CN102434137A - 超低界面张力耦合式空气泡沫驱油方法 - Google Patents

超低界面张力耦合式空气泡沫驱油方法 Download PDF

Info

Publication number
CN102434137A
CN102434137A CN2011104233276A CN201110423327A CN102434137A CN 102434137 A CN102434137 A CN 102434137A CN 2011104233276 A CN2011104233276 A CN 2011104233276A CN 201110423327 A CN201110423327 A CN 201110423327A CN 102434137 A CN102434137 A CN 102434137A
Authority
CN
China
Prior art keywords
oil
water
air
displacement
interfacial tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104233276A
Other languages
English (en)
Other versions
CN102434137B (zh
Inventor
杨怀军
马先平
杨德华
郭志强
纪朝凤
崔丹丹
闫云贵
程海鹰
于娣
陈智宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201110423327.6A priority Critical patent/CN102434137B/zh
Publication of CN102434137A publication Critical patent/CN102434137A/zh
Application granted granted Critical
Publication of CN102434137B publication Critical patent/CN102434137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Earth Drilling (AREA)

Abstract

本发明涉及一种超低界面张力耦合式空气泡沫驱油方法,将空气和发泡剂在地面混合注入到油层,并在油层中产生空气泡沫液,第一步先注入强空气泡沫液GFPA,在高渗透水窜通道内产生高强渗流阻力,迫使第二步后续注入的超低界面张力空气泡沫体系ODS进入低渗透层,ODS在低渗透层遇油消泡、降低渗流阻力,油水界面张力超低,驱油效率高;随后,GFPA和ODS交替注入。该方法主要用于高含水开发后期老油田提高采收率。

Description

超低界面张力耦合式空气泡沫驱油方法
技术领域
本发明涉及三次采油技术中一种提高原油采收率的驱油方法。
背景技术
随着全球经济迅猛的发展,人类对石油的需求也越来越大。目前,由于勘探技术已经陷入瓶颈,新区块的发现越来越难,所以三次采油技术越来越多的应用到老油田中,以此来保证油田的稳产。中国陆相沉积油藏老油田三次采油技术中,发展最快的是化学驱方法,其中聚合物驱和复合驱油法已经被广泛应用到各个油田的开发中并取得了很好的效果。由于聚合物驱和复合驱油技术存在着在复杂断块的双高油藏上的局限性,科研人员提出了一种新的驱油方法-空气泡沫驱油方法。
空气泡沫驱作为三次采油的一项新技术,近几年越来越受到重视。空气泡沫体系由起泡剂、稳泡剂和空气组成,不受高温、高矿化度、高浓度钙镁离子影响,气源丰富,比注氮气泡沫、活性水经济。空气注入油藏后,O2与原油发生低温氧化反应,产生CO2、水及含氧的烃类化合物。直接起驱油作用的并不是空气,而是在油层内生成的CO、CO2、N2和蒸发的轻烃组分等组成的烟道气,在地层孔隙中与起泡剂相互作用,由于液膜滞后、颈缩分离、薄膜卡断等原因形成泡沫,泡沫挤压、占据和乳化作用可达到驱油效果。泡沫在多孔介质中的视黏度随介质孔隙的增大而升高,高黏度和气阻效应抑制了黏性指进,对优势渗流通道有一定的封堵作用,提高波及体积和油藏能量;同时低温氧化反应消耗氧气,依靠气体重力分异作用,改善了油层上部的开发效果。空气泡沫驱油技术是目前三次采油中较为前沿的驱油方法。对油藏条件下形成空气泡沫,能够对水驱的串流通道进行有效封堵,从而扩大波及体积,以此达到提高采收率的目的。
空气泡沫驱技术能够在水驱基础上依靠扩大波及体积的作用和烟道气混相驱的作用波及水驱未动用的剩余油,以此来提高原油采收率。空气泡沫驱虽然能够扩大波及体积,由于空气泡沫体系与原油的界面张力值过大,一般和油水界面张力相近,在1-30mN/m范围内,驱油效率的提高值很小,驱油机理单一,常规空气泡沫很难进入低渗透层,所以低渗层的原油动用程度不高,大量剩余油仍然滞留在低渗透层未被驱出,所以该技术尚未在现场试验中取得突破进展。
发明内容
为克服上述现有技术存在的缺陷,本发明要解决的技术问题是提供一种超低界面张力耦合式空气泡沫驱油方法,将空气和发泡剂溶液在地面混合注入,在油层中产生空气泡沫液,利用两种不同性质的空气泡沫剂体系进行交替注入,通过二者在高低渗透层界面产生的耦合作用,高油水界面张力的强空气泡沫体系GFPA进入高渗透层,遇油不消泡,高效封堵高渗透层,使后续的超低界面张力空气泡沫体系ODS进入高含油饱和度的低渗透层(ODS在低渗层与油接触),ODS遇油消泡发挥,在低渗透层泡沫消除,超低界面张力的ODS液体和空气则在低渗透层的渗流阻力更小,提高低渗透层的驱油效率,降低残余油饱和度,大幅提高原油采收率。
本发明超低界面张力耦合式空气泡沫驱油方法,包括如下步骤:
步骤a.使用地层砂填压制作填砂管岩心,渗透率极差3-4倍,两支高低渗透率岩心为一组并联模型,称干重抽空饱和水,称量饱和水后模型重量,计算孔隙体积及孔隙度;测定岩心水相渗透率,油驱水建立束缚水饱和度,置模型于恒温箱24小时后备用,岩心渗透率等参数不符合设计要求重复上述步骤;
步骤b.将一组双管并联饱和油岩心接入水驱油实验流程,恒温箱保持油藏温度,以5m/d水驱速度进行水驱,岩心出口设置2MPa回压,水驱至2PV,含水达到98%停止水替,驱替过程中每0.1PV记录油量、液量、压力,并计算采收率、含水率;
步骤c.水驱结束后,改注超低界面张力耦合式空气泡沫驱段塞,注入方式为气液同注,气液比为1∶1,岩心出口设置2MPa回压,注入气体流量折算到常压下为液体流量的20倍,气液总的驱替速度与水驱驱替速度保持一致;首先注入强发泡体系GFPA-2与空气,驱替至0.5PV后,改注超低界面张力泡沫体系ODS-1和空气,驱替至0.5PV后,然后再转注高效发泡体系GFPA-2和空气,驱替0.5PV,以该交替方式累计注入4PV。在驱替过程中每0.1PV记录油量、液量、注入压力,并计算采收率、含水率;
步骤d.累计注入超低界面张力耦合式空气泡沫驱段塞4PV后,转入后续水驱(水驱速度5m/d),继续水驱1PV后结束实验。在驱替过程中,每0.1PV间隔记录油量、液量、压力,并计算含水率、最终采收率。
空气和发泡剂溶液在地面混合注入到油层,在油层中发泡,所述强发泡剂体系为质量浓度0.4%的发泡剂溶液GFPA-2,发泡率500%,油水界面张力为10~10-1mN/m数量级;所述超低界面张力泡沫体系为质量浓度0.4%的发泡剂溶液ODS-1,发泡率400%,油水界面张力为10-3mN/m数量级。
采用这样的技术方案后,本发明超低界面张力耦合式空气泡沫驱油方法可使注水开发后期老油田的采收率大幅度提高。该方法具有以下优点:
1.空气和发泡剂溶液在地面混合注入到油层,在油层中发泡;
2.高效发泡剂体系主要进入高渗透层,发泡率达500%,泡沫耐油稳定性强,有效封堵高渗透层,增加渗流阻力,扩大波及体积;
3.超低界面张力泡沫剂体系的发泡率在400%以上,油水界面张力达到10m-3N/m数量级,该体系在高渗透层被前期注入的高效发泡体系封堵后,主要进入含油饱和度较高的低渗透层,该体系在低渗透层遇油后消泡,降低泡沫的渗流阻力,同时产生超低油水界面张力,使残余油流动,提高驱油效率;
4.交替注入两种空气泡沫体系,强(高效)发泡剂体系封堵高渗透层,扩大波及体积,超低界面张力泡沫剂体系在高效发泡剂体系封堵高渗透层后进入低渗透层,降低油水界面张力,驱替残余油,提高驱油效率,二者不断地交替注入,在油藏的高、低渗透层过渡带形成耦合作用,使空气泡沫不断进入高渗透层、超低界面张力发泡剂不断进入低渗透层,实现大幅度提高原油采收率。
附图说明
以下结合附图对本发明的具体实施方式作进一步详细的说明:
图1为极限水驱油综合曲线;
图2为空气驱油综合曲线;
图3为纯发泡剂驱油综合曲线;
图4为常规空气泡沫驱油综合曲线;
图5为超低界面张力耦合式空气泡沫驱油综合曲线。
具体实施方式
以下实施例分别是极限水驱、发泡剂驱、空气驱、常规空气泡沫驱和超低界面张力耦合式空气泡沫驱。实例中所用人造岩心参数表见表1。实验温度参照大港油田港东二区五断块油藏条件定为65℃,配制水为港东二区五断块地层注入水。
高效(强)发泡剂体系为质量浓度0.4%的发泡剂溶液GFPA-2,发泡率500%,油水界面张力为10-1mN/m;
超低界面张力泡沫体系为质量浓度0.4%的发泡剂溶液ODS-1,发泡率400%,油水界面张力为10-3mN/m。
实验数据的录取
1)压力录取
驱替过程中每间隔0.05PV进行一次注入压力值的录取,最终使用excel绘制注入压力曲线变化情况;
2)油水数据录取
驱替过程中每间隔0.05PV进行一次油量和液量的计量,同时计算注入PV数、含水率、采收率等相关参数,最后使用excel绘制驱油综合曲线。
表1实例岩心驱油实验参数表
Figure BDA0000121196210000051
实施例1:极限水驱双管并联岩心实验
将一组双管并联岩心(已饱和油)接入水驱油实验流程(已在油藏温度下恒温),以水驱速度5m/d进行水驱油实验,水驱至2PV后(含水98%),继续水驱5PV,直至出口不再出油时结束实验,在驱替过程中,每0.1PV间隔记录压力变化值、含水率及采出程度变化情况,计算最终采收率,详见附图1。
实施例2:空气驱双管并联岩心实验
将一组双管并联岩心接入水驱油实验流程(已在油藏温度下恒温),以水驱速度5m/d进行水驱,水驱至2PV后(含水98%),转注空气(用空气质量流量计控制注入压力条件下的体积)4PV,再后续水驱1PV结束实验;在驱替过程中,空气的驱替速度与水驱驱替速度保持一致,每0.1PV间隔记录压力变化值、含水率及采出程度变化情况,计算最终采收率,详见附图2。
实施例3:纯发泡剂(表活剂)驱双管并联岩心实验
将一组双管并联岩心接入水驱油实验流程(已在油藏温度下恒温),以水驱速度5m/d进行水驱,水驱至2PV(含水98%)后,改为现场污水配制的表面活性剂溶液驱替4PV,再后续水驱1PV结束实验;在驱替过程中,空气的驱替速度与水驱驱替速度保持一致,每0.1PV间隔记录压力变化值、含水率及采出程度变化情况,计算最终采收率,详见附图3。
实施例4:空气泡沫驱双管并联实验
将一组双管并联岩心接入水驱油实验流程(已在油藏温度下恒温),以水驱速度5m/d进行水驱,水驱至2PV(含水98%)后,改为空气泡沫驱替4PV,再后续水驱1PV结束实验;在驱替过程中,保持气液比为1∶1,气液两相总的驱替速度与水驱驱替速度保持一致,每0.1PV间隔记录压力变化值、含水率及采出程度变化情况,计算最终采收率,详见附图4。
实施例5:超低界面张力耦合式空气泡沫驱双管并联实验
将一组双管并联岩心接入水驱油实验流程(已在油藏温度下恒温),以水驱速度5m/d进行水驱,水驱至2PV(含水98%)后,改为超低界面张力耦合式空气泡沫驱替4PV,再后续水驱1PV结束实验;在驱替过程中,保持气液比为1∶1,气液总的驱替速度与水驱驱替速度保持一致,首先使用高效发泡体系GFPA-2进行驱替,驱替至0.5PV后改为超低界面张力空气泡沫体系ODS-1进行驱替,驱替至0.5PV后再次转为高效发泡体系GFPA-2,以该方式交替注入4PV,替过程中每间隔0.1PV记录压力变化值、含水率及采出程度变化情况,详见附图5。
通过以上5个实例的综合对比可以看出,使用超低界面张力空气泡沫体系与高效发泡空气泡沫体系交替注入的“超低界面张力耦合式空气泡沫驱”,提高采出率幅度最大,在水驱基础上可以提高22.8%,比常规空气泡沫驱提高4.1%。说明使用高效发泡体系封堵后再使用超低界面张力空气泡沫体系驱油是一种能够大幅度提高原油采收率的驱替新方法,适合于含水达到98%的注水开发后期老油田,具有较为广阔的应用前景。

Claims (2)

1.一种超低界面张力耦合式空气泡沫驱油方法,包括如下步骤:
步骤a.使用地层砂填压制作填砂管岩心,渗透率极差3-4倍,两支高低渗透率岩心为一组并联模型,称干重抽空饱和水,称量饱和水后模型重量,计算孔隙体积及孔隙度;测定岩心水相渗透率,油驱水建立束缚水饱和度,置模型于恒温箱24小时后备用,岩心渗透率等参数不符合设计要求重复上述步骤;
步骤b.将一组双管并联饱和油岩心接入水驱油实验流程,恒温箱保持油藏温度,以5m/d水驱速度进行水驱,岩心出口设置2MPa回压,水驱至2PV,含水达到98%停止水替,驱替过程中每0.1PV记录油量、液量、压力,并计算采收率、含水率;
步骤c.水驱结束后,改注超低界面张力耦合式空气泡沫驱段塞,注入方式为气液同注,气液比为1∶1,岩心出口设置2MPa回压,注入气体流量折算到常压下为液体流量的20倍,气液总的驱替速度与水驱驱替速度保持一致;首先注入强发泡体系GFPA-2与空气,驱替至0.5PV后,改注超低界面张力泡沫体系ODS-1和空气,驱替至0.5PV后,然后再转注高效发泡体系GFPA-2和空气,驱替0.5PV,以该交替方式累计注入4PV。在驱替过程中每0.1PV记录油量、液量、注入压力,并计算采收率、含水率;
步骤d.累计注入超低界面张力耦合式空气泡沫驱段塞4PV后,转入后续水驱(水驱速度5m/d),继续水驱1PV后结束实验。在驱替过程中,每0.1PV间隔记录油量、液量、压力,并计算含水率、最终采收率。
2.根据权利要求1所述的超低界面张力耦合式空气泡沫驱油方法,其特征是:空气和发泡剂溶液在地面混合注入到油层,在油层中发泡,所述强发泡剂体系为质量浓度0.4%的发泡剂溶液GFPA-2,发泡率500%,油水界面张力为10~10-1mN/m数量级;所述超低界面张力泡沫体系为质量浓度0.4%的发泡剂溶液ODS-1,发泡率400%,油水界面张力为10-3mN/m数量级。
CN201110423327.6A 2011-12-16 2011-12-16 超低界面张力耦合式空气泡沫驱油方法 Active CN102434137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110423327.6A CN102434137B (zh) 2011-12-16 2011-12-16 超低界面张力耦合式空气泡沫驱油方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110423327.6A CN102434137B (zh) 2011-12-16 2011-12-16 超低界面张力耦合式空气泡沫驱油方法

Publications (2)

Publication Number Publication Date
CN102434137A true CN102434137A (zh) 2012-05-02
CN102434137B CN102434137B (zh) 2014-08-06

Family

ID=45982460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110423327.6A Active CN102434137B (zh) 2011-12-16 2011-12-16 超低界面张力耦合式空气泡沫驱油方法

Country Status (1)

Country Link
CN (1) CN102434137B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865898A (zh) * 2012-08-27 2013-01-09 中国石油大学(华东) 一种测量并联岩心泡沫驱气相分流量的装置及方法
CN102980828A (zh) * 2012-08-27 2013-03-20 中国石油大学(华东) 一种测量单管岩心泡沫驱气相饱和度的装置及方法
CN103306648A (zh) * 2013-06-28 2013-09-18 成都理工大学 稠油泡沫驱的方法
CN103344525A (zh) * 2013-08-02 2013-10-09 成都理工大学 一种泡沫在孔隙介质中有效粘度的测定方法及设备
CN104358551A (zh) * 2014-09-10 2015-02-18 中国石油大学(北京) 一种低氧泡沫驱油方法
CN104806214A (zh) * 2015-03-23 2015-07-29 中国石油天然气股份有限公司 一种适用于低渗油藏的渗吸采油方法及实验室模拟方法
CN105953076A (zh) * 2016-05-20 2016-09-21 西南石油大学 一种螺旋槽孔注泡沫稠油流动减阻装置与方法
CN104762078B (zh) * 2015-03-18 2017-12-15 西南石油大学 一种多功能空气泡沫驱用发泡体系
CN108229051A (zh) * 2018-01-18 2018-06-29 陕西延长石油(集团)有限责任公司研究院 一种预测油藏空气泡沫驱采收率的方法
CN108318398A (zh) * 2018-01-08 2018-07-24 中国石油天然气股份有限公司 稠油油藏高温高压驱油效率实验装置及其实验方法
CN110924913A (zh) * 2018-09-18 2020-03-27 中国石油天然气股份有限公司 泡沫驱地层压力的获取方法及装置
CN111175453A (zh) * 2020-01-14 2020-05-19 重庆科技学院 一种超高分子聚合物对含硫污水回注驱油测量装置及方法
CN113090233A (zh) * 2021-03-26 2021-07-09 中国石油大学(华东) 一种模拟非均质储层co2驱注采耦合实验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2135713A (en) * 1983-02-23 1984-09-05 Lion Corp Micellar slug for oil recovery
CN1291253A (zh) * 1998-04-06 2001-04-11 大庆石油管理局 泡沫复合驱油方法
CN101580705A (zh) * 2009-06-12 2009-11-18 中国石油大学(华东) 一种用于普通稠油油藏的低气液比泡沫起泡剂及其注入方法
CN102061906A (zh) * 2010-12-09 2011-05-18 延长油田股份有限公司 油田采油用空气泡沫段塞驱油工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2135713A (en) * 1983-02-23 1984-09-05 Lion Corp Micellar slug for oil recovery
CN1291253A (zh) * 1998-04-06 2001-04-11 大庆石油管理局 泡沫复合驱油方法
CN101580705A (zh) * 2009-06-12 2009-11-18 中国石油大学(华东) 一种用于普通稠油油藏的低气液比泡沫起泡剂及其注入方法
CN102061906A (zh) * 2010-12-09 2011-05-18 延长油田股份有限公司 油田采油用空气泡沫段塞驱油工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
冯庆贤,唐国庆,陈智宇,马同海: "水/气交替驱微观实验研究", 《油气采收率技术》 *
李炼民等: "应用水平井注水提高老油田的采收率", 《国外油田工程》 *
许关利等: "超低界面张力泡沫驱油方案的优化", 《油气田地面工程》 *
赵长久等: "超低界面张力泡沫体系驱先导性矿场试验研究", 《石油勘探与开发》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980828A (zh) * 2012-08-27 2013-03-20 中国石油大学(华东) 一种测量单管岩心泡沫驱气相饱和度的装置及方法
CN102865898B (zh) * 2012-08-27 2014-08-06 中国石油大学(华东) 一种测量并联岩心泡沫驱气相分流量的装置及方法
CN102980828B (zh) * 2012-08-27 2015-07-15 中国石油大学(华东) 一种测量单管岩心泡沫驱气相饱和度的装置的工作方法
CN102865898A (zh) * 2012-08-27 2013-01-09 中国石油大学(华东) 一种测量并联岩心泡沫驱气相分流量的装置及方法
CN103306648A (zh) * 2013-06-28 2013-09-18 成都理工大学 稠油泡沫驱的方法
CN103306648B (zh) * 2013-06-28 2015-12-09 成都理工大学 稠油泡沫驱的方法
CN103344525A (zh) * 2013-08-02 2013-10-09 成都理工大学 一种泡沫在孔隙介质中有效粘度的测定方法及设备
CN103344525B (zh) * 2013-08-02 2015-05-06 成都理工大学 一种泡沫在孔隙介质中有效粘度的测定方法及设备
CN104358551A (zh) * 2014-09-10 2015-02-18 中国石油大学(北京) 一种低氧泡沫驱油方法
CN104762078B (zh) * 2015-03-18 2017-12-15 西南石油大学 一种多功能空气泡沫驱用发泡体系
CN104806214A (zh) * 2015-03-23 2015-07-29 中国石油天然气股份有限公司 一种适用于低渗油藏的渗吸采油方法及实验室模拟方法
CN104806214B (zh) * 2015-03-23 2017-06-13 中国石油天然气股份有限公司 一种适用于低渗油藏的渗吸采油方法及实验室模拟方法
CN105953076A (zh) * 2016-05-20 2016-09-21 西南石油大学 一种螺旋槽孔注泡沫稠油流动减阻装置与方法
CN108318398A (zh) * 2018-01-08 2018-07-24 中国石油天然气股份有限公司 稠油油藏高温高压驱油效率实验装置及其实验方法
CN108229051A (zh) * 2018-01-18 2018-06-29 陕西延长石油(集团)有限责任公司研究院 一种预测油藏空气泡沫驱采收率的方法
CN108229051B (zh) * 2018-01-18 2021-05-11 陕西延长石油(集团)有限责任公司研究院 一种预测油藏空气泡沫驱采收率的方法
CN110924913A (zh) * 2018-09-18 2020-03-27 中国石油天然气股份有限公司 泡沫驱地层压力的获取方法及装置
CN110924913B (zh) * 2018-09-18 2021-09-28 中国石油天然气股份有限公司 泡沫驱地层压力的获取方法及装置
CN111175453A (zh) * 2020-01-14 2020-05-19 重庆科技学院 一种超高分子聚合物对含硫污水回注驱油测量装置及方法
CN113090233A (zh) * 2021-03-26 2021-07-09 中国石油大学(华东) 一种模拟非均质储层co2驱注采耦合实验装置及方法
CN113090233B (zh) * 2021-03-26 2023-02-17 中国石油大学(华东) 一种模拟非均质储层co2驱注采耦合实验装置及方法

Also Published As

Publication number Publication date
CN102434137B (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
CN102434137B (zh) 超低界面张力耦合式空气泡沫驱油方法
Xu et al. A review of development methods and EOR technologies for carbonate reservoirs
Alagorni et al. An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection
CN103498643B (zh) 一种用于高含水油藏的复合段塞深部堵水方法
CN102504788B (zh) 一种适用于油田开发的发泡剂
Riazi et al. Experimental study of pore-scale mechanisms of carbonated water injection
Lang et al. Experimental study and field demonstration of air-foam flooding for heavy oil EOR
CN102618246B (zh) 一种适用于油田开发的泡沫复合驱油方法
CN100591742C (zh) 一种提高油藏原油采收率的方法
CN102061906B (zh) 油田采油用空气泡沫段塞驱油工艺
CN104213870B (zh) 一种水驱稠油油***造泡沫油开采方法
CN103541705B (zh) 超稠油油藏蒸汽驱的高温堵调设备和高温堵调方法
CN103867169B (zh) 气溶性表面活性剂用于二氧化碳驱油流度控制中的方法
Srivastava et al. A systematic study of alkaline-surfactant-gas injection as an EOR technique
CN103865509B (zh) 用于提高凝析气藏采收率的长效混合氟碳表面活性剂处理剂及其应用
CN101580705A (zh) 一种用于普通稠油油藏的低气液比泡沫起泡剂及其注入方法
CN106567698A (zh) 一种聚驱后自生二氧化碳体系提高石油采收率的方法
CN104213886A (zh) 一种稠油油***造泡沫油吞吐开采方法
CN110776899A (zh) 一种高温高盐油藏原位乳化增黏体系及其应用
CN103834379A (zh) 一种蠕虫状胶束泡沫体系以及用其提高采收率的方法
Farajzadeh et al. Effect of Continuous, Trapped, and Flowing Gas on Performance of Alkaline Surfactant Polymer ASP Flooding
CN104498016A (zh) 二氧化碳驱油用泡沫剂及其制备方法
CN105315982A (zh) 一种二元复合驱后三相强化泡沫驱油体系
Kuhlman et al. CO2 foam with surfactants used below their critical micelle concentrations
CN103628846A (zh) 一种提高低渗透油藏co2驱效率的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant