CN102320581A - 一种氮气制取工艺 - Google Patents

一种氮气制取工艺 Download PDF

Info

Publication number
CN102320581A
CN102320581A CN201110252527A CN201110252527A CN102320581A CN 102320581 A CN102320581 A CN 102320581A CN 201110252527 A CN201110252527 A CN 201110252527A CN 201110252527 A CN201110252527 A CN 201110252527A CN 102320581 A CN102320581 A CN 102320581A
Authority
CN
China
Prior art keywords
nitrogen
rectifying tower
rectifying
reparation technology
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110252527A
Other languages
English (en)
Inventor
彭辉
王好民
孙记章
刘中杰
叶楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Original Assignee
KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd filed Critical KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Priority to CN201110252527A priority Critical patent/CN102320581A/zh
Publication of CN102320581A publication Critical patent/CN102320581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明属于空气分离技术领域,特别涉及一种氮气制取工艺。所述氮气制取工艺,依次包括空气的除杂、压缩、预冷、净化,净化后的空气冷却至饱和温度后进入精馏塔下部进行精馏,在精馏塔顶部得到氮气。本工艺空气压缩机排压低、能耗低,大大降低了空分制氮装置的能耗要求,符合国家现在的对高耗能产业的节能减排的要求,同时氮气提取率可达到45-65%。

Description

一种氮气制取工艺
技术领域
本发明属于空气分离技术领域,特别涉及一种氮气制取工艺。
背景技术
随着社会经济的发展,近年来,高纯氮设备的应用领域不断扩展,如石化、玻璃、橡胶、建筑板材、多晶硅、碳纤维等行业都有涉足。工业对氮气的需求量是不断增加的,同时对节能降耗也不断提出更高的要求。因此,要想在市场上占有主动地位,就必须提高产品的提取率,降低装置的运行能耗,挖掘设备运行的节能潜力,同时研发新的制氮工艺。
发明内容
本发明的目的在于提供一种氮气制取工艺,克服目前工艺产品提取率低、装置运行能耗较大的缺陷。
本发明采用的技术方案如下:
一种氮气制取工艺,依次包括空气的除杂、压缩、预冷、净化,净化后的空气冷却至饱和温度后进入精馏塔下部进行精馏,在精馏塔顶部得到氮气。
精馏后在精馏塔底部获得的富氧液空经过过冷节流后进入精馏塔顶部的冷凝蒸发器与氮气相变换热,冷凝获得的液氮部分返回精馏塔作为回流液,部分送出作为液氮产品。
与氮气相变换热后的空气作为废气从冷凝蒸发器引出后经过过冷器、主换热器复热,之后去透平膨胀机膨胀。
膨胀后废气进入主换热器与净化后的空气换热,换热后部分作为纯化***再生气。
精馏塔顶部得到的氮气出精馏塔后进入主换热器复热至常温后送至用户。
本领域技术人员根据工艺需要,也可以调整膨胀后废气进入过冷器后再进入主换热器进行换热。
其中提到的空气压缩一般压缩至比产品氮气要求压力高70-95Kpa。
以上工艺氮气的提取率为45-58%,获得的氮气压力(即氮气产品要求压力)为450-1100Kpa,氮气中02为1-100ppm。
本发明还进一步提供了两种更为节能降耗的优选方案:
1)空气除杂后压缩至比产品氮气要求压力低40-100Kpa;净化后的空气进入主换热器被冷却之前,再次增压,至比产品氮气要求压力高30-40Kpa。
具体的,净化后的空气可进入增压透平膨胀机组的增压端进行增压。
优选采用理论塔板数为60-90或对应填料60-120盘的规整填料精馏塔进行精馏。
本方案相对于前述的基本工艺可以减少原料空气的进料量为基本工艺的10-12%,以进一步提高提取率。
2)空气除杂后压缩至比产品氮气要求压力低100-180Kpa;精馏塔顶部得到的氮气出精馏塔后进入主换热器复热至常温后增压至产品氮气要求压力送至用户。
具体的,可以通过复热至常温后进入增压透平膨胀机组的增压端进行增压。
优选采用理论塔板数为60-90或对应填料60-120盘的规整填料精馏塔进行精馏。
本方案相对于前述的基本工艺可以减少原料空气的进料量为基本工艺的15%,以进一步提高提取率。
下面对本发明的工艺进行具体阐述:
1.基本工艺:原料空气经空气过滤器除去空气中的灰尘和杂质,然后被空气压缩机压缩至比氮气产品要求压力高70-95Kpa,再经预冷***降低空气温度为5-8℃,分离掉游离水后进入纯化***,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气经主换热器与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔下部参加精馏。在精馏塔顶部得到高纯氮气,底部得到富氧液空。塔底的富氧经过过冷器节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器、主换热器复热后去透平膨胀机膨胀,给装置补增冷量,膨胀废气根据工艺需要可选择性的经过过冷器,之后经过主换热器复热至常温,部分作为纯化***再生气,其余放散。产品氮气从精馏塔顶引出,经主换热复热至常温送出给用户使用,获得的氮气产品压力刚好符合要求。采用此工艺,输送至用户端的氮气压力一般在450-1100KPa(G),氮气纯度为O2为1-100ppm。
以下两方案可以进一步降低能耗,同时增加可以输送至用户端的氮气压力或者在用户端得到液氮产品:
具体的,方案一如下:
原料空气(进料量可较基本工艺降低10-12%)经空气过滤器除去空气中的灰尘和杂质,然后被空气压缩机压缩至比氮气产品要求压力低40-100Kpa后(此处可节省能耗15%),再经预冷***降低空气温度,分离掉游离水后进入纯化***,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气进入增压透平膨胀机组的增压端,提高压力(比氮气产品要求压力高30-40Kpa)后,经主换热器与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔下部参加精馏。精馏塔采用规整填料塔(理论板数60-90块),在精馏塔顶部得到高纯氮气(压力满足氮气产品要求压力),底部得到富氧液空。塔底的富氧经过冷后节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器、主换热器复热后去透平膨胀机膨胀,给装置补增冷量,膨胀废气经过冷器(根据工艺需要可选择性的经过)、主换热器复热至常温后,部分作为纯化***再生气,其余放散。产品氮气从精馏塔顶引出,经主换热复热至常温送出。
本工艺氮气产量≥5000Nm3/h,氮气纯度可达到O2≤3ppm,该工艺可使空压机组排压降低100-150Kpa;氮气提取率达55-70%,制氮电耗为0.22kwh/Nm3N2
具体的,技术方案二的流程如下:
原料空气(进料量可较基本工艺降低15%)经空气过滤器除去空气中的灰尘和杂质,然后被空气压缩机压缩至比氮气产品要求压力低100-180Kpa(此处能耗降低18-20%)后,再经预冷***降低空气温度后,分离掉游离水后进入纯化***,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气经主换热器与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔下部参加精馏。精馏塔采用规整填料塔,理论板数60-90块(填料60-120盘);在精馏塔顶部得到高纯氮气(压力较氮气产品要求压力低大约100-180Kpa),底部得到富氧液空。塔底的富氧经过冷后节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器、主换热器复热后去透平膨胀机膨胀,给装置补增冷量,膨胀废气经过过冷器(根据工艺需要可选择性的经过)、主换热器复热至常温,部分作为纯化***再生气,其余放散。产品氮气从精馏塔顶引出,经主换热复热至常温进入增压透平膨胀机组的增压端,提高压力至氮气产品要求压力后送用户,该工艺可使空压机组相对基本工艺排压降低200Kpa左右,连带降低了精馏塔压力,提高分离效率。
本工艺氮气产量≥5000Nm3/h,氮气纯度10ppm≥O2≥3ppm。氮气提取率达55-65%,能耗为0.21kwh/Nm3N2
本发明相对于现有技术,有以下优点:
本发明氮气制取工艺空气压缩机排压低,能耗低,大大降低了空分制氮装置的能耗要求,符合国家现在的对高耗能产业的节能减排的要求,同时氮气提取率可达到55-70%。
附图说明
图1为实施例1单级精馏废气膨胀循环制氮工艺流程图;
图2为实施例2空气增压单级精馏废气膨胀循环制氮工艺流程图;
图3为实施例3氮气增压单级精馏废气膨胀循环制氮工艺流程图。
具体实施方式
   以下以具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此:
实施例1
本例氮气产品要求压力为600Kpa(表压,以下压力均用表压表示)。
结合图1,原料空气经空气过滤器1除去空气中的灰尘和杂质,然后被空气压缩机2压缩至670KPa后,再经预冷***3降低空气温度后,分离掉游离水后进入纯化***4,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气经主换热器5与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔6下部参加精馏。在精馏塔6顶部得到高纯氮气,底部得到富氧液空。塔底的富氧经过冷器7后节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔6作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器7、主换热器5复热后去透平膨胀机8膨胀,给装置补增冷量,膨胀废气经过冷器7、主换热器5复热至常温后,部分作为纯化***再生气,其余放散。产品氮气从精馏塔6顶部引出,经主换热器5复热至常温送出,压力为600KPa。所述精馏塔6为筛板精馏塔。
氮气提取率为53%,能耗为0.27 kWh/Nm3 N2
实施例2
本例氮气产品要求压力为600KPa。
结合图2,原料空气经空气过滤器1除去空气中的灰尘和杂质,然后被空气压缩机2压缩至560KPa后,再经预冷***3降低空气温度后,分离掉游离水后进入纯化***4,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气进入增压透平膨胀机组的增压端,提高压力至637KPa,经主换热器5与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔6下部参加精馏。精馏塔6采用规整填料塔(理论板数70块,对应填料100盘),在精馏塔6顶部得到高纯氮气,底部得到富氧液空。塔底的富氧经过冷器7后节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔6作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器7、主换热器5复热后去透平膨胀机8膨胀,给装置补增冷量,膨胀废气经过冷器7、主换热器5复热至常温后,部分作为纯化***再生气,其余放散。产品氮气从精馏塔6顶部引出,经主换热器5复热至常温送出,压力为600KPa。
氮气提取率为60%,能耗为0.22kwh/Nm3N2
实施例3
本例氮气产品要求压力为600KPa。
结合图3,原料空气经空气过滤器1除去空气中的灰尘和杂质,然后被空气压缩机2压缩至460Kpa后,再经预冷***3降低空气温度后,分离掉游离水后进入纯化***4,去除H2O、CO2、C2H2及其它碳氢化合物。净化后的空气经主换热器5与膨胀废气及氮气进行换热而冷却到饱和温度,进入精馏塔6下部参加精馏。精馏塔6采用规整填料塔(理论板数70块对应填料100盘)。在精馏塔6顶部得到高纯氮气,底部得到富氧液空。塔底的富氧经过冷器7后节流进入冷凝蒸发器与氮气相变换热,氮气被冷凝成液氮,大部分返回精馏塔6作为塔的回流液参与精馏,小部分作为液氮产品送出。液空被蒸发作为废气,废气由冷凝蒸发器顶部引出经过冷器7、主换热器5复热后去透平膨胀机8膨胀,给装置补增冷量,膨胀废气经过冷器7、主换热器5复热至常温后,部分作为纯化***再生气,其余放散。产品氮气从精馏塔6顶部引出,经主换热器5复热至常温进入增压透平膨胀机组的增压端,提高压力至600KPa后送用户。
氮气提取率为64%,能耗为0.21kwh/Nm3N2

Claims (10)

1.  一种氮气制取工艺,依次包括空气的除杂、压缩、预冷、净化,其特征在于,净化后的空气冷却至饱和温度后进入精馏塔下部进行精馏,在精馏塔顶部得到氮气。
2.如权利要求1所述的氮气制取工艺,其特征在于,精馏后在精馏塔底部获得的富氧液空经过过冷节流后进入精馏塔顶部的冷凝蒸发器与氮气相变换热,冷凝获得的液氮部分返回精馏塔作为回流液,部分送出作为液氮产品。
3.如权利要求2所述的氮气制取工艺,其特征在于,与氮气相变换热后的空气作为废气从冷凝蒸发器引出后经过过冷器、主换热器复热,之后去透平膨胀机膨胀。
4.如权利要求3所述的氮气制取工艺,其特征在于,膨胀后废气进入主换热器与净化后的空气换热,换热后部分作为纯化***再生气。
5.如权利要求1所述的氮气制取工艺,其特征在于,精馏塔顶部得到的氮气出精馏塔后进入主换热器复热至常温后送至用户。
6.如权利要求1-5之一所述的氮气制取工艺,其特征在于,采用理论塔板数为60-90或对应填料60-120盘的规整填料精馏塔进行精馏。
7.如权利要求6所述的氮气制取工艺,其特征在于,空气除杂后压缩至比产品氮气要求压力低40-100Kpa;净化后的空气进入主换热器被冷却之前,再次增压,至比产品氮气要求压力高30-40Kpa。
8.如权利要求7所述的氮气制取工艺,其特征在于,净化后的空气进入增压透平膨胀机组的增压端进行增压。
9.如权利要求6所述的氮气制取工艺,其特征在于,空气除杂后压缩至比产品氮气要求压力低100-180Kpa;精馏塔顶部得到的氮气出精馏塔后进入主换热器复热至常温后增压至产品氮气要求压力送至用户。
10.如权利要求9所述的氮气制取工艺,其特征在于,精馏塔顶部得到的氮气出精馏塔后经主换热复热至常温后进入增压透平膨胀机组的增压端进行增压。
CN201110252527A 2011-08-30 2011-08-30 一种氮气制取工艺 Pending CN102320581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110252527A CN102320581A (zh) 2011-08-30 2011-08-30 一种氮气制取工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110252527A CN102320581A (zh) 2011-08-30 2011-08-30 一种氮气制取工艺

Publications (1)

Publication Number Publication Date
CN102320581A true CN102320581A (zh) 2012-01-18

Family

ID=45448461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110252527A Pending CN102320581A (zh) 2011-08-30 2011-08-30 一种氮气制取工艺

Country Status (1)

Country Link
CN (1) CN102320581A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154464A (zh) * 1995-11-02 1997-07-16 缔酸株式会社 超高纯氮、氧生成装置
CN1220386A (zh) * 1997-11-26 1999-06-23 北京市奥达石化新技术开发中心 一种从空气中分离高纯氮气的方法
CN101311653A (zh) * 2007-05-24 2008-11-26 林德股份公司 用于低温空气分离的方法和设备
CN101846435A (zh) * 2009-03-24 2010-09-29 林德股份公司 用于低温分离空气的方法及设备
CN101929790A (zh) * 2010-08-19 2010-12-29 苏州制氧机有限责任公司 高纯氮设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154464A (zh) * 1995-11-02 1997-07-16 缔酸株式会社 超高纯氮、氧生成装置
CN1220386A (zh) * 1997-11-26 1999-06-23 北京市奥达石化新技术开发中心 一种从空气中分离高纯氮气的方法
CN101311653A (zh) * 2007-05-24 2008-11-26 林德股份公司 用于低温空气分离的方法和设备
CN101846435A (zh) * 2009-03-24 2010-09-29 林德股份公司 用于低温分离空气的方法及设备
CN101929790A (zh) * 2010-08-19 2010-12-29 苏州制氧机有限责任公司 高纯氮设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李化治: "《制氧技术》", 31 December 2009, article "筛板塔、填料塔、制氧流程", pages: 186-207 - 344 *

Similar Documents

Publication Publication Date Title
CN103523751B (zh) 一种深冷分离提纯一氧化碳和氢气的装置及方法
CN102620520B (zh) 一种由空气分离制取压力氧气和压力氮气附产液氩的工艺
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN104236253B (zh) 深冷法制取纯一氧化碳和富氢气的装置及方法
CN102445054A (zh) 一种由空气分离制取氧气和氮气的工艺
CN102538397A (zh) 一种由空气分离制取氮气或制取氮气同时附产氧气的工艺
CN215412752U (zh) 一种双塔低温精馏制取高纯氮气装置
CN202599013U (zh) 一种返流膨胀制冷生产带压低纯氧和高纯氮的装置
CN107648976B (zh) 一种低温分离制取超高纯气体的方法及低温分离***
CN202204239U (zh) 一种生产高纯氮和带压低纯氧的装置
CN110553464A (zh) 一种降低氮循环能耗的co深冷分离***及方法
CN203687518U (zh) 带辅助精馏塔的低纯氧制取装置
CN102530892A (zh) 一种生产高纯氮和带压低纯氧的方法
CN102788476A (zh) 一种深冷空气分离设备主产高纯氮并附产液氧的空分工艺
CN203432208U (zh) 超低压制取高纯氧气和氮气装置
CN103361138B (zh) 一种用提氢解析气制取液化天然气和合成氨原料气的方法
CN102589250A (zh) 一种由空气分离制取氮气的工艺
CN102320581A (zh) 一种氮气制取工艺
CN115540499A (zh) 一种闪蒸废气低温增压循环生产高纯氮气和超纯氧气的装置及方法
CN216790655U (zh) 一种低能耗的单塔纯氮制取的装置
CN114440553A (zh) 一种低能耗氮气膨胀制冷的双塔纯氮制取装置及使用方法
CN207751221U (zh) 一种lng冷能利用的热泵空气分离***
CN202109724U (zh) 空气增压返流膨胀内压缩空气分离的装置
CN202532818U (zh) 高纯氧生产***
CN106123488A (zh) 一种带泵双塔的制氮方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 475004 No. 33 Songcheng Avenue, Kaifeng City, Henan Province

Applicant after: Kaifeng Huanghe Air Separation Group Co., Ltd.

Address before: 475000 No. 33 Songcheng Avenue, Kaifeng economic and Technological Development Zone, Henan, China

Applicant before: Kaifeng Huanghe Air Separation Group Co., Ltd.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120118