔材料,其孔径在10~15nm,比表面积为400~500m2/g,其中活性组分的粒径在6nm~15nm。
优选地,为了使产物中C18+产物含量较高,所述的催化剂载体为多孔材料,其孔径在10~20nm,比表面积为400~500m2/g,其中活性组分的粒径在16~20nm。
所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其制备方法采用有机凝胶模板法,包括如下步骤:
1)原料选取:按各组份重量百分比选取正硅酸乙酯或硝酸铝、第一种金属钴的盐类、第二种金属组分和第三种金属组分的硝酸盐或亚硝酰基硝酸盐或及凝胶模板剂备用;
2)将模板剂溶解在极性溶剂中,然后在恒温下向上述溶液中加入含有各种金属盐的水溶液,加入适量氨水调节pH值到8~10,恒温搅拌0.1~3小时;
3)向上述溶液中加入计算量的正硅酸乙酯或硝酸铝,并继续恒温搅拌3-24小时;
4)对上述反应物在90~150℃下进行喷雾干燥,得到有机-无机杂化材料;
5)将喷雾干燥后的粉末放入马弗炉中,在300~750℃焙烧3h-12h,制得成品催化剂。
优选地,步骤4)利用溶胶凝胶模板法制备得到的凝胶在110~150℃喷雾干燥得到有机-无机杂化材料。
优选地,步骤5)将喷雾干燥后的粉末放入马弗炉中,在350~700℃焙烧5h~10h,制得成品催化剂。
优选地,所用的凝胶模板剂是含有胺基的两亲性线形高分子。
优选地,配置溶液时,所用的第一种活性金属组分钴的盐为硝酸钴、乙酸钴或碳酸钴;第二种金属组分的盐为金属的硝酸盐;第三种金属组分的盐为金属的硝酸盐。
为了更好地解释本发明,以下结合图1和具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1:
称取20g的聚乙烯亚胺,在80℃温度下将其溶解在100mL乙醇中。称取93.8g六水合硝酸钴,39.1g六水合硝酸镧,2.32g硝酸铂,溶解在100mL去离于水中,搅拌使之充分溶解并与溶剂1混合均匀,加入5mL氨水,恒温温搅拌2h后将计算量的正硅酸乙酯加入反应液中,最后将室温搅拌过夜后用喷雾干燥的方法得到的粉末放置在马弗炉中缓慢升温至400℃干燥6h,获得多孔材料限域的用于费托合成的钴基纳米催化剂。制得的纳米催化剂组成为:Co∶La∶Pt∶SiO2=15∶10∶0.5∶74.5。
纳米催化剂活化在加压固定床反应器上进行:取制备好的纳米催化剂100g,装入反应器中,纯H2(纯度>99.9%)为还原气体,体积空速为1000h-1,升温速率为2℃/min,活化温度为350℃,活化压力为0.5MPa,活化时间为4h。
催化反应在浆态床反应器上进行:取活化好的催化剂50g在无水无氧的条件下转移入浆态床反应器中,以聚烯烃为反应介质,通入合成气,合成气中H2∶CO=1.5,调节流量使空速为1000h-1,调节反应器内压力为3.0MPa。设定升温程序,使反应温度以3℃/min的速率从室温升至150℃,然后以2℃/min的速率升温至220℃,在220℃进行反应。得到产物选择性(wt%)结果如下:C1,6.1;C2-4,7.3;C5-11,32.2;C12-18,29.5;C18+,24.9.CO转化率达到81.5。
实施例2:
称取20g的聚乙烯亚胺,在80℃温度下将其溶解在100mL乙醇中。称取53.6g六水合硝酸钴,1.7g六水合硝酸铈,5.9g亚硝酰基硝酸钌,溶解在100mL去离于水中,搅拌使之充分溶解并与溶剂1混合均匀。恒温搅拌2h后将计算量的硝酸铝加入反应液中,最后将室温搅拌过夜后用喷雾干燥的方法得到的粉末放置在马弗炉中缓慢升温至550℃干燥3h,获得多孔材料限域的用于费托合成的钴基催化剂。制得的催化剂组成为:Co∶Ce∶Ru∶Al2O3=10∶0.5∶1.5∶88。
催化剂活化在加压流化床反应器上进行:取制备好的催化剂100g,装入反应器中,纯H2(纯度>99.9%)为还原气体,体积空速为1000h-1,升温速率为2℃/min,活化温度为350℃,活化压力为1.5MPa,活化时间为4h。
催化反应在浆态床反应器上进行:取活化好的催化剂50g在无水无氧的条件下转移入浆态床反应器中,以聚烯烃为反应介质,通入合成气,合成气中H2∶CO=1.5,调节流量使空速为1000h-1,调节反应器内压力为3.0MPa。设定升温程序,使反应温度以3℃/min的速率从室温升至150℃,然后以2℃/min的速率升温至220℃,在220℃进行反应。得到产物选择性(wt%)结果如下:C1,6.8;C2-4,7.9;C5-11,27.2;C12-18,28.6;C18+,29.5.CO转化率达到85.3。
实施例3:
称取20g的聚乙烯亚胺,在80℃温度下将其溶解在100mL乙醇中。称取53.6g六水合硝酸钴,1.7g六水合硝酸铈,5.9g亚硝酰基硝酸钌,溶解在100mL去离于水中,搅拌使之充分溶解并与溶剂1混合均匀。恒温搅拌2h后将计算量的正硅酸乙酯加入反应液中,最后将室温搅拌过夜后用喷雾干燥的方法得到的粉末放置在马弗炉中缓慢升温至450℃干燥3h,获得多孔材料限域的用于费托合成的钴基催化剂。制得的催化剂组成为:Co∶Ce∶Ru∶SiO2=10∶0.5∶1.5∶88。
催化剂活化在加压流化床反应器上进行:取制备好的催化剂100g,装入反应器中,纯H2(纯度>99.9%)为还原气体,体积空速为1000h-1,升温速率为2℃/min,活化温度为350℃,活化压力为1.5MPa,活化时间为4h。
催化反应在浆态床反应器上进行:取活化好的催化剂50g在无水无氧的条件下转移入浆态床反应器中,以聚烯烃为反应介质,通入合成气,合成气中H2∶CO=1.5,调节流量使空速为1000h-1,调节反应器内压力为3.0MPa。设定升温程序,使反应温度以3℃/min的速率从室温升至150℃,然后以2℃/min的速率升温至220℃,在220℃进行反应。得到产物选择性(wt%)结果如下:C1,5.6;C2-4,7.1;C5-11,23.9;C12-18,29.8;C18+,33.6.CO转化率达到76.3。
实施例4:
作为对比,根据专利CN 101698152A的方法制备了钴基费托合成催化剂
称取适量的Al2O3载体,预先在马弗炉中于550℃焙烧4h后取其中100g备用。称取53.6g六水合硝酸钴,1.7g六水合硝酸铈,5.9g亚硝基酰基硝酸钌,溶解在去离子水中,搅拌使之充分溶解并混合均匀,将溶液体积稀释至110mL。采用满孔浸渍法,将溶液浸渍到计算量的Al2O3载体上。将浸渍好的催化剂在80℃下水浴抽真空干燥,然后放置在室温下老化24h。老化后放置在马弗炉中缓慢升温至120℃下干燥6h,然后升温至500℃焙烧8h。制得的催化剂组成为:Co∶Ce∶Ru∶Al2O3=10∶0.5∶1.5∶88。
催化剂活化在加压流化床反应器上进行:取制备好的催化剂100g,装入反应器中,纯H2(纯度>99.9%)为还原气体,体积空速为1000h-1,升温速率为2℃/min,活化温度为350℃,活化压力为1.5MPa,活化时间为4h。
催化反应在浆态床反应器上进行:取活化好的催化剂50g在无水无氧的条件下转移入浆态床反应器中,以聚烯烃为反应介质,通入合成气,合成气中H2∶CO=1.5,调节流量使空速为1000h-1,调节反应器内压力为3.0MPa。设定升温程序,使反应温度以3℃/min的速率从室温升至150℃,然后以2℃/min的速率升温至220℃,在220℃进行反应。得到产物选择性(wt%)结果如下:C1,9.3;C2-4,9.1;C5-11,27.8;C12-18,21.2;C18+,32.6.CO转化率达到71.3。
从以上实施例1~3可以看出:本发明的催化剂活性较高,在合成气空速为1000h-1的条件下,即使Co含量只有10%,CO转化率仍能达到80%以上,说明本方法制备的钴基费托合成催化剂各金属组分的作用明显。在所有实施例中,甲烷选择性较低,C5+以上选择性好。实施例2与实施例4相比,本方法制备得到的催化剂成本较低,甲烷选择性较低,C5+以上选择性更好,特别是C12+以上选择性优势更大。
实施例5-12:
根据本发明的具体实施方法,制备了系列多孔材料限域的费托合成钴基纳米催化剂,其催化性能如表1所示:
表1:钴基纳米催化剂在费托合成中的催化性能
Figure BDA0000112021810000091

Claims (9)

1.一种基于多孔材料限域的费托合成钴基纳米催化剂,其特征在于:它以聚乙烯亚胺为有机凝胶模板,通过溶胶凝胶法制备得到;以金属组分为核,多孔材料为壳;其中金属组分包括第一种金属组分Co, 第二种金属组分为Ce、La、Zr中的一种,第三种金属组分Pt、Ru、Rh中的一种;在成品催化剂中,各金属组分的重量百分比为:第一种金属组分:10~35%,第二种金属组分:0.5~10%;第三种金属组分:0.02~2%,余量为载体;载体为多孔材料,其组分是纳米二氧化硅或氧化铝,其形状为球形;载体孔径在1~20nm,载体比表面积为300~500m2/g,其中活性组分的粒径在0.5~20nm。
2.根据权利要求1所述的基于多孔材料限域的费托合成钴基纳米催化剂,其特征在于:金属组分重量百分比为:第一种金属组分:15~30%,第二种金属组分1%~5%;第三种金属组分:0.05%~2%,余量为载体。
3.根据权利要求1或2所述的多孔材料限域的用于费托合成的钴基催化剂,其特征在于:所述的载体为多孔材料,其孔径在1~10nm,比表面积为300~400m2/g,其中活性组分的粒径在0.5~5nm。
4.根据权利要求1或2所述的基于多孔材料限域的费托合成钴基纳米催化剂,其特征在于:所述的载体为多孔材料,其孔径在10~15nm,比表面积为400~500m2/g,其中活性组分的粒径在6nm~15nm。
5.根据权利要求1或2所述的基于多孔材料限域的费托合成钴基纳米催化剂,其特征在于:所述的载体为多孔材料,其孔径在10~20nm,比表面积为400~500m2/g,其中活性组分的粒径在16~20nm。
6.权利要求1~5任意一项所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其制备方法采用有机凝胶模板法,包括如下步骤:
1)原料选取:按各组份重量百分比选取正硅酸乙酯或硝酸铝、第一种金属钴的水溶性盐类、第二种金属组分和第三种金属组分的硝酸盐或亚硝酰基硝酸盐及有机凝胶模板剂聚乙烯亚胺备用;
2)将模板剂溶解在极性溶剂中,然后在恒温下向上述溶液中加入含有各种金属盐的水溶液,加入适量氨水调节pH值到8~10,恒温搅拌0.1~3小时;
3)向上述溶液中加入计算量的正硅酸乙酯或硝酸铝,并继续恒温搅拌3-24小时;
4)对上述反应物在90~150oC下进行喷雾干燥,得到有机—无机杂化材料;
5)将喷雾干燥后的粉末放入马弗炉中,在300~750oC焙烧3h-12h,制得成品催化剂。
7.根据权利要求6所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其特征在于:
步骤4)利用溶胶凝胶模板法制备得到的凝胶在110~150oC喷雾干燥得到有机—无机杂化材料。
8.根据权利要求6或7所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其特征在于:
步骤5)将喷雾干燥后的粉末放入马弗炉中,在350~700oC焙烧5h~10h,制得成品催化剂。
9.根据权利要求6或7所述的基于多孔材料限域的费托合成钴基纳米催化剂的制备方法,其特征在于:配置溶液时,所用的第一种金属组分钴的盐为硝酸钴或乙酸钴;第二种金属组分的盐为金属的硝酸盐;第三种金属组分的盐为金属的硝酸盐。
CN2011103787941A 2011-11-24 2011-11-24 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法 Active CN102489312B (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN2011103787941A CN102489312B (zh) 2011-11-24 2011-11-24 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
IN970MUN2014 IN2014MN00970A (zh) 2011-11-24 2012-10-17
CA2856748A CA2856748A1 (en) 2011-11-24 2012-10-17 Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
AP2014007678A AP2014007678A0 (en) 2011-11-24 2012-10-17 Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparationmethod therefor
AU2012343061A AU2012343061B2 (en) 2011-11-24 2012-10-17 Fischer-Tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
PCT/CN2012/083091 WO2013075559A1 (zh) 2011-11-24 2012-10-17 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
MYPI2014001481A MY166549A (en) 2011-11-24 2012-10-17 Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
SG11201402557PA SG11201402557PA (en) 2011-11-24 2012-10-17 Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
BR112014012492A BR112014012492B1 (pt) 2011-11-24 2012-10-17 nanocatalisador de cobalto para síntese fischer-tropsch à base de confinamento em material de poroso e método para sua preparação
JP2014542687A JP5947912B2 (ja) 2011-11-24 2012-10-17 多孔質材料閉じ込め系のコバルト系フィッシャー・トロプシュ合成ナノ触媒とその調整方法
KR1020147014655A KR101625987B1 (ko) 2011-11-24 2012-10-17 다공성 재료 갇힘 기반의 피셔-트롭쉬 합성 코발트 나노 결정 및 이의 제조 방법
EP12851601.0A EP2783750A4 (en) 2011-11-24 2012-10-17 COBALT NANOCATALYZER FOR FISCHER-TROPSCH SYNTHESIS BASED ON THE INCLUSION OF POROUS MATERIAL AND METHOD OF MANUFACTURING THEREOF
MX2014006257A MX366574B (es) 2011-11-24 2012-10-17 Nanocatalizador de cobalto para sintesis de fischer-tropsch, basado en confinacion de material poroso, y metodo para su preparacion.
RU2014124012A RU2624441C2 (ru) 2011-11-24 2012-10-17 Кобальтовый нанокатализатор синтеза фишера-тропша, локализованный в пористом материале, и способ его получения
US14/285,665 US9266097B2 (en) 2011-11-24 2014-05-23 Cobalt-based nano catalyst and preparation method thereof
ZA2014/04572A ZA201404572B (en) 2011-11-24 2014-06-20 Fischer-tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103787941A CN102489312B (zh) 2011-11-24 2011-11-24 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN102489312A CN102489312A (zh) 2012-06-13
CN102489312B true CN102489312B (zh) 2013-06-19

Family

ID=46181196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103787941A Active CN102489312B (zh) 2011-11-24 2011-11-24 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法

Country Status (16)

Country Link
US (1) US9266097B2 (zh)
EP (1) EP2783750A4 (zh)
JP (1) JP5947912B2 (zh)
KR (1) KR101625987B1 (zh)
CN (1) CN102489312B (zh)
AP (1) AP2014007678A0 (zh)
AU (1) AU2012343061B2 (zh)
BR (1) BR112014012492B1 (zh)
CA (1) CA2856748A1 (zh)
IN (1) IN2014MN00970A (zh)
MX (1) MX366574B (zh)
MY (1) MY166549A (zh)
RU (1) RU2624441C2 (zh)
SG (1) SG11201402557PA (zh)
WO (1) WO2013075559A1 (zh)
ZA (1) ZA201404572B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489312B (zh) * 2011-11-24 2013-06-19 武汉凯迪工程技术研究总院有限公司 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
JP6435269B2 (ja) * 2012-12-03 2018-12-05 アウディ アクチェンゲゼルシャフトAudi Ag コア−シェル触媒およびパラジウム基コア粒子用の方法
CN103055849B (zh) * 2012-12-27 2016-08-17 新奥科技发展有限公司 一种催化燃烧用复合催化剂及其制备方法
CN104226312B (zh) * 2013-06-20 2017-03-29 北京化工大学 一种核壳结构催化剂、制备方法及其应用
CN104289226B (zh) * 2014-09-08 2016-07-06 芜湖市纽泰知识产权信息咨询有限公司 一种多功能固体催化剂
CN104174443B (zh) * 2014-09-09 2016-04-27 安徽工程大学 一种核壳结构的催化剂
CN104607190B (zh) * 2015-01-30 2018-01-16 武汉凯迪工程技术研究总院有限公司 用于费托合成的单分散过渡金属纳米催化剂及其制备方法和应用
GB201506325D0 (en) * 2015-04-14 2015-05-27 Johnson Matthey Plc Shaped catalyst particle
CN106311358B (zh) * 2015-07-08 2019-03-22 中国石油化工股份有限公司 一种壳层分布型催化剂及其制备方法和一种费托合成方法
CN105797717B (zh) * 2015-09-07 2018-07-20 中国科学院福建物质结构研究所 一种合成草酸二甲酯用催化剂及其制备方法
FR3044004B1 (fr) * 2015-11-23 2017-12-15 Ifp Energies Now Procede de synthese d'hydrocarbures a partir de gaz de synthese en presence d'un catalyseur a base de cobalt piege dans une matrice oxyde mesoporeuse et obtenu a partir d'au moins un precurseur colloidal
FR3044005B1 (fr) * 2015-11-23 2017-12-15 Ifp Energies Now Procede de synthese d'hydrocarbures a partir de gaz de synthese en presence d'un catalyseur a base de cobalt piege dans une matrice oxyde mesoporeuse et obtenu a partir d'au moins un precurseur monomerique
WO2017131231A1 (ja) * 2016-01-29 2017-08-03 Jxエネルギー株式会社 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
CN108654638B (zh) * 2017-03-30 2020-12-11 神华集团有限责任公司 一种核壳型钴基费托合成催化剂及其制备方法
CN107185572A (zh) * 2017-05-09 2017-09-22 中科合成油技术有限公司 包含氮化物载体的费托合成催化剂及其制备方法和应用
CN109876866B (zh) * 2017-12-06 2022-03-08 中国石油化工股份有限公司 一种用于芳香醛合成芳香胺的催化剂及其制备方法
CN114160130B (zh) * 2021-12-21 2024-03-19 黑龙江省能源环境研究院 一种限域纳米金有序多孔整体催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698152A (zh) * 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN102000575A (zh) * 2010-09-20 2011-04-06 中国科学院山西煤炭化学研究所 一种用于浆态床反应器的钴基费托合成催化剂及其制备和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458741B1 (en) * 1999-12-20 2002-10-01 Eltron Research, Inc. Catalysts for low-temperature destruction of volatile organic compounds in air
GB0503818D0 (en) * 2005-02-25 2005-04-06 Johnson Matthey Plc Catalysts
US8475921B2 (en) * 2005-07-21 2013-07-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material, composite material substrate, composite material dispersed fluid, and manufacturing methods thereof
CN100493701C (zh) * 2007-05-08 2009-06-03 中科合成油技术有限公司 一种进行费托合成反应的方法及其专用催化剂
KR100837377B1 (ko) * 2007-05-29 2008-06-12 한국화학연구원 지르코니아와 알루미나의 혼합담체를 이용한 피셔-트롭쉬 반응용 촉매 및 이를 이용한 합성가스로부터 액체탄화수소의 제조방법
KR101397020B1 (ko) * 2007-11-20 2014-05-21 삼성에스디아이 주식회사 연료전지용 전극촉매, 그 제조방법, 상기 전극촉매를포함하는 전극을 구비한 연료전지
KR100918105B1 (ko) * 2008-03-27 2009-09-22 한국화학연구원 피셔-트롭쉬 합성용 코발트/지르코늄-인/실리카 촉매와이의 제조방법
US8168561B2 (en) * 2008-07-31 2012-05-01 University Of Utah Research Foundation Core shell catalyst
CN101444711B (zh) * 2008-12-11 2012-04-04 上海医脉赛科技有限公司 一种核壳结构的磁性二氧化硅复合微球及其制备方法
WO2010093909A1 (en) * 2009-02-12 2010-08-19 The Regents Of The University Of California Hollow metal oxide spheres and nanoparticles encapsulated therein
FR2945756B1 (fr) * 2009-05-20 2011-08-05 Commissariat Energie Atomique Materiau solide nanocomposite a base d'hexa-et octacyanometallates, son procede de preparation et procede de fixation de polluants mineraux le mettant en oeuvre.
CN101804351B (zh) * 2010-04-01 2012-05-30 中国科学院山西煤炭化学研究所 一种用于合成气制备中间馏分油核壳结构钴基催化剂的制法及应用
CN102489312B (zh) * 2011-11-24 2013-06-19 武汉凯迪工程技术研究总院有限公司 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698152A (zh) * 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN102000575A (zh) * 2010-09-20 2011-04-06 中国科学院山西煤炭化学研究所 一种用于浆态床反应器的钴基费托合成催化剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Oyvind Borg, et al..The effect of water on the activity and selectivity for gama-alumina supported cobalt Fischer-Tropsch catalysts with different pore sizes.《Catalysis Letters》.2006,第107卷(第1-2期),第95-102页.
The effect of water on the activity and selectivity for gama-alumina supported cobalt Fischer-Tropsch catalysts with different pore sizes;Oyvind Borg, et al.;《Catalysis Letters》;20060228;第107卷(第1-2期);第95-102页 *

Also Published As

Publication number Publication date
JP5947912B2 (ja) 2016-07-06
AP2014007678A0 (en) 2014-06-30
US9266097B2 (en) 2016-02-23
MY166549A (en) 2018-07-16
AU2012343061B2 (en) 2016-04-28
KR101625987B1 (ko) 2016-05-31
JP2014534068A (ja) 2014-12-18
AU2012343061A1 (en) 2014-06-12
EP2783750A4 (en) 2015-08-05
BR112014012492B1 (pt) 2020-01-21
CN102489312A (zh) 2012-06-13
EP2783750A1 (en) 2014-10-01
ZA201404572B (en) 2015-09-30
WO2013075559A1 (zh) 2013-05-30
KR20140097266A (ko) 2014-08-06
MX2014006257A (es) 2014-09-22
RU2624441C2 (ru) 2017-07-04
MX366574B (es) 2019-07-12
SG11201402557PA (en) 2014-09-26
BR112014012492A2 (pt) 2017-06-06
CA2856748A1 (en) 2013-05-30
RU2014124012A (ru) 2015-12-27
US20140256535A1 (en) 2014-09-11
IN2014MN00970A (zh) 2015-04-24

Similar Documents

Publication Publication Date Title
CN102489312B (zh) 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
Singh et al. Dry reforming of methane using various catalysts in the process
CN103100415B (zh) 活性组分纳米颗粒嵌入分子筛结晶的催化剂、方法及应用
CN111229215B (zh) 一种基于碳量子点诱导的金属高分散负载型催化剂及其制备方法和应用
CN103007945B (zh) 负载型铜镍合金纳米颗粒催化剂及其制法和在甲烷二氧化碳重整制合成气中的应用
CN101698152A (zh) 一种钴基费托合成催化剂及其制备方法和应用
CN106000443A (zh) 一种一步合成高效稳定的甲烷干重整催化剂的制备方法
JPWO2011108347A1 (ja) フィッシャー・トロプシュ合成触媒及びその製造方法、並びに炭化水素の製造方法
EP4046710A1 (en) Core-shell iron-based catalyst used for direct production of aromatic hydrocarbons from syngas, and preparation method and application therefor
Zhang et al. Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation
CN102441386B (zh) 费托合成方法
CN105665003A (zh) 一种多级孔分子筛催化剂及其制备方法
KR101524574B1 (ko) 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법
CN114768859A (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN110433815A (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
Wang et al. Hydrotalcite-derived Ni-LDO catalysts via new approach for enhanced performances in CO2 catalytic reduction
RU2675839C1 (ru) Нанокатализатор из монодисперсного переходного металла для синтеза фишера-тропша, способ его приготовления и его применение
CN101411989A (zh) 一种大孔和介孔混合的硅基分子筛为载体的Co基费托合成催化剂的制备及其应用
Guan et al. Ni-based core-shell structured catalysts for efficient conversion of CH4 to H2: A review
CN111215047A (zh) 一种合成气制清洁调和燃料的催化剂及其制备与应用
CN112517015B (zh) 一种镍基甲烷化催化剂的活化方法
US10563131B2 (en) Method for synthesizing hydrocarbons from a syngas in the presence of a cobalt catalyst trapped in a mesoporous oxide matrix and obtained from at least one colloidal precursor
WO2009154099A1 (ja) フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにその触媒を用いる炭化水素類の製造方法
CN108472633A (zh) 在基于捕获在中孔氧化物基质中的钴并由至少一种单体前体获得的催化剂的存在下由合成气合成烃的方法
CN117101669A (zh) 一种含Ge助剂的铜基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant