CN102299113A - 减小半导体器件热载流子注入损伤的制造方法 - Google Patents

减小半导体器件热载流子注入损伤的制造方法 Download PDF

Info

Publication number
CN102299113A
CN102299113A CN2011102665241A CN201110266524A CN102299113A CN 102299113 A CN102299113 A CN 102299113A CN 2011102665241 A CN2011102665241 A CN 2011102665241A CN 201110266524 A CN201110266524 A CN 201110266524A CN 102299113 A CN102299113 A CN 102299113A
Authority
CN
China
Prior art keywords
hot carrier
source
photoresist layer
well area
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102665241A
Other languages
English (en)
Inventor
俞柳江
李全波
黄晓橹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN2011102665241A priority Critical patent/CN102299113A/zh
Publication of CN102299113A publication Critical patent/CN102299113A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出一种减小半导体器件热载流子注入损伤的制造方法,包括如下步骤:在半导体衬底中形成n阱、p阱,在衬底上方生长栅氧层并在栅氧层上形成多晶硅栅;在n阱区域上方覆盖光刻胶层后对p阱区域进行轻掺杂漏区结构源漏注入;采用含四氟化碳组合气体灰化光刻胶层并在p阱区域源漏端界面处形成硅氟键;在p阱区域上方覆盖光刻胶层后对n阱区域进行轻掺杂漏区结构源漏注入;采用含四氟化碳组合气体灰化光刻胶层并在n阱区域源漏端界面处形成硅氟键;制作栅极侧墙并进行源漏注入,形成源极和漏极。本发明提供了一种可以减小半导体器件热载流子注入损伤的MOS器件的制造方法,既可以防止MOS器件的热载流子注入损伤,又可以抑制硼穿通现象。

Description

减小半导体器件热载流子注入损伤的制造方法
技术领域
本发明涉及一种半导体制备技术,尤其涉及一种减小半导体器件热载流子注入损伤的制造方法,可以有效防止MOS器件的热载流子注入损伤,又不会带来严重的硼穿通现象。
背景技术
随着集成工艺技术进入到深亚微米的工艺条件下,芯片的供电电压、工作电压并没有相应减少很多,所以相应的器件内部的电场强度随器件尺寸的减小而增强。在小尺寸器件中,电路的横向尺寸越来越小,导致栅氧厚度、结深、沟道长度减小,即使是较小的源漏电压也会在漏端附近形成很高的电场强度,由于该横向电场作用,在漏端的强场区,沟道电子获很大的漂移速度和能量,成为热载流子。热载流子效应是MOS器件的一个重要的失效机理,随着MOS器件尺寸的日益缩小,器件的热载流子注入效应越来越严重。
以PMOS器件为例,随着漏端电场强度增大,沟道中的空穴,在漏源之间高横向电场的作用下被加速形成高能热载流子,这些热载流子一部分在漏极附近与硅原子碰撞电离,产生电子空穴对,电子由衬底收集,形成衬底电流,大部分碰撞产生的空穴,流向漏极,但还有部分空穴在纵向电场作用下注入到栅极中,形成栅极电流,这种现象称为热载流子注入(Hot Carrier Injection)。由于热载流子的注入会造成硅衬底与二氧化硅栅氧界面处能键的断裂,在硅衬底与二氧化硅栅氧界面处产生界面态,导致MOS器件性能,如阈值电压、跨导以及线性区/饱和区电流的退化,最终造成MOS器件失效。器件失效通常首先发生在漏端,这是由于载流子通过整个沟道的电场加速,在到达漏端后,载流子的能量达到最大值,因此漏端的热载流子注入现象比较严重。
为了提高MOS器件抗热载流子注入性能,一种方法是对栅氧层氟化,下面以PMOS结构为例,结合图1a、图1b和图1c对栅氧层氟化的工作原理进行阐述。如图1a所示,在半导体衬底100中形成有源漏区102,在半导体衬底100上氧化生长栅氧层104,并在栅氧层104上沉积多晶硅,形成多晶栅极106,并制作栅极侧墙108,然后向图1a所示的半导体结构注入氟离子,然后在退火工艺的帮助下,如图1b所示,氟离子与衬底100和栅氧层104界面处的硅悬挂键110结合,这样硅氟键(Si-F)就替代了原先工艺中的硅氢键(Si-H)。由于Si-F的键能(565kJ/mol)要高于Si-H的键能(318kJ/mol),所以在热载流子注入过程中,Si-F更不容易断裂,所以氟化后的栅氧层104抗热载流子注入能力得到加强。但是,氟化后的栅氧层104会带来新的问题,由于氟存在于整体二氧化硅栅氧层104中,如图1c所示,多晶硅106中的硼离子114可以更容易的穿通到MOS器件沟道当中,即硼穿通(Boron Penetration)现象会加重,会造成PMOS器件阈值电压漂移,以及PMOS器件阈值电压工艺线控制难度加大。
为了解决上述问题,避免因提高MOS器件抗热载流子注入性能而在整体栅氧层中注入氟原子引起硼穿通现象,以提高MOS器件寿命,需要在如阱注入(Well Implantation)工艺、轻掺杂漏区(LDD,Lightly Doped Drain)结构注入工艺等注入工艺中寻找解决方案,但在实际的实施过程中仍然存在相当大的壁垒,亟待引进能有效改善上述缺陷的新方法,以解决MOS器件既能有效防止热载流子效应失效、又能有效抑制硼穿通现象发生的问题。
发明内容
本发明所要解决的技术问题是提供一种减小半导体器件热载流子注入损伤的MOS器件的制造方法,可以有效防止MOS器件的热载流子注入损伤,又可以抑制硼穿通现象。
为解决上述问题,本发明提出的一种实现减小半导体器件热载流子注入损伤的制造方法,包括如下步骤:
提供半导体衬底,在所述的半导体衬底中形成n阱和p阱,在半导体衬底上方氧化生长栅氧层,再在所述的栅氧层上分别形成多晶硅栅;
在n阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的p阱区域进行n型轻掺杂漏区结构源漏注入;
采用含四氟化碳组合气体通过灰化工艺去除n阱区域上方的光刻胶层并在p阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键;
在p阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的n阱区域进行p型轻掺杂漏区结构源漏注入;
采用含四氟化碳组合气体通过灰化工艺去除p阱区域上方的光刻胶层并在n阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键;
制作栅极侧墙并进行源漏注入,形成源极和漏极。
由上述技术方案可见,与传统LDD形成的MOS器件相比,本发明公开的MOS器件是在形成过程中结合LDD注入工艺的特点即在形成MOS管的源漏区之前,先在MOS管的漏区进行轻掺杂漏区结构源漏注入,而后在MOS管的漏极和沟道区之间有一段轻掺杂区,针对这段轻掺杂区,利用LDD注入工艺后通过灰化(Ashing)工艺去除光刻胶的方法即通入氧气(O2)外,适当通入四氟化碳(CF4)气体,并调整通入CF4气体的时间和流量,来控制LDD注入工艺之后的Ashing工艺。由于在LDD注入工艺之后的含四氟化碳Ashing工艺中,会有一定量的氟原子进入到源漏端的二氧化硅栅氧中,与源漏端的硅衬底和二氧化硅界面处的悬挂键相结合,形成Si-F,这些在源漏端形成的Si-F能替代原有工艺中的Si-H。由于Si-F的键能要高于Si-H,而热载流子注入损伤,通常会首先发生在漏端,因此漏端形成的Si-F对Si-H的替代,可以有效地防止MOS器件的热载流子注入损伤,减缓器件的失效时间。同时,由于氟原子是通过Ashing工艺从源漏端横向扩散进入二氧化硅栅氧层,因此只有在MOS器件源漏端的小范围内会有氟原子存在,相较于在二氧化硅栅氧层中通过氟注入掺入氟原子的方法,不会在整体二氧化硅栅氧层中掺入氟原子,因此硼穿通现象得到有效的抑制,使得MOS工艺线的控制难度降低。由此可见,在LDD注入工艺后,通过在Ashing工艺中,适当控制四氟化碳气体的通入流量和时间,以及调整灰化功率和灰化温度等条件,可以只在二氧化硅栅氧的源漏端小范围内掺入氟原子,其效果,既可以有效防止MOS器件的热载流子注入损伤,又不会带来严重的硼穿通现象。
附图说明
图1a至图1c为现有技术中氟注入抑制热载流子注入效应示意图;
图2为本发明一种减小半导体器件热载流子注入损伤的MOS器件的方法流程;
图3a至图3h为本发明一种减小半导体器件热载流子注入损伤的MOS器件的制造方法;
图4为本发明一种减小半导体器件热载流子注入损伤的PMOS结构的截面图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
参见图2,本发明所提供的一种减小半导体器件热载流子注入损伤的MOS器件的制造方法流程为:
S100:提供半导体衬底,在所述的半导体衬底中形成n阱和p阱,在半导体衬底上方氧化生长栅氧层,再在所述的栅氧层上形成多晶硅栅。
S101:在n阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的p阱区域进行n型轻掺杂漏区结构源漏注入。
S102:采用含四氟化碳组合气体通过灰化工艺去除n阱区域上方的光刻胶层并在p阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键。
S103:在p阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的n阱区域进行p型轻掺杂漏区结构源漏注入。
S104:采用含四氟化碳组合气体通过灰化工艺去除p阱区域上方的光刻胶层并在n阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键。
S105:制作栅极侧墙并进行源漏注入,形成源极和漏极。
下面以图2所示的方法流程为例,结合附图3a至3h,对一种减小半导体器件热载流子注入损伤的制作工艺进行详细描述。
S100:提供半导体衬底,在所述的半导体衬底中形成n阱和p阱,在半导体衬底上方氧化生长栅氧层,再在所述的栅氧层上形成多晶硅栅。
参见图3a,提供半导体衬底200,首先,在衬底200中制作n阱204和p阱206,其次,对半导体衬底200表面进行氧化生长二氧化硅薄膜,形成栅氧层202,并在衬底200上采用浅沟槽隔离(STI)工艺制备浅沟槽隔离208,然后,采用通用工艺在n阱204和p阱206的栅氧层202上沉淀多晶硅,形成多晶栅极210。
S101:在n阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的p阱区域进行n型轻掺杂漏区结构源漏注入。
参见图3b,采用通常工艺在n阱区域上方覆盖用于掩膜的光刻胶层212,所述n阱区域是指n阱204及其两侧的部分浅沟槽隔离208所组成的区域,即在n阱204的有源区表面,和多晶栅极210的表面以及侧面,还有浅沟槽隔离208的一部分区域上方覆盖用于掩膜的光刻胶层212;然后,在未被光刻胶保护的p阱区域中进行轻掺杂漏区源漏注入,在p阱区域中形成n型轻掺杂区214,所述p阱区域是指p阱206及其两侧的部分浅沟槽隔离208所组成的区域。
S102:采用含四氟化碳组合气体通过灰化工艺去除n阱区域上方的光刻胶层并在p阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键。
首先,参见图3c,当对光刻胶层212进行灰化工艺时,除了通入O2外,还可以适当通入一定量的CF4气体216,并调整通入时间和流量,在灰化工艺中,会有一定量的氟原子进入到n型轻掺杂区214中的源漏端,与源漏端的硅衬底和栅氧层202界面处的悬挂键相结合,参见图3d,形成硅氟键218。当灰化工艺完成之后,可以完全去除光刻胶层之外,还可以由源漏端形成的Si-F替代原有工艺中的Si-H。
可选的,所述含四氟化碳组合气体可以为但不限于O2与CF4气体的组合。
可选的,所述灰化工艺可以在反应离子刻蚀装置中进行。
优选的,所述灰化工艺中四氟化碳气体流量为5~15sccm。
优选的,所述灰化工艺的时间为5~15秒。
S103:在p阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的n阱区域进行p型轻掺杂漏区结构源漏注入。
参见图3e,采用通常工艺在p阱区域206上方覆盖用于掩膜的光刻胶层220,所述p阱区域是指p阱206及其两侧的部分浅沟槽隔离208所组成的区域,即在p阱206的有源区表面,和多晶栅极210的表面以及侧面,还有浅沟槽隔离208一部分区域上方覆盖用于掩膜的光刻胶层220;然后,在未被光刻胶保护的阱区域中进行轻掺杂漏区源漏注入,在n阱区域中形成p型轻掺杂区222。
S104:采用含四氟化碳组合气体通过灰化工艺去除p阱区域上方的光刻胶层并在n阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键。
参见图3f,当对光刻胶层220进行灰化工艺时,除了通入含O2气体外,还可以适当通入一定量的CF4气体216,并调整通入时间和流量,在灰化工艺中,会有一定量的氟原子进入到p型轻掺杂区222中的源漏端,与源漏端的硅衬底和栅氧层202界面处的悬挂键相结合,参见图3g,形成硅氟键224。当灰化工艺完成之后,可以完全去除光刻胶层220之外,还可以由源漏端形成的Si-F替代原有工艺中的Si-H。。
可选的,所述含四氟化碳组合气体可以为但不限于O2与CF4气体的组合。
可选的,所述灰化工艺可以在反应离子刻蚀装置中进行。
优选的,所述灰化工艺中四氟化碳气体流量为5~15sccm。
优选的,所述灰化工艺的时间为5~15秒。
S105:制作栅极侧墙并进行源漏注入,形成MOS器件的源极和漏极。
参见图3h,通过沉积侧墙薄膜并经过通用工艺制作栅极侧墙226。然后,再进行源漏重掺杂注入,形成MOS器件的源漏区。所述源漏注入分别在n阱204和p阱206形成p+区228和n+区230,并分别作为PMOS和NMOS的源漏区。同时,源漏重掺杂注入工艺之后,形成了PMOS的轻掺杂区222’和NMOS的轻掺杂区214’。
最后,参见图4,以PMOS为例,按照通常工艺从形成的PMOS的源漏区引出电极分别制作PMOS源极232和漏极234。同样,可以从形成NMOS的源漏区引出电极分别制作NMOS源极和漏极。
经过图3a至图3h可知,与传统的灰化工艺中不需要通入CF4的LDD注入工艺相比,本发明所公开的一种减小半导体器件热载流子注入损伤的MOS器件的制造方法由于在LDD注入工艺之后采用了含四氟化碳组合气体的灰化工艺,因此会在在源漏端形成Si-F替代原有工艺中的Si-H。由于Si-F的键能要高于Si-H,而热载流子注入损伤,通常会首先发生在漏端,因此漏端形成的Si-F对Si-H的替代,可以有效地防止MOS器件的热载流子注入损伤,减缓器件的失效时间。同时,与传统的对二氧化硅栅氧层中直接通过氟注入掺入氟原子的方法相比,本发明通过Ashing工艺中掺入适当的CF4,由于氟原子只从轻掺杂区128’和轻掺杂区116’的源漏端横向扩散进入二氧化硅栅氧层,因此只有在MOS器件的轻掺杂区222’和轻掺杂区214’的源漏端的小范围内会有氟原子存在,不会在整体二氧化硅栅氧层中掺入氟原子,因此硼穿通现象得到有效的抑制,使得MOS工艺线的控制难度降低。由此可见,在LDD注入工艺之后,通过在Ashing工艺中,掺入通入CF4气体,并适当控制四氟化碳CF4气体的通入流量和时间,以及调整灰化功率和灰化温度等条件,可以只在二氧化硅栅氧的源漏端小范围内掺入氟原子,从而有效防止MOS器件的热载流子注入损伤,又抑制了严重的硼穿通现象。
本发明虽然以较佳实施例公开如上,但其并不是用来限定权利要求,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims (5)

1.一种减小半导体器件热载流子注入损伤的制造方法,包括如下步骤:
提供半导体衬底,在所述的半导体衬底中形成n阱和p阱,在半导体衬底上方氧化生长栅氧层,再在所述的栅氧层上分别形成多晶硅栅;
在n阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的p阱区域进行n型轻掺杂漏区结构源漏注入;
采用含四氟化碳组合气体通过灰化工艺去除n阱区域上方的光刻胶层并在p阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键;
在p阱区域上方覆盖光刻胶层,在未覆盖光刻胶层的n阱区域进行p型轻掺杂漏区结构源漏注入;
采用含四氟化碳组合气体通过灰化工艺去除p阱区域上方的光刻胶层并在n阱区域的源漏端的硅衬底和栅氧层界面处形成硅氟键;
制作栅极侧墙并进行源漏注入,形成源极和漏极。
2.根据权利要求1所述的减小半导体器件热载流子注入损伤的制造方法,其特征在于:所述含四氟化碳组合气体为氧气与四氟化碳气体的组合。
3.根据权利要求1所述的减小半导体器件热载流子注入损伤的制造方法,其特征在于:所述灰化工艺在反应离子刻蚀装置中进行。
4.根据权利要求2所述的减小半导体器件热载流子注入损伤的制造方法,其特征在于:所述灰化工艺中四氟化碳气体流量为5~15sccm。
5.根据权利要求1所述的减小半导体器件热载流子注入损伤的制造方法,其特征在于:所述灰化工艺的时间为5~15秒。
CN2011102665241A 2011-09-08 2011-09-08 减小半导体器件热载流子注入损伤的制造方法 Pending CN102299113A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102665241A CN102299113A (zh) 2011-09-08 2011-09-08 减小半导体器件热载流子注入损伤的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102665241A CN102299113A (zh) 2011-09-08 2011-09-08 减小半导体器件热载流子注入损伤的制造方法

Publications (1)

Publication Number Publication Date
CN102299113A true CN102299113A (zh) 2011-12-28

Family

ID=45359429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102665241A Pending CN102299113A (zh) 2011-09-08 2011-09-08 减小半导体器件热载流子注入损伤的制造方法

Country Status (1)

Country Link
CN (1) CN102299113A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655081A (zh) * 2012-04-16 2012-09-05 上海华力微电子有限公司 一种无定形碳牺牲栅极结构的浅结和侧墙的制备方法
WO2015196993A1 (zh) * 2014-06-26 2015-12-30 无锡华润上华半导体有限公司 金属氧化物半导体场器件制造方法
CN109037070A (zh) * 2017-06-09 2018-12-18 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法及半导体器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102047A1 (en) * 2002-10-31 2004-05-27 Fujitsu Limited Semiconductor device fabrication method
CN101572251A (zh) * 2008-04-30 2009-11-04 中芯国际集成电路制造(北京)有限公司 半导体器件、n型MOS晶体管及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102047A1 (en) * 2002-10-31 2004-05-27 Fujitsu Limited Semiconductor device fabrication method
CN101572251A (zh) * 2008-04-30 2009-11-04 中芯国际集成电路制造(北京)有限公司 半导体器件、n型MOS晶体管及其制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655081A (zh) * 2012-04-16 2012-09-05 上海华力微电子有限公司 一种无定形碳牺牲栅极结构的浅结和侧墙的制备方法
CN102655081B (zh) * 2012-04-16 2015-08-19 上海华力微电子有限公司 一种无定形碳牺牲栅极结构的浅结和侧墙的制备方法
WO2015196993A1 (zh) * 2014-06-26 2015-12-30 无锡华润上华半导体有限公司 金属氧化物半导体场器件制造方法
CN109037070A (zh) * 2017-06-09 2018-12-18 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法及半导体器件

Similar Documents

Publication Publication Date Title
CN101572250B (zh) 半导体器件、p型MOS晶体管及其制作方法
CN103378134B (zh) 栅极结构及形成方法、半导体结构及形成方法
KR100638546B1 (ko) 트랜지스터 구조물 형성방법 및 트랜지스터 구조물
CN102054695B (zh) 提高半导体元器件的性能的方法
CN102800595B (zh) Nmos晶体管形成方法及对应cmos结构形成方法
CN102074476B (zh) Nmos晶体管的形成方法
CN101281870A (zh) 半导体器件的制造方法
CN102299113A (zh) 减小半导体器件热载流子注入损伤的制造方法
CN102637600B (zh) Mos器件制备方法
CN102054700B (zh) Pmos晶体管的制造方法
CN104347370A (zh) 提高pmos器件栅极的负偏压温度稳定性方法
CN101996885A (zh) Mos晶体管及其制作方法
CN102074475A (zh) Mos器件及其形成方法
CN102446767B (zh) Nmos晶体管的制造方法
CN104681436A (zh) Pmos晶体管的形成方法
CN102420189A (zh) 一种改善后栅极工艺高k栅电介质cmos可靠性的方法
CN102097376A (zh) 半导体器件的制作方法
CN102446717A (zh) 一种减小半导体器件热载流子注入损伤的方法
CN102468162A (zh) Nmos晶体管的制作方法
CN102082085A (zh) 超浅结结构的形成方法与pmos晶体管的形成方法
CN103000523A (zh) Pmos晶体管结构及其制造方法
CN101989550A (zh) Nmos晶体管的制造方法
CN102024701A (zh) P沟道金属氧化物半导体晶体管源漏注入方法
CN105336694A (zh) 一种锗基cmos的制备方法
CN105047566B (zh) 抑制反短沟道效应的方法及nmos器件制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111228