CN102315291A - 含有超晶格结构的p-i-n型InGaN太阳电池 - Google Patents

含有超晶格结构的p-i-n型InGaN太阳电池 Download PDF

Info

Publication number
CN102315291A
CN102315291A CN201110300096A CN201110300096A CN102315291A CN 102315291 A CN102315291 A CN 102315291A CN 201110300096 A CN201110300096 A CN 201110300096A CN 201110300096 A CN201110300096 A CN 201110300096A CN 102315291 A CN102315291 A CN 102315291A
Authority
CN
China
Prior art keywords
gan
layer
ingan
solar cell
gan layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110300096A
Other languages
English (en)
Inventor
郝跃
毕臻
周小伟
张进成
王冲
马晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201110300096A priority Critical patent/CN102315291A/zh
Publication of CN102315291A publication Critical patent/CN102315291A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种含有超晶格结构的p-i-n型InGaN太阳电池。主要解决现有多p-i-n型InGaN太阳电池的转换效率低的问题。该太阳电池自下而上依次为:衬底,高温生长的AlN成核层(11),非故意掺杂的GaN缓冲层(12),厚度为50~100nm、电子浓度为1×1018~6×1019/cm3的n-GaN层(13),周期为8~30的InGaN/GaN超晶格结构(14),以及厚度为50~100nm、穴浓度为1×1017~6×1018/cm3的p-GaN层(15);其中InGaN/GaN超晶格的阱层InGaN(18)厚度为8~16nm,In组分为15~90%,垒层GaN(19)的厚度为3~8nm,载流子浓度均为1×1016~2×1017/cm3;p-GaN层(15)的表面分布着栅形Ni/Au欧姆电极(16),n-GaN层(15)表面的右侧引出Al/Au欧姆电极(17)。本发明大大提高了电池的短路电流,具有更高的转换效率,可用于太阳能光伏发电。

Description

含有超晶格结构的p-i-n型InGaN太阳电池
技术领域
本发明属于半导体光伏器件领域,涉及一种含有超晶格结构的p-i-n型InGaN太阳电池,可用于太阳能光伏发电,开发利用新能源。
背景技术
随着全球范围的能源危机和生态环境问题的日益恶化,太阳能作为一种‘取之不尽、用之不竭’的清洁能源越来越受到人们的广泛重视。最早1954年,美国贝尔实验室首先研制成功第一块实用意义上的晶体硅pn结型太阳电池,并很快将其应用于空间技术。1973年,石油危机爆发,从此之后,人们普遍对于太阳电池投入了愈来愈多的关注。一些发达国家制定了一系列鼓舞光伏发电的优惠政策,幷实施庞大的光伏工程计划,为太阳电池产业创造了良好的发展机遇和巨大的市场空间,太阳电池产业进入了高速发展时期。现在,在美国、德国这样的发达国家,太阳能光伏发电的地位已经从原来的补充能源上升为重要的战略替代能源,也是未来最适合人类应用的可再生能源之一。
2002年日本的Nanishi教授利用RF-MBE方法首次生长出高质量的InN晶体,特别是准确测量出InN禁带宽度为0.7eV,而不是先前人们认为的1.9eV。这一新发现大大扩展了InGaN的应用领域和优势,使得全世界范围掀起了InGaN研究的热潮。
InGaN是直接带隙半导体材料,因In组分的改变,其禁带宽度在从3.4eV(GaN)~0.7eV(InN)连续可调,其对应的吸收光谱波长从紫外光365 nm可以一直延伸到近红外光1.7μm,几乎完整地覆盖了整个太阳光谱,并且可以在同一设备中实现不同组分InGaN薄膜的工艺兼容性生长,非常适合制备多层结构的高效太阳电池。
2003年美国劳伦斯-伯克莱国家实验室的Wu等人首次提出将InGaN应用到太阳电池中。此后,InGaN太阳电池研究始终备受关注。美国的乔治亚理工大学、加州大学伯克利分校、加州大学圣巴巴拉分校、明尼苏达大学等,日本的福井大学、东京大学、庆应大学等国际知名大学,以及国内的厦门大学、南京大学和中科院半导体所等都在InGaN太阳电池方面开展了大量的研究工作。近几年来,许多研究机构陆续报道了各种不同结构和组分的电池实验,尝试提高电池转换效率。但由于其均不能满足开路电压和短路电流同时增大的要求,因而转换效率都不能得到明显的提高。
发明内容
本发明的目的在于针对已有技术的不足,提出了一种含有超晶格结构的p-i-n型InGaN太阳电池,以提高电池的短路电流,从而提高电池的转换效率。
为实现上述目的,本发明的含有超晶格结构的p-i-n型InGaN太阳电池,包括:衬底、AlN成核层和GaN缓冲层,其中,GaN缓冲层上依次设有n-GaN层、InGaN/GaN超晶格结构和p-GaN层;在p-GaN层上引出Ni/Au欧姆接触金属电极,在n-GaN层上引出Al/Au欧姆接触金属电极,所述的InGaN/GaN超晶格结构中,InGaN层和GaN均为本征薄膜,载流子浓度均为1×1016~2×1017/cm3,In组分为15~90%。
所述的n-GaN薄膜厚度为50~100nm,电子浓度为1×1018~6×1019/cm3
所述的InGaN/GaN超晶格的周期数为8~30,阱层InGaN的厚度8~16nm,垒层GaN的厚度为3~8nm。
所述的p-GaN欧姆接触电极采用氧化铟锡ITO或Ni/Au合金材料。
所述的p-GaN层欧姆接触电极采用栅形电极,电极宽度为1~2μm,电极间距为3~5μm。
所述的衬底为蓝宝石或硅衬底。
为实现上述目的,本发明提出的含有超晶格结构的p-i-n型InGaN太阳电池的制作方法,包括如下步骤:
(1)在蓝宝石或硅衬底上,采用化学气相沉积法MOCVD依次生长10~80nm厚的AlN成核层和1~2μm厚的GaN缓冲层;
(2)在GaN缓冲层上生长50~100nm厚的n-GaN层;
(3)在n-GaN层上生长周期数为8~30的InGaN/GaN超晶格结构,每个周期包括阱层InGaN和垒层GaN,阱层InGaN的厚度为8~16nm,垒层GaN的厚度为3~8nm,其中:
阱层InGaN的生长工艺是:生长温度为600~800℃,TMIn流量为10~100sccm,TMGa流量为50~300sccm,氨气流量为2000~5000sccm,反应室气压为150~250torr;
垒层GaN的生长工艺是:生长温度为800~1100℃,TMGa流量为100~300sccm,氨气流量为3000~5000sccm,反应室气压为150~250torr;
(4)在InGaN/GaN超晶格结构上生长50~100nm厚的p-GaN层;
(5)在p-GaN层上光刻并刻蚀出电池台面,露出n-GaN层;
(6)将步骤(5)刻蚀后的样件置于1∶7稀释的HF酸溶液中超声处理10min;
(7)将超声处理后的样件置于大气中600℃温度条件下退火5~10min;
(8)用电子束蒸发法在p-GaN层上制备出Ni/Au金属电极,并在大气中550℃条件下退火10min;
(9)在n-GaN层上制备出Al/Au金属电极。
所述的生长n-GaN层的工艺条件是:生长温度为800~1100℃;TMGa流量为50~300sccm;SiH4流量为20~200sccm;氨气流量为2000~5000sccm;反应室气压为150~250torr。
所述的生长p-GaN层的工艺条件是:生长温度为800~1100℃;TMGa流量为50~300sccm;(Cp)2Mg流量为20~300sccm;氨气流量为2000~5000sccm;反应室气压为150~250torr。
所述的刻蚀出电池台面的面积为3×3mm2或5×5mm2或10×10mm2
本发明具有如下优点:
由于采用InGaN/GaN超晶格结构作为光吸收层,阱层InGaN并不需要很厚,可以在In组分较高时,避免因超过临界厚度薄膜质量变差对电池的影响;另外由于垒层很薄,相邻阱之间的耦合很强,遂穿电流变大,使得电极对光生载流子的收集作用更强,这样可以大大提高电池的短路电流,从而提高电池的转换效率。
附图说明
图1是本发明太阳电池的第一实例结构示意图;
图2是本发明制作太阳电池的工艺流程图。
图3是采用多量子阱和超晶格结构的p-i-n型InGaN太阳电池的性能对比。
具体实施方式
参照图1,本发明给出太阳电池的以下三种实施例:
实施例一:
本发明的含有超晶格结构的p-i-n型InGaN太阳电池自下而上依次包括:蓝宝石衬底、AlN成核层11、GaN缓冲层12、n-GaN层13、InGaN/GaN超晶格14和p-GaN层15。其中AlN成核层11为高温生长;GaN缓冲层12为非故意掺杂层;n-GaN13层厚度为50nm,电子浓度为1×1018/cm3;InGaN/GaN超晶格14为8个周期,每个周期均由厚度8nm的阱层InGaN18和厚度3nm的垒层GaN19组成,InGaN和GaN均为本征薄膜,载流子浓度均为1×1016/cm3,阱层InGaN中In组分为15%;p-GaN层15厚度为50nm,空穴浓度为1×1017/cm3。p-GaN层15的表面分布着栅形Ni/Au欧姆电极16,每个电极的宽度为1μm,电极间距为3μm,n-GaN层15表面的右侧引出Al/Au欧姆电极17。
实施例二:
本发明的含有超晶格结构的p-i-n型InGaN太阳电池自下而上依次包括:硅衬底、AlN成核层11、GaN缓冲层12、n-GaN层13、InGaN/GaN超晶格14和p-GaN层15。其中AlN成核层11为高温生长;GaN缓冲层12为非故意掺杂层;n-GaN13层厚度为50nm,电子浓度为1×1018/cm3;InGaN/GaN超晶格14为14个周期,每个周期均由厚度14nm的阱层InGaN18和厚度5nm的垒层GaN19组成,InGaN和GaN均为本征薄膜,载流子浓度均为6×1016/cm3,阱层InGaN中In组分为40%;p-GaN层15厚度为50nm,空穴浓度为1×1017/cm3。p-GaN层15的表面分布着栅形ITO电极16,每个电极的宽度为1.5μm,电极间距为4μm,n-GaN层15表面的右侧引出Al/Au欧姆电极17。
实施例三:
本发明的含有超晶格结构的p-i-n型InGaN太阳电池自下而上依次包括:蓝宝石衬底、AlN成核层11、GaN缓冲层12、n-GaN层13、InGaN/GaN超晶格14和p-GaN层15。其中AlN成核层11为高温生长;GaN缓冲层12为非故意掺杂层;n-GaN13层厚度为50nm,电子浓度为1×1018/cm3;InGaN/GaN超晶格14为14个周期,每个周期均由厚度16nm的阱层InGaN18和厚度8nm的垒层GaN19组成,InGaN和GaN均为本征薄膜,载流子浓度均为2×1017/cm3,阱层InGaN中In组分为90%;p-GaN层15厚度为50nm,空穴浓度为1×1017/cm3。p-GaN层15的表面分布着栅形Ni/Au欧姆电极16,每个电极的宽度为2μm,电极间距为5μm,n-GaN层15表面的右侧引出Al/Au欧姆电极17。
参照图2,本发明给出制作太阳电池方法的以下三种实施例:
实施例A:
A1)用丙酮和乙醇溶液对蓝宝石衬底进行超声清洗;
A2)通入氮气和氢气混合气体,升温至1000℃对衬底表面做氮化处理,如图2(a)所示;
A3)在氮化处理后的衬底上,采用MOCVD法生长高温AlN成核层,温度为1050℃;
A4)在AlN成核层上生长GaN缓冲层,生长温度为950℃,如图2(b)所示;
A5)在GaN缓冲层上生长n-GaN层,其工艺条件是:TMGa流量为300sccm,SiH4流量为20sccm,氨气流量为3000sccm,生长温度850℃,反应室气压为150torr,如图2(c)所示;
A6)在n-GaN层上生长InGaN/GaN超晶格结构,其中生长阱层InGaN的工艺条件是:TMIn流量为10sccm,TMGa流量为300sccm,氨气流量为2000sccm,生长温度为800℃,反应室气压为150torr;生长垒层GaN的工艺条件是:TMGa流量为100sccm,氨气流量为3000sccm,生长温度为800℃,反应室气压为150torr,如图2(d)所示;
A7)在i-InGaN层上生长p-GaN层,其工艺条件是:TMGa流量为300sccm,(Cp)2Mg流量为20sccm,氨气流量为3000sccm,生长温度为1000℃,反应室气压为150torr,如图2(e)所示;
A8)在p-GaN层上进行光刻,再刻蚀出电池台面,露出n-GaN层,台面面积约3×3mm2,如图2(f)所示,;
A9)对刻蚀后的样品表面用1∶7稀释的HF溶液进行超声净化处理,净化处理时间10min;
A10)对净化处理后的样品置于大气中进行退火处理,退火温度为600℃,时间为5~10min;
A11)对退火处理后的样品进行二次光刻,再用电子束蒸发法在p-GaN层上沉积Ni/Au欧姆电极,然后在550℃大气中合金化处理10min,如图2(g)所示;
A12)最后在n-GaN上光刻沉积Al/Au欧姆电极,完成整个InGaN太阳电池的制作,如图2(h)所示。
实施例B:
B1)用丙酮和乙醇溶液对硅衬底进行超声清洗;
B2)通入氮气和氢气混合气体,升温至1000℃对衬底表面做氮化处理,如图2(a)所示;
B3)在氮化处理后的衬底上,采用MOCVD法生长高温AlN成核层,温度为1050℃;
B4)在AlN成核层上生长GaN缓冲层,生长温度为950℃,如图2(b)所示;
B5)在GaN缓冲层上生长n-GaN层,其工艺条件是:TMGa流量为200sccm,SiH4流量为100sccm,氨气流量为4000sccm,生长温度950℃,反应室气压为200torr,如图2(c)所示;
B6)在n-GaN层上生长InGaN/GaN超晶格结构,其中生长阱层InGaN的工艺条件是:TMIn流量为50sccm,TMGa流量为150sccm,氨气流量为4000sccm,生长温度为700℃,反应室气压为200torr;生长垒层GaN的工艺条件是:TMGa流量为200sccm,氨气流量为4000sccm,生长温度为950℃,反应室气压为200torr,如图2(d)所示;
B7)在i-InGaN层上生长p-GaN层,其工艺条件是:TMGa流量为200sccm,(Cp)2Mg流量为150sccm,氨气流量为4000sccm,生长温度为800℃,反应室气压为200torr,如图2(e)所示;
B8)在p-GaN层上样品进行光刻,再刻蚀出电池台面,露出n-GaN层,台面面积约5×5mm2,如图2(f)所示;
B9)对刻蚀后的样品表面用1∶7稀释的HF溶液进行超声净化处理,净化处理时间10min;
B10)对净化处理后的样品置于大气中进行退火处理,退火温度为600℃,时间为5~10min;
B11)对退火处理后的样品进行二次光刻,再用磁控溅射法在p-GaN层上沉积ITO欧姆电极,然后在550℃大气中合金化处理10min,如图2(g)所示;
B12)最后在n-GaN上光刻沉积Al/Au欧姆电极,完成整个InGaN太阳电池的制作,如图2(h)所示。
实施例C:
C1)用丙酮和乙醇溶液对蓝宝石衬底进行超声清洗;
C2)通入氮气和氢气混合气体,升温至1000℃对衬底表面做氮化处理,如图2(a)所示;
C3)在氮化处理后的衬底上,采用MOCVD法生长高温AlN成核层,温度为1050℃;
C4)在AlN成核层上生长GaN缓冲层,生长温度为950℃,如图2(b)所示;
C5)在GaN缓冲层上生长n-GaN层,其工艺条件是:TMGa流量为50sccm,SiH4流量为200sccm,氨气流量为5000sccm,生长温度1000℃,反应室气压为250torr,如图2(c)所示;
C6)在n-GaN层上生长InGaN/GaN超晶格结构,其中生长阱层InGaN的工艺条件是:TMIn流量为100sccm,TMGa流量为50sccm,氨气流量为5000sccm,生长温度为600℃,反应室气压为250torr;生长垒层GaN的工艺条件是:TMGa流量为300sccm,氨气流量为5000sccm,生长温度为1100℃,反应室气压为250torr,如图2(d)所示;
C7)在i-InGaN层上生长p-GaN层,其工艺条件是:TMGa流量为50sccm,(Cp)2Mg流量为200sccm,氨气流量为5000sccm,生长温度为1000℃,反应室气压为250torr,如图2(e)所示;
C8)在p-GaN层上样品进行光刻,再刻蚀出电池台面,露出n-GaN层,台面面积约10×10mm2,如图2(f)所示;
C9)对刻蚀后的样品表面用1∶7稀释的HF溶液进行超声净化处理,净化处理时间10min;
C10)对净化处理后的样品置于大气中进行退火处理,退火温度为600℃,时间为5~10min;
C11)对退火处理后的样品进行二次光刻,再用电子束蒸发法在p-GaN层上沉积Ni/Au欧姆电极,然后在550℃大气中合金化处理10min,如图2(g)所示;
C12)最后在n-GaN上光刻沉积Al/Au欧姆电极,完成整个InGaN太阳电池的制作,如图2(h)所示。
本发明的效果可以通过下面的仿真结果进一步说明。
将多量子阱和超晶格结构的p-i-n型InGaN太阳电池进行仿真性能的对比,结果如图3所示,从图3中可以看出,相比于多量子阱结构,由于本发明的超晶格结构的阱层InGaN较厚,提高了有效光吸收;另外垒层GaN较薄,使得不同阱之间电子和空穴的遂穿能力提高,短路电流密度Jsc有了显著提高,从而提高了电池的转换效率η。

Claims (10)

1.一种含有超晶格结构的p-i-n型InGaN太阳电池,包括:衬底、AlN成核层(11)和GaN缓冲层(12),其特征在于,GaN缓冲层上依次设有n-GaN层(13)、InGaN/GaN超晶格结构(14)和p-GaN层(15);在p-GaN层上引出Ni/Au欧姆接触金属电极(16),在n-GaN层上引出Al/Au欧姆接触金属电极(17)。
2.如权利要求1所述的InGaN太阳电池,其特征在于,所述的InGaN/GaN超晶格结构的周期数为8~30,阱层InGaN的厚度8~16nm,垒层GaN的厚度为3~8nm,InGaN层和GaN均为本征薄膜,载流子浓度均为1×1016~2×1017/cm3
3.如权利要求1所述的InGaN太阳电池,其特征在于,所述的p-GaN层厚度为50~100nm,空穴浓度为1×1017~6×1018/cm3
4.如权利要求1所述的InGaN太阳电池,其特征在于,所述的n-GaN层厚度为50~100nm,电子浓度为1×1018~6×1019/cm3
5.如权利要求1所述的InGaN太阳电池,其特征在于,所述的p-GaN层欧姆接触电极(16)采用栅形电极,极宽度为1~2μm,电极间距为3~5μm。
6.所述的p-GaN欧姆接触电极采用Ni/Au合金或氧化铟锡ITO材料。
7.一种p-i-n夹层结构InGaN太阳电池的制作方法,包括如下步骤:
(1)在蓝宝石或硅衬底上,采用化学气相沉积法MOCVD依次生长10~80nm厚的AlN成核层和1~2μm厚的GaN缓冲层;
(2)在GaN缓冲层上生长50~100nm厚的n-GaN层;
(3)在n-GaN层上生长周期数为8~30的InGaN/GaN超晶格结构,每个周期包括阱层InGaN和垒层GaN,阱层InGaN的厚度为8~16nm,垒层GaN的厚度为3~8nm,其中:
阱层InGaN的生长工艺是:生长温度为600~800℃,TMIn流量为10~100sccm,TMGa流量为50~300sccm,氨气流量为2000~5000sccm,反应室气压为150~250torr;
垒层GaN的生长工艺是:生长温度为800~1100℃,TMGa流量为100~300sccm,氨气流量为3000~5000sccm,反应室气压为150~250torr;
(4)在InGaN/GaN超晶格结构上生长50~100nm厚的p-GaN层;
(5)在p-GaN层上光刻并刻蚀出电池台面,露出n-GaN层;
(6)将步骤(5)刻蚀后的样件置于1∶7稀释的HF酸溶液中超声处理10min;
(7)将超声处理后的样件置于大气中600℃温度条件下退火5~10min;
(8)用电子束蒸发法在p-GaN层上制备出Ni/Au金属电极,并在大气中550℃条件下退火10min;
(9)在n-GaN层上制备出Al/Au金属电极。
8.如权利要求7所述的InGaN太阳电池制作方法,其中生长n-GaN层的工艺条件是:生长温度为850~1000℃;TMGa流量为50~300sccm;SiH4流量为20~200sccm;氨气流量为3000~5000sccm;反应室气压为150~250torr。
9.如权利要求7所述的InGaN太阳电池制作方法,其中生长p-GaN层的工艺条件是:生长温度为800~1000℃;TMGa流量为50~300sccm;(Cp)2Mg流量为20~200sccm;氨气流量为3000~5000sccm;反应室气压为150~250torr。
10.如权利要求7所述的InGaN太阳电池制作方法,其中刻蚀出电池台面的面积为3×3mm2或5×5mm2或10×10mm2
CN201110300096A 2011-09-29 2011-09-29 含有超晶格结构的p-i-n型InGaN太阳电池 Pending CN102315291A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110300096A CN102315291A (zh) 2011-09-29 2011-09-29 含有超晶格结构的p-i-n型InGaN太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110300096A CN102315291A (zh) 2011-09-29 2011-09-29 含有超晶格结构的p-i-n型InGaN太阳电池

Publications (1)

Publication Number Publication Date
CN102315291A true CN102315291A (zh) 2012-01-11

Family

ID=45428276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110300096A Pending CN102315291A (zh) 2011-09-29 2011-09-29 含有超晶格结构的p-i-n型InGaN太阳电池

Country Status (1)

Country Link
CN (1) CN102315291A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738267A (zh) * 2012-06-20 2012-10-17 中国科学院苏州纳米技术与纳米仿生研究所 具有超晶格结构的太阳能电池及其制备方法
CN102738266A (zh) * 2012-06-20 2012-10-17 中国科学院苏州纳米技术与纳米仿生研究所 掺杂超晶格结构的太阳能电池及其制备方法
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池
CN104201220A (zh) * 2014-08-26 2014-12-10 中国科学院半导体研究所 含有低温***层的铟镓氮/氮化镓多量子阱太阳能电池
CN105679873A (zh) * 2014-11-19 2016-06-15 中国科学院苏州纳米技术与纳米仿生研究所 基于量子点超晶格结构的太阳能电池及其制备方法
CN107302033A (zh) * 2017-06-20 2017-10-27 西安电子科技大学 一种表面陷光结构InGaN/GaN太阳电池
WO2018129353A1 (en) 2017-01-05 2018-07-12 Brilliant Light Power, Inc. Extreme and deep ultraviolet photovoltaic cell
CN108767047A (zh) * 2018-04-25 2018-11-06 西安电子科技大学 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法
CN109004055A (zh) * 2018-07-27 2018-12-14 西安电子科技大学 基于n极性氮化物材料的光电转换结构及制备方法
CN113851546A (zh) * 2021-09-22 2021-12-28 陕西科技大学 一种绿光氮化物激光电池外延片及其制备方法
CN114899263A (zh) * 2022-05-25 2022-08-12 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203651A1 (en) * 2009-10-21 2011-08-25 Panasonic Corporation Solar cell and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203651A1 (en) * 2009-10-21 2011-08-25 Panasonic Corporation Solar cell and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIA-LUNG TSAI ET AL: "《Effects of InGaN/GaN superlattice absorption layers on the structural and optical properties of InGaN solar cells》", 《J. VAC. SCI. TECHNOL. B 》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738266A (zh) * 2012-06-20 2012-10-17 中国科学院苏州纳米技术与纳米仿生研究所 掺杂超晶格结构的太阳能电池及其制备方法
CN102738267B (zh) * 2012-06-20 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 具有超晶格结构的太阳能电池及其制备方法
CN102738266B (zh) * 2012-06-20 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 掺杂超晶格结构的太阳能电池及其制备方法
CN102738267A (zh) * 2012-06-20 2012-10-17 中国科学院苏州纳米技术与纳米仿生研究所 具有超晶格结构的太阳能电池及其制备方法
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池
CN103094378B (zh) * 2013-01-28 2016-09-14 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的背入射太阳能电池
CN104201220A (zh) * 2014-08-26 2014-12-10 中国科学院半导体研究所 含有低温***层的铟镓氮/氮化镓多量子阱太阳能电池
CN105679873A (zh) * 2014-11-19 2016-06-15 中国科学院苏州纳米技术与纳米仿生研究所 基于量子点超晶格结构的太阳能电池及其制备方法
CN105679873B (zh) * 2014-11-19 2018-07-03 中国科学院苏州纳米技术与纳米仿生研究所 基于量子点超晶格结构的太阳能电池及其制备方法
WO2018129353A1 (en) 2017-01-05 2018-07-12 Brilliant Light Power, Inc. Extreme and deep ultraviolet photovoltaic cell
CN107302033A (zh) * 2017-06-20 2017-10-27 西安电子科技大学 一种表面陷光结构InGaN/GaN太阳电池
CN108767047A (zh) * 2018-04-25 2018-11-06 西安电子科技大学 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法
CN108767047B (zh) * 2018-04-25 2019-12-31 西安电子科技大学 具有微纳减反结构的InGaP/InGaAs/Ge三结太阳电池及制作方法
CN109004055A (zh) * 2018-07-27 2018-12-14 西安电子科技大学 基于n极性氮化物材料的光电转换结构及制备方法
CN113851546A (zh) * 2021-09-22 2021-12-28 陕西科技大学 一种绿光氮化物激光电池外延片及其制备方法
CN114899263A (zh) * 2022-05-25 2022-08-12 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法
CN114899263B (zh) * 2022-05-25 2024-01-30 陕西科技大学 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法

Similar Documents

Publication Publication Date Title
CN102315291A (zh) 含有超晶格结构的p-i-n型InGaN太阳电池
JP5364782B2 (ja) 太陽電池の製造方法
Liu et al. Black silicon: fabrication methods, properties and solar energy applications
JP5885238B2 (ja) ヘテロ接合を有する光電子装置
Wang et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions
Lin et al. Realization of high performance silicon nanowire based solar cells with large size
TW201001721A (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
US20120305059A1 (en) Photon recycling in an optoelectronic device
WO2013061637A1 (ja) 光電変換装置とその製造方法、および光電変換モジュール
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
JP2001267611A (ja) 薄膜太陽電池及びその製造方法
CN101882642B (zh) 一种异质结太阳电池及其制备方法
TW200830567A (en) Solar cell and method for manufacturing the same
JP2012099806A (ja) 光起電性装置の金属接点およびその低温製造プロセス
CN102339891A (zh) 一种p-i-n夹层结构InGaN太阳电池
TW201128789A (en) New structure solar cell with superlattices
JP2012186415A (ja) 光電変換素子の製造方法、光電変換素子およびタンデム型光電変換素子
JP4949540B2 (ja) 太陽電池及びその製造法
JP2010123916A (ja) 太陽エネルギ電池のGexSi1−x緩衝層をシリコンウェハ上に形成する方法。
JP2009290115A (ja) シリコン系薄膜太陽電池
CN102738311B (zh) 一种InGaN/Si双结太阳能电池的制备方法
CN107302033A (zh) 一种表面陷光结构InGaN/GaN太阳电池
RU2532857C1 (ru) Фотовольтаическая структура
TW201201396A (en) Method for manufacturing a solar panel
WO2006049003A1 (ja) 薄膜光電変換装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120111