CN102315440A - Spinel composite material, preparation method and application thereof - Google Patents
Spinel composite material, preparation method and application thereof Download PDFInfo
- Publication number
- CN102315440A CN102315440A CN201010228697XA CN201010228697A CN102315440A CN 102315440 A CN102315440 A CN 102315440A CN 201010228697X A CN201010228697X A CN 201010228697XA CN 201010228697 A CN201010228697 A CN 201010228697A CN 102315440 A CN102315440 A CN 102315440A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- composite material
- containing carbon
- compound
- weight percentage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 94
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 229910052596 spinel Inorganic materials 0.000 title claims abstract description 15
- 239000011029 spinel Substances 0.000 title claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 144
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 82
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 68
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 46
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 30
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- 239000002608 ionic liquid Substances 0.000 claims description 55
- 238000000576 coating method Methods 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 30
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 25
- 229910052684 Cerium Inorganic materials 0.000 claims description 24
- 229910052746 lanthanum Inorganic materials 0.000 claims description 24
- 229910052708 sodium Inorganic materials 0.000 claims description 24
- 239000003792 electrolyte Substances 0.000 claims description 22
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 239000007773 negative electrode material Substances 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 229910052733 gallium Inorganic materials 0.000 claims description 16
- 229910052732 germanium Inorganic materials 0.000 claims description 16
- 229910052738 indium Inorganic materials 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 229910052749 magnesium Inorganic materials 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052758 niobium Inorganic materials 0.000 claims description 16
- 229910052700 potassium Inorganic materials 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 16
- 229910052715 tantalum Inorganic materials 0.000 claims description 16
- 229910052718 tin Inorganic materials 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- 229910052727 yttrium Inorganic materials 0.000 claims description 16
- 229910052725 zinc Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- 239000007772 electrode material Substances 0.000 claims description 13
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 5
- 239000012300 argon atmosphere Substances 0.000 claims description 4
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 23
- 239000011248 coating agent Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 239000011149 active material Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 238000000227 grinding Methods 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910011933 Li4Ti4.8Mo0.2O12 Inorganic materials 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 229910012099 Li3.9Mg0.1Ti5O12 Inorganic materials 0.000 description 2
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种尖晶石复合材料及其制备方法和用途,具体而言,本发明涉及一种含有碳氮化合物的尖晶石复合材料及其制备方法和用途。The present invention relates to a spinel composite material and its preparation method and application. Specifically, the present invention relates to a spinel composite material containing carbon and nitrogen compounds as well as its preparation method and application.
背景技术 Background technique
锂离子电池目前已经广泛用于各种便携式设备,并已小批量用于电动车和储能电池组等,这些应用也同时对锂离子电池的各项性能的要求越来越高,比如高能量密度、高功率密度、倍率性能、循环稳定性、安全性等。目前市售电池中用的正极材料主要为LiCoO2、LiMn2O4等,负极材料主要为石墨类碳材料。近年来,尖晶石Li4Ti5O12作为负极材料,以其安全的电压范围、良好的循环性能引起了人们极大的兴趣。然而,由于Li4Ti5O12本身是绝缘体,电子电导率低,在大电流充放电时电池的容量远低于其理论容量。Lithium-ion batteries have been widely used in various portable devices, and have been used in small batches in electric vehicles and energy storage battery packs. These applications also have higher and higher requirements for the performance of lithium-ion batteries, such as high energy Density, high power density, rate performance, cycle stability, safety, etc. Currently, the positive electrode materials used in commercially available batteries are mainly LiCoO 2 , LiMn 2 O 4 , etc., and the negative electrode materials are mainly graphite-like carbon materials. In recent years, spinel Li 4 Ti 5 O 12 has attracted great interest as an anode material due to its safe voltage range and good cycle performance. However, since Li 4 Ti 5 O 12 itself is an insulator, the electronic conductivity is low, and the capacity of the battery is much lower than its theoretical capacity when charging and discharging at a high current.
为了解决这一问题,目前主要有三种方法:第一种方法是减小材料的颗粒尺度或形成一种多孔材料;第二种方法是异质原子掺杂,如Mg2+、Cr3+离子的掺杂;第三种方法是对材料颗粒表面进行碳包覆。目前,碳包覆技术被广泛用于锂离子电池正、负极材料的改性,包覆层中仅含有碳。例如ZaghibK(2003)等人公开了尖晶石Li4Ti5O12表面包覆碳的方法(参考Guerfi A,Sevigny S,Lagace M,Hovington P,Kinoshita K,Zaghib K,JOURNAL OFPOWER SOURCES,2003,119,88-94),改善了颗粒之间的电子接触,提高了材料的电子电导率,极大地改善了Li4Ti5O12的电化学性能。In order to solve this problem, there are currently three main methods: the first method is to reduce the particle size of the material or form a porous material; the second method is doping with heteroatoms, such as Mg 2+ , Cr 3+ ions doping; the third method is to coat the surface of material particles with carbon. At present, carbon coating technology is widely used in the modification of positive and negative electrode materials of lithium-ion batteries, and the coating layer only contains carbon. For example, people such as ZaghibK (2003) disclosed the method of spinel Li 4 Ti 5 O 12 surface coating carbon (referring to Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K, JOURNAL OFPOWER SOURCES, 2003, 119, 88-94), improving the electronic contact between particles, increasing the electronic conductivity of the material, and greatly improving the electrochemical performance of Li 4 Ti 5 O 12 .
虽然这些改进确实改善了材料的倍率特性,但在电池的实际应用中,特别是在大功率和长寿命电池的应用中,例如超过10C的充放电(相当于6分钟电池全充全放)时,要求材料的倍率性能非常高,容量保持率须在80%以上,同时要求循环在几千次以上,这就要求电极材料同时拥有较高的电子电导率和离子电导率,以及保持颗粒之间良好的电接触,还要有高的界面稳定性,而采用上述改进方法得到的材料不能满足以上要求。Although these improvements have indeed improved the rate characteristics of the material, in the actual application of the battery, especially in the application of high-power and long-life batteries, such as charging and discharging over 10C (equivalent to full charge and full discharge of the battery in 6 minutes) , the rate performance of the material is required to be very high, the capacity retention rate must be above 80%, and the cycle is required to be more than thousands of times. Good electrical contact requires high interface stability, but the materials obtained by the above-mentioned improved method cannot meet the above requirements.
发明内容 Contents of the invention
本发明的目的是:为了克服现有的Li4Ti5O12尖晶石类材料作为二次锂电池和电化学超电容器电极材料时的电子电导率和离子电导率低,采用目前现有的技术方法不能同时提高材料的倍率性能和循环性能的缺点,本发明提供一种尖晶石复合材料,该复合材料通过引入含有碳氮的高导电化合物大幅提高了材料的倍率性能和循环性能。本发明还提供上述复合材料的制备方法和用途以及采用上述复合材料制备的负极和锂电池。The purpose of the present invention is: in order to overcome existing Li 4 Ti 5 O 12 spinel material as secondary lithium battery and electrochemical supercapacitor electrode material when electronic conductivity and ion conductivity are low, adopt current existing The technical method cannot improve the rate performance and cycle performance of the material at the same time. The invention provides a spinel composite material. The composite material greatly improves the rate performance and cycle performance of the material by introducing a high-conductivity compound containing carbon and nitrogen. The present invention also provides the preparation method and application of the above-mentioned composite material, as well as the negative electrode and lithium battery prepared by using the above-mentioned composite material.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
本发明提供了一种尖晶石复合材料,该复合材料具有以下通式:The invention provides a spinel composite material, which has the following general formula:
CxNy-(LaM′b)4(McM″d)5O12-eAf,C x N y -(L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f ,
其中,CxNy为含有碳氮的化合物;Wherein, C x N y is a compound containing carbon and nitrogen;
L选自Li和Na中的一种,优选地L为Li;L is selected from one of Li and Na, preferably L is Li;
M′选自Na、Mg、Al、Si、K、Ca、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Ag、In、Sn、La、Ce、Ta、W、La和Ce中的一种;M' is selected from Na, Mg, Al, Si, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Ag, In, Sn, La, Ce, One of Ta, W, La and Ce;
M选自Ti、Mn和Mo中的一种;M is selected from one of Ti, Mn and Mo;
M″选自Li、Na、Mg、Al、Si、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ag、In、Sn、Ta、W、La和Ce中的一种;M″ is selected from Li, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, One of In, Sn, Ta, W, La and Ce;
A选自N、F、P和S中的一种;A is selected from one of N, F, P and S;
M与M″不同时为一种元素;M and M″ are not simultaneously an element;
x、y、a、b、c、d、e和f为摩尔百分比,且0<x<1,0<y<1,0<a≤1,0≤b<1,0<c≤1,0≤d<1,0≤e<4,0≤f<4。x, y, a, b, c, d, e and f are mole percentages, and 0<x<1, 0<y<1, 0<a≤1, 0≤b<1, 0<c≤1, 0≤d<1, 0≤e<4, 0≤f<4.
上述复合材料中,所述含有碳氮的化合物CxNy包覆在(LaM′b)4(McM″d)5O12-eAf材料的表面或者与(LaM′b)4(McM″d)5O12-eAf材料相混合,优选地,所述含有碳氮的化合物CxNy包覆在(LaM′b)4(McM″d)5O12-eAf材料的表面。In the above composite material, the compound C x N y containing carbon and nitrogen is coated on the surface of (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f material or combined with (L a M ′ b ) 4 (M c M″ d ) 5 O 12-e A f materials are mixed, preferably, the compound C x N y containing carbon and nitrogen is coated on (L a M′ b ) 4 (M c M″ d ) The surface of 5 O 12-e A f material.
上述复合材料中,所述含有碳氮的化合物CxNy在所述复合材料中的重量百分含量为0.1%-20%,优选为3%-10%。In the above composite material, the weight percentage of the compound C x N y containing carbon and nitrogen in the composite material is 0.1%-20%, preferably 3%-10%.
上述复合材料中,所述含有碳氮的化合物CxNy中氮的重量百分含量为0.0001%-50%,优选为0.01%-30%;N在所述复合材料中的重量百分含量为0.00001%-10%,优选为0.03%-3%。In the above composite material, the weight percentage of nitrogen in the compound C x N y containing carbon and nitrogen is 0.0001%-50%, preferably 0.01%-30%; the weight percentage of N in the composite material It is 0.00001%-10%, preferably 0.03%-3%.
本发明还提供了上述复合材料的制备方法,该制备方法选自包覆法、机械球磨法和直接混合法中的一种。The present invention also provides a preparation method of the above-mentioned composite material, which is selected from one of coating method, mechanical ball milling method and direct mixing method.
其中,所述包覆法包括如下步骤:Wherein, the coating method comprises the steps of:
(1)将(LaM′b)4(McM″d)5O12-eAf,例如Li4Ti5O12与含有碳氮的离子液体或其它含有碳氮的有机物,例如[EMIm][N(CN)2]在转速为2000rpm-2800rpm的混合器中混合10-20分钟,得到二者的混合物,(1) Combine (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f , such as Li 4 Ti 5 O 12 with an ionic liquid containing carbon and nitrogen or other organic substances containing carbon and nitrogen, such as [EMIm][N(CN) 2 ] was mixed in a mixer at 2000rpm-2800rpm for 10-20 minutes at a rotating speed to obtain a mixture of the two,
其中,L选自Li和Na中的一种,优选地L为Li;Wherein, L is selected from one of Li and Na, preferably L is Li;
M′选自Na、Mg、Al、Si、K、Ca、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Ag、In、Sn、La、Ce、Ta、W、La和Ce中的一种;M' is selected from Na, Mg, Al, Si, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Ag, In, Sn, La, Ce, One of Ta, W, La and Ce;
M选自Ti、Mn和Mo中的一种;M is selected from one of Ti, Mn and Mo;
M″选自Li、Na、Mg、Al、Si、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ag、In、Sn、Ta、W、La和Ce中的一种;M″ is selected from Li, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, One of In, Sn, Ta, W, La and Ce;
A选自N、F、P和S中的一种;A is selected from one of N, F, P and S;
M与M″不同时为一种元素;M and M″ are not simultaneously an element;
a、b、c、d、e和f为摩尔百分比,且0<a≤1,0≤b<1,0<c≤1,0≤d<1,0≤e<4,0≤f<4;以及a, b, c, d, e and f are mole percentages, and 0<a≤1, 0≤b<1, 0<c≤1, 0≤d<1, 0≤e<4, 0≤f< 4; and
(2)在管式炉,氮气或氩气气氛中,以2℃/分钟的速率将步骤(1)得到的混合物从室温从升温至600℃,并在该温度下保持2小时,使离子液体充***解,冷却后得到所述复合材料。(2) In a tube furnace, in a nitrogen or argon atmosphere, the mixture obtained in step (1) is heated from room temperature to 600° C. at a rate of 2° C./minute, and kept at this temperature for 2 hours to make the ionic liquid Fully cracked and cooled to obtain the composite material.
本发明还提供了上述复合材料在制备锂电池和电化学超电容器电极材料中的应用。The invention also provides the application of the above-mentioned composite material in the preparation of electrode materials for lithium batteries and electrochemical supercapacitors.
本发明还提供了一种负极,该负极包括集流体和负载在该集流体上的负极材料,所述负极材料含有上述复合材料。The present invention also provides a negative electrode, which includes a current collector and a negative electrode material loaded on the current collector, and the negative electrode material contains the above-mentioned composite material.
本发明还提供了一种锂电池,该电池包括正极、负极和电解液,所述负极为上述含有本发明的复合材料的负极。The present invention also provides a lithium battery, which comprises a positive electrode, a negative electrode and an electrolyte, and the negative electrode is the above-mentioned negative electrode containing the composite material of the present invention.
以下是本发明的详细描述。The following is a detailed description of the present invention.
本发明提供一种尖晶石复合材料,该复合材料具有以下通式:The invention provides a kind of spinel composite material, and this composite material has following general formula:
CxNy-(LaM′b)4(McM″d)5O12-eAf,C x N y -(L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f ,
其中,CxNy为含有碳氮的化合物;Wherein, C x N y is a compound containing carbon and nitrogen;
L选自Li和Na中的一种,优选地,L为Li;L is selected from one of Li and Na, preferably, L is Li;
M′选自Na、Mg、Al、Si、K、Ca、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Ag、In、Sn、La、Ce、Ta、W、La和Ce中的一种;M' is selected from Na, Mg, Al, Si, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Ag, In, Sn, La, Ce, One of Ta, W, La and Ce;
M选自Ti、Mn和Mo中的一种;M is selected from one of Ti, Mn and Mo;
M″选自Li、Na、Mg、Al、Si、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ag、In、Sn、Ta、W、La和Ce中的一种;M″ is selected from Li, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, One of In, Sn, Ta, W, La and Ce;
A选自N、F、P和S中的一种;A is selected from one of N, F, P and S;
M与M″不同时为一种元素;M and M″ are not simultaneously an element;
x、y、a、b、c、d、e和f为摩尔百分比,且0<x<1,0<y<1,0<a≤1,0≤b<1,0<c≤1,0≤d<1,0≤e<4,0≤f<4。x, y, a, b, c, d, e and f are mole percentages, and 0<x<1, 0<y<1, 0<a≤1, 0≤b<1, 0<c≤1, 0≤d<1, 0≤e<4, 0≤f<4.
根据本发明,CxNy为含有碳氮的化合物,(LaM′b)4(McM″d)5O12-eAf为活性电极材料,优选为(LiaM′b)4(TicM″d)5O12-eAf),更优选为Li4Ti5O12。本发明通过添加含有碳氮的高导电化合物,一方面可以提高负极材料的电子电导率;另一方面可以降低锂离子在其活性材料和含有碳氮的化合物界面处的迁移活化能,从而提高锂离子在界面处的离子电导率,提高了负极材料的倍率性能。According to the present invention, C x N y is a compound containing carbon and nitrogen, (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f is an active electrode material, preferably (Li a M′ b ) 4 ( Tic M″ d ) 5 O 12-e A f ), more preferably Li 4 Ti 5 O 12 . The present invention can improve the electronic conductivity of the negative electrode material by adding a high-conductivity compound containing carbon and nitrogen on the one hand; on the other hand, it can reduce the migration activation energy of lithium ions at the interface between its active material and the compound containing carbon and nitrogen, thereby improving the lithium ion conductivity. The ionic conductivity of the ions at the interface improves the rate performance of the negative electrode material.
在本发明中,所述含有碳氮的化合物CxNy可以包覆在(LaM′b)4(McM″d)5O12-eAf材料的表面,也可以直接与(LaM′b)4(McM″d)5O12-eAf材料相混合,优选地,所述含有碳氮的化合物CxNy包覆在(LaM′b)4(McM″d)5O12-eAf材料的表面。本发明将含有碳氮的化合物包覆在活性电极材料表面,提高了界面稳定性,进而提高了负极材料的循环寿命。In the present invention, the compound C x N y containing carbon and nitrogen can be coated on the surface of (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f material, or can be directly mixed with (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f materials are mixed, preferably, the compound C x N y containing carbon and nitrogen is coated on (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f material surface. In the present invention, the compound containing carbon and nitrogen is coated on the surface of the active electrode material, which improves the interface stability and further improves the cycle life of the negative electrode material.
在本发明中,所述含有碳氮的化合物CxNy在所述负极材料中的重量百分含量为0.1%-20%,优选为3%-10%。In the present invention, the weight percentage of the carbon-nitrogen-containing compound C x N y in the negative electrode material is 0.1%-20%, preferably 3%-10%.
在本发明中,所述含有碳氮的化合物CxNy中氮的重量百分含量为0.0001%-50%,优选为0.01%-30%;N在所述复合材料中的重量百分含量为0.00001%-10%,优选为0.03%-3%。In the present invention, the weight percentage of nitrogen in the compound C x N y containing carbon and nitrogen is 0.0001%-50%, preferably 0.01%-30%; the weight percentage of N in the composite material It is 0.00001%-10%, preferably 0.03%-3%.
本发明选择特定的配比和成分是为了提高复合材料的电导率、倍率性能和循环寿命。The purpose of selecting specific proportions and components in the present invention is to improve the electrical conductivity, rate performance and cycle life of the composite material.
本发明还提供了上述复合材料的制备方法,该制备方法可以包括如下步骤:The present invention also provides the preparation method of above-mentioned composite material, and this preparation method may comprise the following steps:
(1)将活性电极材料(LaM′b)4(McM″d)5O12-eAf,例如Li4Ti5O12与含有碳氮的离子液体或其它含有碳氮的有机物,例如[EMIm][N(CN)2]在转速为2000rpm-2800rpm的混合器中混合10-20分钟,得到二者的混合物,(1) The active electrode material (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f , such as Li 4 Ti 5 O 12 and ionic liquid containing carbon nitrogen or other carbon nitrogen containing Organic matter, such as [EMIm][N(CN) 2 ] was mixed in a mixer at 2000rpm-2800rpm for 10-20 minutes to obtain a mixture of the two,
其中,L选自Li和Na中的一种,优选地L为Li;Wherein, L is selected from one of Li and Na, preferably L is Li;
M′选自Na、Mg、Al、Si、K、Ca、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Ag、In、Sn、La、Ce、Ta、W、La和Ce中的一种;M' is selected from Na, Mg, Al, Si, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Ag, In, Sn, La, Ce, One of Ta, W, La and Ce;
M选自Ti、Mn和Mo中的一种;M is selected from one of Ti, Mn and Mo;
M″选自Li、Na、Mg、Al、Si、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ag、In、Sn、Ta、W、La和Ce中的一种;M″ is selected from Li, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, One of In, Sn, Ta, W, La and Ce;
A选自N、F、P和S中的一种;A is selected from one of N, F, P and S;
M与M″不同时为一种元素;M and M″ are not simultaneously an element;
a、b、c、d、e和f为摩尔百分比,且0<a≤1,0≤b<1,0<c≤1,0≤d<1,0≤e<4,0≤f<4;以及a, b, c, d, e and f are mole percentages, and 0<a≤1, 0≤b<1, 0<c≤1, 0≤d<1, 0≤e<4, 0≤f< 4; and
(2)在管式炉,氮气或氩气气氛中,以2℃/分钟的速率将步骤(1)得到的混合物从室温从升温至600℃,并在该温度下保持2小时,使离子液体充***解,冷却后得到所述复合材料。(2) In a tube furnace, in a nitrogen or argon atmosphere, the mixture obtained in step (1) is heated from room temperature to 600° C. at a rate of 2° C./minute, and kept at this temperature for 2 hours to make the ionic liquid Fully cracked and cooled to obtain the composite material.
在本发明的一个实施方案中,本发明制备复合材料的方法具体如下:In one embodiment of the present invention, the method for preparing composite material of the present invention is specifically as follows:
(1)称取适量活性电极材料粉末,例如Li4Ti5O12,放于离心管中,按所需比例,取含有碳氮的离子液体,例如[EMIm][N(CN)2],加入粉末后置于转速为2000rpm-2800rpm的涡旋混合器中振荡10到20分钟,使离子液体与活性电极材料充分混合均匀,视离子液体加入比例的不同,得到混合物为干湿程度不同的粉末/沙粒状/泥状物质;以及(1) Weigh an appropriate amount of active electrode material powder, such as Li 4 Ti 5 O 12 , put it in a centrifuge tube, and take an ionic liquid containing carbon and nitrogen according to the required ratio, such as [EMIm][N(CN) 2 ], After adding the powder, put it in a vortex mixer with a rotation speed of 2000rpm-2800rpm and shake it for 10 to 20 minutes, so that the ionic liquid and the active electrode material are fully mixed and evenly mixed. Depending on the addition ratio of the ionic liquid, the obtained mixture is a powder with different degrees of dryness and wetness. / gritty/muddy matter; and
(2)在管式炉,氮气或氩气气氛中,将上述混合物从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后放入干燥器中备用。烧结后的样品视加入离子液体比例的不同,颜色呈灰黑色到黑色。(2) In a tube furnace, in a nitrogen or argon atmosphere, raise the temperature of the above mixture from room temperature to 600°C at a rate of 2°C/min, and keep it at 600°C for 2 hours to fully crack the ionic liquid, and wait for the tube furnace to cool down Finally, the samples were taken out, ground and placed in a desiccator for later use. The color of the sintered samples is gray-black to black depending on the proportion of ionic liquid added.
以上描述的制备方法是包覆法,如本领域所共知的,本领域普通技术人员也可以采用其他制备方法,例如机械球磨法、直接混合法(即将含碳氮的化合物CxNy与活性电极材料(LaM′b)4(McM″d)5O12-eAf按一定比例直接混合)等来制备本发明的上述复合材料。The preparation method described above is a coating method. As is well known in the art, those of ordinary skill in the art can also use other preparation methods, such as mechanical ball milling, direct mixing (that is, carbon and nitrogen-containing compounds C x N y and Active electrode material (L a M′ b ) 4 (M c M″ d ) 5 O 12-e A f directly mixed in a certain proportion) etc. to prepare the composite material of the present invention.
本发明还提供了上述复合材料在制备二次锂电池和电化学超电容器电极材料中用于制作负极或正极的用途,所述的负极包括集流体和负载在该集流体上的负极材料,所述负极材料含有上述复合材料。由于本发明只涉及对复合材料的改进,对负极的制备方法和负极的组成没有特别限定,采用本领域常规的制备方法和组成即可。所述的集流体可以采用本领域已知的所有可用的负极集流体,本发明对其没有特别的限定。The present invention also provides the application of the above-mentioned composite material in the preparation of secondary lithium batteries and electrochemical supercapacitor electrode materials for making negative electrodes or positive electrodes. The negative electrode includes current collectors and negative electrode materials loaded on the current collectors. The negative electrode material contains the above-mentioned composite material. Since the present invention only involves the improvement of the composite material, there is no special limitation on the preparation method and composition of the negative electrode, and conventional preparation methods and compositions in the field can be used. The current collector can be all available negative electrode current collectors known in the art, which are not particularly limited in the present invention.
本发明还提供了一种锂电池,该电池包括正极、负极和电解液,所述负极为上述含有本发明的复合材料的负极。The present invention also provides a lithium battery, which comprises a positive electrode, a negative electrode and an electrolyte, and the negative electrode is the above-mentioned negative electrode containing the composite material of the present invention.
具体而言,本发明可将含有碳氮化合物的负极材料制成二次锂电池的负极,与常规的正极、电解液组成二次锂电池。负极中使用的导电添加剂可以为常规使用的碳、导电金属氧化物或金属;正极使用的活性物质可以包括LiMn2O4、LiNi0.5Mn1.5O4和Li1+zM1-zO2(其中,M是一种或多种过渡金属元素,z>0)等;正极和负极之间充满电解液,正极和负极的一端分别焊上引线与相互绝缘的电池壳两端相连。采用本发明的含有碳氮化合物的尖晶石复合材料作为电极的二次锂电池适用于各种移动电子设备或需要移动能源驱动的设备以及非移动式的储备或后备电源,并且不局限于此。Specifically, the present invention can make the negative electrode material containing carbon and nitrogen compounds into the negative electrode of the secondary lithium battery, and form the secondary lithium battery with the conventional positive electrode and electrolyte. The conductive additive used in the negative electrode can be conventionally used carbon, conductive metal oxide or metal; the active material used in the positive electrode can include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 and Li 1+z M 1-z O 2 ( Wherein, M is one or more transition metal elements, z > 0), etc.; the positive electrode and the negative electrode are filled with electrolyte solution, and one end of the positive electrode and the negative electrode is respectively welded with a lead wire and connected to both ends of the mutually insulated battery case. The secondary lithium battery using the spinel composite material containing carbonitrides of the present invention as an electrode is suitable for various mobile electronic devices or devices that need to be powered by mobile energy, as well as non-mobile storage or backup power sources, and is not limited thereto .
与现有技术相比,本发明至少具有以下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
1、本发明在例如Li4Ti5O12尖晶石类活性电极材料中引入含有碳氮的高导电化合物,一方面可以提高负极材料的电子电导率;另一方面可以降低锂离子在其活性材料和含有碳氮的化合物界面处的迁移活化能,从而提高锂离子在界面处的离子电导率,提高了负极材料的倍率性能。1. The present invention introduces a highly conductive compound containing carbon and nitrogen into the active electrode material such as Li 4 Ti 5 O 12 spinel, which can improve the electronic conductivity of the negative electrode material on the one hand; The migration activation energy at the interface between the material and the compound containing carbon and nitrogen can improve the ion conductivity of lithium ions at the interface and improve the rate performance of the negative electrode material.
2、本发明将含有碳氮的化合物包覆在例如Li4Ti5O12尖晶石类活性电极材料颗粒的表面,同时还提高了界面稳定性,进而提高了负极材料的循环寿命。2. In the present invention, the compound containing carbon and nitrogen is coated on the surface of the active electrode material particles such as Li 4 Ti 5 O 12 spinel, and meanwhile, the stability of the interface is improved, thereby improving the cycle life of the negative electrode material.
3、本发明的包覆方法步骤简单,克服了传统以蔗糖溶液或聚合物溶液作为碳的前驱体时,在热处理过程中溶剂蒸发带来的分相/集聚的问题,导致碳包覆层的不均匀。尤其对多孔材料,包覆效果更好。本发明实现方法简单,碳氮的含量容易控制,具有广泛的应用前景。3. The coating method of the present invention has simple steps, overcomes the problem of phase separation/agglomeration caused by solvent evaporation during the heat treatment process when the traditional sucrose solution or polymer solution is used as the carbon precursor, resulting in the carbon coating layer uneven. Especially for porous materials, the coating effect is better. The realization method of the invention is simple, the content of carbon and nitrogen is easy to control, and has wide application prospects.
4.与仅使用含碳的复合材料相比较,使用本发明的含碳氮化合物的复合材料导电性好,制备的锂电池,其倍率性能和长循环稳定性都得到了很大的提高,见表4的说明。4. Compared with only using carbon-containing composite materials, the composite materials using the carbon-nitrogen compound of the present invention have good electrical conductivity, and the prepared lithium battery has greatly improved rate performance and long-term cycle stability, see Description of Table 4.
附图说明 Description of drawings
以下将结合附图来说明本发明的实施方案,其中:Embodiments of the present invention will be described below in conjunction with the accompanying drawings, wherein:
图1为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入165μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12在不同电流密度下的充放电曲线;Figure 1 shows the coating of Li 4 Ti 5 O 12 after heat treatment at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 165 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. Charge-discharge curves at different current densities;
图2为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入495μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12在不同电流密度下的充放电曲线;Figure 2 shows the coating of Li 4 Ti 5 O 12 after heat treatment at 600°C at the ratio of 1 g of porous Li 4 Ti 5 O 12 to 495 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. Charge-discharge curves at different current densities;
图3为使用离子液体[BMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12在不同电流密度下的充放电曲线;Figure 3 shows the coating of Li 4 Ti 5 O 12 after heat treatment at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when using ionic liquid [BMIm][N(CN) 2 ] as the carbon and nitrogen source. Charge-discharge curves at different current densities;
图4a为所用的原始多孔Li4Ti5O12的照片;Figure 4a is a photograph of the pristine porous Li4Ti5O12 used;
图4b为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行在600℃热处理包覆后的Li4Ti5O12粉末的照片;Figure 4b shows Li 4 Ti 5 O 12 after thermal treatment at 600°C when using ionic liquid [EMIm][N( CN ) 2 ] as the carbon and nitrogen source. photo of the powder;
图5a为所用的原始多孔Li4Ti5O12的扫描电镜(SEM)图;Figure 5a is a scanning electron microscope (SEM) image of the pristine porous Li4Ti5O12 used;
图5b为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12的扫描电镜图;Figure 5b shows the thermal treatment of Li 4 Ti 5 O 12 coated at 600°C with 1 g of porous Li 4 Ti 5 O 12 added to 320 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. SEM image;
图6a为所用的原始多孔Li4Ti5O12的X射线衍射(XRD)图;Figure 6a is the X-ray diffraction (XRD) pattern of the original porous Li 4 Ti 5 O 12 used;
图6b为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12的X射线衍射图;Figure 6b shows the thermal treatment of Li 4 Ti 5 O 12 coated at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. X-ray diffraction pattern;
图7为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12的透射电子显微镜(HRTEM)图;Fig. 7 shows the temperature of the coated Li 4 Ti 5 O 12 after heat treatment at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. Transmission electron microscope (HRTEM) image;
图8a为所用的原始多孔Li4Ti5O12的拉曼光谱图;Figure 8a is the Raman spectrum of the original porous Li 4 Ti 5 O 12 used;
图8b为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12的拉曼光谱图;Fig. 8b shows the temperature of the coated Li 4 Ti 5 O 12 after heat treatment at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when the ionic liquid [EMIm][N(CN) 2 ] was used as the carbon and nitrogen source. Raman spectrum;
图9a为所用的原始多孔Li4Ti5O12的N1s轨道的X射线光电子能谱(XPS);Figure 9a is the X-ray photoelectron spectrum (XPS) of the N1s orbital of the pristine porous Li 4 Ti 5 O 12 used;
图9b为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12的N1s轨道的X射线光电子能谱;Fig. 9b shows the temperature of the coated Li 4 Ti 5 O 12 after heat treatment at 600°C at the ratio of 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when the ionic liquid [EMIm][N(CN) 2 ] was used as the carbon and nitrogen source. X-ray photoelectron spectroscopy of N1s orbital;
图10中虚线为原始多孔Li4Ti5O12在不同电流密度下的充放电曲线;实线为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12在不同电流密度下的充放电曲线;The dotted line in Figure 10 is the charge-discharge curve of original porous Li 4 Ti 5 O 12 at different current densities; the solid line is the charge-discharge curve of 1 g porous Li 4 Ti when using ionic liquid [EMIm][N(CN) 2 ] as carbon and nitrogen source Charge-discharge curves of Li 4 Ti 5 O 12 coated with 320 μL ionic liquid at 600°C heat treatment at different current densities ;
图11为使用离子液体[EMIm][N(CN)2]作为碳氮源时以1g多孔Li4Ti5O12加入320μL离子液体比例进行600℃热处理包覆后的Li4Ti5O12在2C电流密度下的前1000周充放电比容量;Figure 11 shows the coating of Li 4 Ti 5 O 12 after heat treatment at 600°C by adding 1 g of porous Li 4 Ti 5 O 12 to 320 μL of ionic liquid when using ionic liquid [EMIm][N(CN) 2 ] as the carbon and nitrogen source. Charge-discharge specific capacity for the first 1000 cycles at 2C current density;
具体实施方式 Detailed ways
下面结合具体实施例,进一步阐述本发明。但这些实施例仅限于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体实验条件的实验方法,通常按照常规条件,或按照厂商所建议的条件。Below in conjunction with specific embodiment, further illustrate the present invention. However, these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. For the experimental methods without specific experimental conditions indicated in the following examples, the conventional conditions or the conditions suggested by the manufacturer are generally followed.
实施例1Example 1
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
在干燥气氛下,将320μL离子液体[EMIm][N(CN)2]加入1g多孔Li4Ti5O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末,即为本发明的复合材料。其中,氮在CxNy中的重量百分比为30%左右,CxNy在复合材料中的重量百分比为6%左右。In a dry atmosphere, 320 μL of ionic liquid [EMIm][N(CN) 2 ] was added to 1 g of porous Li 4 Ti 5 O 12 powder and shaken in a vortex mixer at 2000 rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. Raise the temperature from room temperature to 600°C at a rate of 2°C/min, and keep at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cools down, take out the sample and grind it into a black powder, which is the composite material of the present invention. Wherein, the weight percentage of nitrogen in CxNy is about 30%, and the weight percentage of CxNy in the composite material is about 6%.
实施例2-3Example 2-3
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表1组成的本发明的用于二次锂电池的复合材料,所不同的是,离子液体和活性物质的含量不一样,得到不同CxNy重量百分比的复合材料,分别为3%和10%左右。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the composition of table 1 and is used for secondary lithium battery, difference is, the content of ionic liquid and active material is not the same, obtains the composite material of different CxNy weight percentages, respectively 3% and 10%.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1,其充放电曲线分别列于图1和图2。The positive electrode, negative electrode, electrolyte and battery assembly of the simulated battery are the same as in Example 1. The test results are listed in Table 1, and the charge and discharge curves are shown in Figure 1 and Figure 2 respectively.
实施例4-5Example 4-5
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表1组成的本发明的用于二次锂电池的复合材料,所不同的是,热处理温度不一样,得到不同氮在CxNy中的重量百分比的复合材料,分别为40%和8%左右。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the composition of table 1 and is used for secondary lithium battery, and difference is, heat treatment temperature is not the same, obtains the composite material of different nitrogen by weight percentage in CxNy, respectively 40% and 8% or so.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 1.
实施例6-9Example 6-9
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表1组成的本发明的用于二次锂电池的复合材料,所不同的是,所选用的离子液体不一样,得到不同CxNy重量百分比的复合材料。The composite material for secondary lithium batteries of the present invention composed of Table 1 was prepared according to the method of Example 1, except that the selected ionic liquid was different to obtain composite materials with different CxNy weight percentages.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1,其中,实施例6的充放电曲线列于图3。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 1, wherein the charge-discharge curve of Example 6 is shown in Figure 3.
实施例10Example 10
该实施例用于说明本发明提供的复合材料及其制备方法(直接混合法)。This example is used to illustrate the composite material provided by the present invention and its preparation method (direct mixing method).
直接将含有碳氮的CxNy化合物与Li4Ti5O12按6%∶94%的重量比混合得到的含有CxNy的复合材料。A composite material containing CxNy obtained by directly mixing a CxNy compound containing carbon and nitrogen with Li 4 Ti 5 O 12 at a weight ratio of 6%:94%.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 1.
实施例11Example 11
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表1组成的本发明的用于二次锂电池的复合材料,所不同的是,所选用的Li4Ti5O12粉末的形貌为纳米棒或纳米线,得到的含有CxNy的复合材料。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the secondary lithium battery of table 1 composition, and difference is, the selected Li 4 Ti 5 O The appearance of powder is nanorod or nanowire, The resulting composite material containing CxNy.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 1.
实施例12Example 12
该实施例用于说明本发明提供的复合材料及其制备方法(机械球磨法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (mechanical ball milling method).
CxNy-Li4Ti5O12的复合材料还可以通过以下步骤合成。首先,按照摩尔比1∶2.5称取Li2CO3和TiO2,机械球磨后,将该混合物再与一定量的离子液体[EMIm][N(CN)2]混合均匀(混合比例为1克Li4Ti5O12∶400微升离子液体),在高纯Ar气或N2气的保护气氛下进行热处理,热处理温度为800℃,再此温度恒温10小时,然后自然冷却,得到含有CxNy的复合材料。The composite material of CxNy-Li 4 Ti 5 O 12 can also be synthesized by the following steps. First, Li 2 CO 3 and TiO 2 were weighed according to the molar ratio of 1:2.5. After mechanical ball milling, the mixture was mixed evenly with a certain amount of ionic liquid [EMIm][N(CN) 2 ] (the mixing ratio was 1 g Li 4 Ti 5 O 12 : 400 microliters of ionic liquid), under the protective atmosphere of high-purity Ar gas or N 2 gas, heat treatment is carried out, the heat treatment temperature is 800 ℃, and this temperature is kept at a constant temperature for 10 hours, and then naturally cooled to obtain the CxNy of composite materials.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表1。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 1.
表1Table 1
注:表1中活性电极材料均为Li4Ti5O12。Note: The active electrode materials in Table 1 are Li 4 Ti 5 O 12 .
实施例13Example 13
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li3.9Mg0.1Ti5O12,将320μL离子液体[EMIm][N(CN)2]加入1g Li3.9Mg0.1Ti5O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention that forms in table 2 and is used for secondary lithium battery, and difference is, the active material that selects is Li 3.9 Mg 0.1 Ti 5 O 12 , with 320 μ L ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 3.9 Mg 0.1 Ti 5 O 12 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例14Example 14
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Ti4.85Al0.15O12,将320μL离子液体[EMIm][N(CN)2]加入1g Li4Ti4.85Al0.15O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention that forms in table 2 and is used for secondary lithium battery, and difference is, the active material that selects is Li 4 Ti 4.85 Al 0.15 O 12 , 320 μ L ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 4 Ti 4.85 Al 0.15 O 12 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例15Example 15
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Ti4.8Mo0.2O12,将320μL离子液体[EMIm][N(CN)2]加入1g Li4Ti4.8Mo0.2O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the secondary lithium battery of table 2 composition, difference is, the active material selected is Li 4 Ti 4.8 Mo 0.2 O 12 , 320 μ L ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 4 Ti 4.8 Mo 0.2 O 12 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例16Example 16
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Ti5O11.995,将320μL离子液体[EMIm][N(CN)2]加入1g Li4Ti5O11.995粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the secondary lithium battery of table 2 composition, difference is, the active material selected is Li 4 Ti 5 O 11.995 , 320 μ L ionic liquid [EMIm][ N(CN) 2 ] Add 1g of Li 4 Ti 5 O 11.995 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例17Example 17
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Ti5O11.9F0.05,将320μL离子液体[EMIm][N(CN)2]加入1g Li4Ti5O11.9F0.05粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the secondary lithium battery of the composition of table 2, difference is, the active material selected is Li 4 Ti 5 O 11.9 F 0.05 , 320 μ L ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 4 Ti 5 O 11.9 F 0.05 powder and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例18Example 18
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Ti5O11.8N0.06,将320μL离子液体[EMIm][N(CN)2]加入1g Li4Ti5O11.8N0.06粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至600℃,在600℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。The method for preparing by the embodiment 1 is used for the composite material of the present invention of the secondary lithium battery of the composition of table 2, difference is, the active material selected is Li 4 Ti 5 O 11.8 N 0.06 , 320 μ L ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 4 Ti 5 O 11.8 N 0.06 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 600°C at a rate of 2°C/min, and kept at 600°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例19Example 19
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Mn5O12,将150μL离子液体[EMIm][N(CN)2]加入1g Li4Mn5O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至450℃,在450℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。According to the method of Example 1, the composite material for secondary lithium battery of the present invention composed of Table 2 is prepared. The difference is that the active material selected is Li 4 Mn 5 O 12 , and 150 μL of ionic liquid [EMIm][ N(CN) 2 ] Add 1g of Li 4 Mn 5 O 12 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 450°C at a rate of 2°C/min, and kept at 450°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
实施例20Example 20
该实施例用于说明本发明提供的复合材料及其制备方法(包覆法)。This embodiment is used to illustrate the composite material provided by the present invention and its preparation method (coating method).
按实施例1的方法制备按表2组成的本发明的用于二次锂电池的复合材料,所不同的是,选用的活性物质为Li4Mn4.85Mo0.15O12,将150μL离子液体[EMIm][N(CN)2]加入1g Li4Mn4.85Mo0.15O12粉末,在2000rpm的涡旋混合器中振荡10分钟,得到白色沙粒状混合物。将此混合物转移到氧化铝坩埚,放入管式炉,通氩气或氮气。从室温以2℃/min的速率升温至450℃,在450℃保持2小时,使离子液体充***解,待管式炉降温后取出样品,研磨后为黑色粉末。According to the method of Example 1, the composite material for secondary lithium battery of the present invention composed of Table 2 is prepared, the difference is that the active material selected is Li 4 Mn 4.85 Mo 0.15 O 12 , and 150 μL of ionic liquid [EMIm ][N(CN) 2 ] Add 1g of Li 4 Mn 4.85 Mo 0.15 O 12 powder, and vibrate in a vortex mixer at 2000rpm for 10 minutes to obtain a white sandy mixture. Transfer this mixture to an alumina crucible and place in a tube furnace with argon or nitrogen. The temperature was raised from room temperature to 450°C at a rate of 2°C/min, and kept at 450°C for 2 hours to fully crack the ionic liquid. After the tube furnace cooled down, the sample was taken out, and it turned into a black powder after grinding.
模拟电池的正极、负极、电解液及电池的组装同于实施例1,其测试结果列于表2。The assembly of the positive electrode, negative electrode, electrolyte and battery of the simulated battery is the same as in Example 1, and the test results are listed in Table 2.
表2Table 2
注:表2中碳氮源均为离子液体[EMIm][N(CN)2]。Note: The carbon and nitrogen sources in Table 2 are all ionic liquids [EMIm][N(CN) 2 ].
对比实施例1实施例1包覆前后多孔Li4Ti5O12的性能对比研究 Comparative Example 1 Comparative Study on the Performance of Porous Li 4 Ti 5 O 12 Before and After Coating in Example 1
实施例1包覆前后的多孔Li4Ti5O12如图4a和图4b所示。通过SEM,比较包覆前后的形貌,发现包覆后形貌没有变化,如图5a和图5b所示;XRD及HRTEM的结果可知,样品的晶体结构没有变化,均为尖晶石结构,如图6a、图6b和图7所示;从拉曼和XPS的结果可以看出,表面确实有氮、碳的存在(如图8a、图8b、图9a和图9b),氮在CxNy中的重量百分比为30%左右。热重分析(TG)结果表明,CxNy在复合材料中的重量百分比为6%左右。The porous Li 4 Ti 5 O 12 before and after coating in Example 1 is shown in Figure 4a and Figure 4b. Through SEM, the morphology before and after coating was compared, and it was found that the morphology did not change after coating, as shown in Figure 5a and Figure 5b; the results of XRD and HRTEM showed that the crystal structure of the sample did not change, and they were all spinel structures. As shown in Figure 6a, Figure 6b and Figure 7; from the results of Raman and XPS, it can be seen that there is indeed nitrogen and carbon on the surface (as shown in Figure 8a, Figure 8b, Figure 9a and Figure 9b), nitrogen in CxNy The weight percentage is about 30%. The results of thermogravimetric analysis (TG) show that the weight percentage of CxNy in the composite is about 6%.
为了研究包覆前后样品的电化学性能,将样品制作模拟电池。按包覆前后的钛酸锂∶乙炔黑∶PVdF粘结剂=8∶1∶1的比例在常温常压下混合形成浆料,均匀涂敷于铝箔为集流体的衬底上制作电极片,所得的薄膜厚度为2-20微米,作为模拟电池的正极。模拟电池的负极使用金属锂片,电解液为1M的LiPF6溶解在1L的EC和DMC的混合溶剂中(体积比1∶1)。将正极、负极、电解液在氩气保护的手套箱内组装成模拟电池。模拟电池的测试步骤:首先以C/2的电流在1-2.2V之间进行充放电,所放出的容量即为该倍率下的放电容量;循环几周后,逐步提高充放电的电流密度,直到10C。模拟电池的测试结果列于表3。In order to study the electrochemical performance of the sample before and after coating, the sample was made into a simulated battery. According to the ratio of lithium titanate before and after coating: acetylene black: PVdF binder = 8:1:1, mix at normal temperature and pressure to form a slurry, and evenly coat it on the substrate with aluminum foil as the current collector to make electrode sheets. The resulting film thickness was 2-20 micrometers, which served as the positive electrode of the simulated battery. The negative electrode of the simulated battery uses a metal lithium sheet, and the electrolyte is 1M LiPF 6 dissolved in 1L of a mixed solvent of EC and DMC (volume ratio 1:1). The positive electrode, negative electrode, and electrolyte were assembled into a simulated battery in an argon-protected glove box. The test steps of the simulated battery: first charge and discharge at a current of C/2 between 1-2.2V, the released capacity is the discharge capacity at this rate; after a few weeks of cycling, gradually increase the current density of charge and discharge, until 10C. The test results of the simulated battery are listed in Table 3.
表3table 3
结果发现在较低倍率下,包覆后的样品的比容量比原始样品略低,这是由于计算活性物质质量时包括进了碳氮包覆物的质量,但在5C及10C的高倍率下,电池性能得到了很大的提高,比容量分别为145mAh/g和130mAh/g(容量保持率分别为90%和81%),而包覆前仅为60mAh/g和15mAh/g(容量保持率分别为35%和9%)。包覆前样品在5C及10C的高倍率下充电曲线已经不能保持平台,而包覆后的样品仍保持了充电平台(如图10所示)。包覆后的样品组装的电池在2C倍率下进行长循环,在循环1000周后,比容量由150.4mAh/g衰减到132.0mAh/g,容量保持率为88.1%(如图11所示)。It was found that at lower magnifications, the specific capacity of the coated sample was slightly lower than that of the original sample, which was due to the inclusion of the mass of the carbon-nitrogen coating when calculating the mass of the active material, but at high magnifications of 5C and 10C , the battery performance has been greatly improved, the specific capacity is 145mAh/g and 130mAh/g (capacity retention rate is 90% and 81% respectively), but only 60mAh/g and 15mAh/g before coating (capacity retention rates were 35% and 9%, respectively). The charging curve of the sample before coating could not maintain the platform at high rates of 5C and 10C, but the sample after coating still maintained the charging platform (as shown in Figure 10). The battery assembled with the coated sample was subjected to a long cycle at 2C rate. After 1000 cycles, the specific capacity decayed from 150.4mAh/g to 132.0mAh/g, and the capacity retention rate was 88.1% (as shown in Figure 11).
对比实施例2含碳的样品与实施例1的复合材料的电化学性能的对比 Comparison of the electrochemical performance of the carbon-containing sample of Comparative Example 2 and the composite material of Example 1
为了对比研究,我们同时选用了蔗糖为碳源,在与实施例1相同的裂解条件下,控制蔗糖的含量使得裂解产物中仅含有碳,而且碳在复合材料中的重量百分比为6%左右。For comparative study, we selected sucrose as the carbon source at the same time. Under the same cracking conditions as in Example 1, the content of sucrose was controlled so that only carbon was contained in the cracked product, and the weight percentage of carbon in the composite material was about 6%.
将样品制作模拟电池。按包覆前后的钛酸锂∶乙炔黑∶PVdF粘结剂=8∶1∶1的比例在常温常压下混合形成浆料,均匀涂敷于铝箔为集流体的衬底上制作电极片,所得的薄膜厚度为2-20微米,作为模拟电池的正极。模拟电池的负极使用金属锂片,电解液为1M的LiPF6溶解在1L的EC和DMC的混合溶剂中(体积比1∶1)。将正极、负极、电解液在氩气保护的手套箱内组装成模拟电池。模拟电池的测试步骤:首先以C/2的电流在1-2.2V之间进行充放电,所放出的容量即为该倍率下的放电容量;循环几周后,逐步提高充放电的电流密度,直到10C。模拟电池的测试结果列于表4。Make samples to simulate batteries. According to the ratio of lithium titanate before and after coating: acetylene black: PVdF binder = 8:1:1, mix at normal temperature and pressure to form a slurry, and evenly coat it on the substrate with aluminum foil as the current collector to make electrode sheets. The resulting film thickness was 2-20 micrometers, which served as the positive electrode of the simulated battery. The negative electrode of the simulated battery uses a metal lithium sheet, and the electrolyte is 1M LiPF 6 dissolved in 1L of a mixed solvent of EC and DMC (volume ratio 1:1). The positive electrode, negative electrode, and electrolyte were assembled into a simulated battery in an argon-protected glove box. The test steps of the simulated battery: first charge and discharge at a current of C/2 between 1-2.2V, and the released capacity is the discharge capacity at this rate; after a few weeks of cycling, gradually increase the current density of charge and discharge, until 10C. The test results of the simulated battery are listed in Table 4.
表4Table 4
结果发现包覆本发明的含碳氮化合物的复合材料在5C及10C的高倍率下,电池性能得到了很大的提高,比容量分别为145mAh/g和130mAh/g(容量保持率分别为90%和81%),而仅有碳包覆的样品,其比容量分别为130mAh/g和116mAh/g(容量保持率分别为81%和72%)。由此可见,碳氮化合物包覆极大地改善了钛酸锂的导电性,使其倍率性能和长循环稳定性都得到了很大的提高。As a result, it is found that the composite material coated with carbon-nitrogen compound of the present invention has been greatly improved under the high rate of 5C and 10C, and the specific capacity is respectively 145mAh/g and 130mAh/g (the capacity retention rate is respectively 90 % and 81%), while only carbon-coated samples had specific capacities of 130mAh/g and 116mAh/g (capacity retention rates of 81% and 72%, respectively). It can be seen that the carbonitride coating greatly improves the conductivity of lithium titanate, and its rate performance and long-term cycle stability have been greatly improved.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010228697XA CN102315440A (en) | 2010-07-09 | 2010-07-09 | Spinel composite material, preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010228697XA CN102315440A (en) | 2010-07-09 | 2010-07-09 | Spinel composite material, preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102315440A true CN102315440A (en) | 2012-01-11 |
Family
ID=45428383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010228697XA Pending CN102315440A (en) | 2010-07-09 | 2010-07-09 | Spinel composite material, preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102315440A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820458A (en) * | 2012-06-14 | 2012-12-12 | 合肥国轩高科动力能源有限公司 | Synthetic method for preparing nitrogen-carbon-containing coated lithium titanate composite material by introducing ionic liquid as carbon source |
CN103337631A (en) * | 2013-07-04 | 2013-10-02 | 哈尔滨工程大学 | Carbon-nitrogen co-coating method for improving high rate discharge performance of lithium titanate and inhibiting gas generation |
CN104409714A (en) * | 2014-11-21 | 2015-03-11 | 湖南文理学院 | Method for preparing nitrogen-carbon co-coated lithium titanate anode material |
CN104617291A (en) * | 2015-01-24 | 2015-05-13 | 复旦大学 | Uniform carbon coated lithium ion battery anode/cathode material and preparation method thereof |
CN105244181A (en) * | 2015-08-24 | 2016-01-13 | 太原理工大学 | Spinel type metal oxide of high specific capacitance and preparation and application of metal oxide |
WO2017101470A1 (en) * | 2015-12-18 | 2017-06-22 | 华为技术有限公司 | Negative electrode active material of lithium ion secondary battery and preparation method therefor, negative electrode plate of lithium ion secondary battery, and lithium ion secondary battery |
US10454094B2 (en) | 2013-07-29 | 2019-10-22 | Huawei Technologies Co., Ltd. | Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery |
CN112310365A (en) * | 2020-06-28 | 2021-02-02 | 深圳市海洋王照明工程有限公司 | Composition, preparation method and application of composition in field of electrode materials |
CN114772656A (en) * | 2022-03-02 | 2022-07-22 | 重庆理英新能源科技有限公司 | Low-cost high-first-efficiency lithium-rich manganese-based positive electrode material and preparation method and application thereof |
CN117133919A (en) * | 2023-10-23 | 2023-11-28 | 宜宾锂宝新材料有限公司 | Modified lithium ion battery positive electrode material, preparation method thereof and lithium battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378119A (en) * | 2008-10-06 | 2009-03-04 | 天津巴莫科技股份有限公司 | Method for preparing carbon-coating type lithium titanate for lithium ion battery |
-
2010
- 2010-07-09 CN CN201010228697XA patent/CN102315440A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378119A (en) * | 2008-10-06 | 2009-03-04 | 天津巴莫科技股份有限公司 | Method for preparing carbon-coating type lithium titanate for lithium ion battery |
Non-Patent Citations (2)
Title |
---|
《沈阳化工学院学报》 19991231 姚淑华等 "聚丙烯腈热裂解产物结构的研究" 268-271 1-9 第13卷, 第4期 * |
姚淑华等: ""聚丙烯腈热裂解产物结构的研究"", 《沈阳化工学院学报》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102820458A (en) * | 2012-06-14 | 2012-12-12 | 合肥国轩高科动力能源有限公司 | Synthetic method for preparing nitrogen-carbon-containing coated lithium titanate composite material by introducing ionic liquid as carbon source |
CN103337631A (en) * | 2013-07-04 | 2013-10-02 | 哈尔滨工程大学 | Carbon-nitrogen co-coating method for improving high rate discharge performance of lithium titanate and inhibiting gas generation |
CN103337631B (en) * | 2013-07-04 | 2015-08-12 | 哈尔滨工程大学 | Improve lithium titanate high-rate discharge ability and suppress the carbon nitrogen of aerogenesis to be total to method for coating |
US10454094B2 (en) | 2013-07-29 | 2019-10-22 | Huawei Technologies Co., Ltd. | Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery |
CN104409714A (en) * | 2014-11-21 | 2015-03-11 | 湖南文理学院 | Method for preparing nitrogen-carbon co-coated lithium titanate anode material |
CN104617291A (en) * | 2015-01-24 | 2015-05-13 | 复旦大学 | Uniform carbon coated lithium ion battery anode/cathode material and preparation method thereof |
CN105244181B (en) * | 2015-08-24 | 2019-01-08 | 太原理工大学 | Spinel-type metal oxide of high specific capacitance characteristic and the preparation method and application thereof |
CN105244181A (en) * | 2015-08-24 | 2016-01-13 | 太原理工大学 | Spinel type metal oxide of high specific capacitance and preparation and application of metal oxide |
CN106898738A (en) * | 2015-12-18 | 2017-06-27 | 华为技术有限公司 | A kind of negative electrode of lithium ionic secondary battery and preparation method, cathode pole piece of lithium ion secondary battery and lithium rechargeable battery |
WO2017101470A1 (en) * | 2015-12-18 | 2017-06-22 | 华为技术有限公司 | Negative electrode active material of lithium ion secondary battery and preparation method therefor, negative electrode plate of lithium ion secondary battery, and lithium ion secondary battery |
CN106898738B (en) * | 2015-12-18 | 2019-07-23 | 华为技术有限公司 | A kind of negative electrode of lithium ionic secondary battery and preparation method, cathode pole piece of lithium ion secondary battery and lithium ion secondary battery |
US11569496B2 (en) | 2015-12-18 | 2023-01-31 | Huawei Technologies Co., Ltd. | Lithium-ion rechargeable battery negative electrode active material and preparation method thereof, lithium-ion rechargeable battery negative electrode plate, and lithium-ion rechargeable battery |
US12170365B2 (en) | 2015-12-18 | 2024-12-17 | Huawei Technologies Co., Ltd | Lithium-ion rechargeable battery negative electrode active material and preparation method thereof, lithium-ion rechargeable battery negative electrode plate, and lithium-ion rechargeable battery |
US12341189B2 (en) | 2015-12-18 | 2025-06-24 | Huawei Technologies Co., Ltd | Lithium-ion rechargeable battery negative electrode active material and preparation method thereof, lithium-ion rechargeable battery negative electrode plate, and lithium-ion rechargeable battery |
CN112310365A (en) * | 2020-06-28 | 2021-02-02 | 深圳市海洋王照明工程有限公司 | Composition, preparation method and application of composition in field of electrode materials |
CN114772656A (en) * | 2022-03-02 | 2022-07-22 | 重庆理英新能源科技有限公司 | Low-cost high-first-efficiency lithium-rich manganese-based positive electrode material and preparation method and application thereof |
CN117133919A (en) * | 2023-10-23 | 2023-11-28 | 宜宾锂宝新材料有限公司 | Modified lithium ion battery positive electrode material, preparation method thereof and lithium battery |
CN117133919B (en) * | 2023-10-23 | 2024-01-19 | 宜宾锂宝新材料有限公司 | Modified lithium-ion battery cathode material and preparation method thereof and lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107611406B (en) | Preparation method of silicon/graphene/carbon composite negative electrode material | |
CN102315440A (en) | Spinel composite material, preparation method and application thereof | |
CN111180692B (en) | Negative electrode active material for battery and preparation method thereof | |
CN103311514B (en) | A kind of preparation method of modification lithium-ion battery graphite cathode material | |
CN111517374B (en) | Fe7S8Preparation method of/C composite material | |
CN105576209A (en) | High-capacity silicon-based anode material for lithium ion battery and preparation method thereof, and lithium ion battery | |
CN108346788A (en) | A kind of preparation method of carbon coating Antaciron composite negative pole material | |
CN108448057B (en) | Preparation of CoO/CoMoO4 Composites and Its Application in Li-ion Batteries | |
CN111653759A (en) | A kind of silicon-based composite material and preparation method thereof | |
CN109449421B (en) | Silicon-based alloy composite negative electrode material of lithium ion battery and preparation method thereof | |
JP2013505547A (en) | New silicon-based electrode formulations for lithium ion batteries and methods for obtaining the formulations | |
CN115810733A (en) | Modified lithium iron manganese phosphate material, preparation method thereof and lithium ion battery | |
CN104993118A (en) | Synthesizing method for lithium-ion negative electrode material of Li4Ti5O12/C | |
CN107104248B (en) | A kind of open-frame fluoride cathode material for potassium/sodium ion battery and preparation method thereof | |
WO2019216216A1 (en) | Collector layer for all-solid-state batteries, all-solid-state battery and carbon material | |
CN101800305A (en) | Method for depositing silicon film at surface of lithium titanate cathode of lithium ion battery | |
CN115207326A (en) | A kind of low-expansion silicon-carbon composite material and preparation method thereof | |
CN111162269B (en) | Negative electrode active material for battery and preparation method thereof | |
CN105129844A (en) | Modified lithium battery lithium titanate negative electrode material preparation method | |
CN115911324A (en) | Cathode materials, secondary batteries and electrical equipment | |
CN119419251A (en) | A silicon-carbon negative electrode material and its preparation method, application and battery | |
CN112125304B (en) | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof | |
CN108878823B (en) | Preparation method of metal olivine coated nano silicon | |
CN107230780B (en) | Lithium titanate composite electrode material and preparation method thereof | |
CN115663176A (en) | A kind of lithium iron phosphate cathode material, preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120111 |