CN102294250B - Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof - Google Patents

Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof Download PDF

Info

Publication number
CN102294250B
CN102294250B CN 201110141023 CN201110141023A CN102294250B CN 102294250 B CN102294250 B CN 102294250B CN 201110141023 CN201110141023 CN 201110141023 CN 201110141023 A CN201110141023 A CN 201110141023A CN 102294250 B CN102294250 B CN 102294250B
Authority
CN
China
Prior art keywords
carbon nanotube
cadmium sulfide
composite catalyst
particles
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110141023
Other languages
Chinese (zh)
Other versions
CN102294250A (en
Inventor
曹安源
李红变
桂许春
韦进全
王昆林
朱宏伟
吴德海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Peking University
Original Assignee
Tsinghua University
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Peking University filed Critical Tsinghua University
Priority to CN 201110141023 priority Critical patent/CN102294250B/en
Publication of CN102294250A publication Critical patent/CN102294250A/en
Application granted granted Critical
Publication of CN102294250B publication Critical patent/CN102294250B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

Provided are a three-dimensional carbon nanotube nano composite catalyst, and a preparation method and application thereof, which belong to the technical field of nano-material preparation. The nano composite catalyst contains carbon nanotube sponge and cadmium sulfide nano particles. The preparation method includes the step that the carbon nanotube sponge is dipped in an organic solution of the cadmium sulfide nano particles, so that the cadmium sulfide nano particles adhere on a surface and in apertures of the carbon nanotube sponge to form a three-dimensional carbon nanotube nano composite catalyst. The invention also provides application of the catalyst to adsorption-photocatalysis degradation of dye molecules in water. On the one hand, the carbon nanotube sponge has large specific surface area, good adsorption property, and is easily operated and processed; on the other hand, the cadmium sulfide nano particles have high photocatalytic activity, and can catalyze degradation of dye molecules in water under visible light. Therefore, the nano composite catalyst obtained in the invention has advantages of large adsorption quantity, high degradation efficiency, easy operation and processing, and capability of simultaneously degrading a plurality of pollutants in water, etc.

Description

A kind of three-dimensional carbon nanotube nano composite catalyst and its preparation method and application
Technical field
The present invention relates to a kind of nano-composite catalyst, particularly nano-composite catalyst of a kind of carbon nanotubes sponge and cadmium sulfide nano-particles and its preparation method and application belongs to the nano material preparing technical field.
Background technology
Along with the development of the modern industry, limited water resource is suffered destruction in various degree on the earth.Dyestuff extensive use in the industries such as weaving, leather, papermaking, plastics has very high solubility in water, become the important sources that water pollutes.
Be used in the market the absorbent charcoal material of water treatment, its action principle mainly is by the mode of physisorption pollutant to be separated with water.CNT is by the curling hollow and layer structure that forms of graphite synusia, has high specific area, and well the characteristics such as thermodynamics and chemical stability are a kind of very promising adsorbents.CNT with respect to traditional active carbon, aspect the organic and inorganic pollution of absorption, has balancing speed faster, higher adsorption capacity and the adjustable advantages such as surface state as adsorbent.Two keys of carbon nano tube surface can with π key System forming pi-pi accumulation effect in the aromatic compound, this makes it show more excellent performance in absorption aromatics dye molecule process.But active carbon, CNT are mainly physical absorption to the dyes Adsorbed molecular, and thoroughly and in use there is not the desorption phenomenon in absorption, easily causes secondary pollution.For overcoming this problem, people adopt nano particle and CNT with catalytic activity compound, and under illumination condition, realization realizes complete, thoroughly removing to the dyes molecule to the chemical catalysis degraded of organic molecule in the water body.
By the CNT sponge that the unordered accumulation of CNT forms, (X.C.Gui, J.Q.Wei, K.L.Wang, A.Y.Cao, H.W.Zhu, Y.Jia, Q.K.Shu, D.H.Wu.Adv.Mater.2010,22,617-621), except the high-specific surface area that possesses CNT self, good macroscopic property, also have flourishing pore structure, shown higher adsorption in the dye molecule process in adsorbed water body.In addition, the more easy to operate and processing of CNT sponge macroscopic body is conveniently used and is reclaimed, and industrial prospect is more arranged.
Summary of the invention
One of purpose of the present invention provides a kind of three-dimensional carbon nanotube nano composite catalyst, and this nano-composite catalyst contains CNT sponge and cadmium sulfide nano-particles; The mass ratio of described CNT sponge and described cadmium sulfide nano-particles is 1~200: 1; Described cadmium sulfide nano-particles is attached to the surface of described CNT sponge and the hole inside of described CNT sponge; The density of described CNT sponge is 5.8~11.6mg/cm 3
Two of purpose of the present invention is a kind of three-dimensional carbon nanotube nano composite catalyst preparation method and application.
Technical scheme of the present invention is as follows:
A kind of three-dimensional carbon nanotube nano composite catalyst is characterized in that, this nano-composite catalyst contains CNT sponge and cadmium sulfide nano-particles; The mass ratio of described CNT sponge and described cadmium sulfide nano-particles is 1~200: 1, and described cadmium sulfide nano-particles is attached to the surface of described CNT sponge and the hole inside of described CNT sponge; The density of described CNT sponge is 5.8~11.6mg/cm 3
Technical characterictic of the present invention also is: the particle diameter of described cadmium sulfide nano-particles is 3~8nm; The mass ratio of CNT sponge and described cadmium sulfide nano-particles is preferably 2~20: 1.
The invention provides a kind of preparation method of three-dimensional carbon nanotube nano composite catalyst, it is characterized in that the method carries out as follows:
1) cadmium sulfide nano-particles is dissolved in the organic solvent, makes the solution that the mass body volume concentrations is 0.01~2mg/mL;
2) the CNT sponge is dipped in the solution of cadmium sulfide nano-particles, CNT and cadmium sulfide nano-particles mass ratio are 1~200: 1, are under 0~50 ℃ of condition in temperature, soak 0.5~24 hour; Make cadmium sulfide nano-particles be attached to the surface of CNT sponge and the hole inside of CNT sponge, form three-dimensional carbon nanotube nano composite catalyst;
3) three-dimensional carbon nanotube nano composite catalyst is taken out vacuum drying.
In the technique scheme, described organic solvent comprises chloroform, n-hexane, oxolane, toluene or ethyl acetate.
The present invention also provides the application of described three-dimensional carbon nanotube nano composite catalyst as photochemical catalyst dye molecule in catalytic degradation water.Described dyestuff is rhodamine B, methyl orange or methyl blue.
The present invention compared with prior art has the following advantages and the high-lighting effect:
1. because CNT sponge and cadmium sulfide nano-particles specific area are large, the CNT sponge has strong adsorption capacity to organic molecule, cadmium sulfide nano-particles can be in the multiple dye molecule degraded of catalysis under the illumination, and therefore prepared three-dimensional carbon nanotube nano composite catalyst has advantages of that adsorption capacity is high, thorough to the dye molecule degraded, non-secondary pollution.
2. because three-dimensional carbon nanotube nano composite catalyst is macroscopic body, have good mechanical characteristic, easy to operate and processing can directly be compressed into filtration membrane and use.
3. three-dimensional carbon nanotube nano composite catalyst Stability Analysis of Structures of the present invention is used also significant change can not occur for a long time, can be repeatedly used.
Description of drawings
Fig. 1 is the photo of three-dimensional carbon nanotube nano composite catalyst.
Fig. 2 is the electron scanning micrograph of three-dimensional carbon nanotube nano composite catalyst.
The specific embodiment
Three-dimensional carbon nanotube nano composite catalyst provided by the invention contains CNT sponge and cadmium sulfide nano-particles; The mass ratio of described CNT sponge and described cadmium sulfide nano-particles is 1~200: 1, and the optimization mass ratio of CNT sponge and cadmium sulfide nano-particles is 2~20: 1; Described cadmium sulfide nano-particles is attached to the surface of described CNT sponge and the hole inside of described CNT sponge; The density of described CNT sponge is 5.8~11.6mg/cm 3The particle diameter of described cadmium sulfide nano-particles is 3~8nm.
The preparation method of this three-dimensional carbon nanotube nano composite catalyst carries out as follows:
1) cadmium sulfide nano-particles is dissolved in the organic solvent that comprises chloroform, n-hexane, oxolane, toluene or ethyl acetate, makes the solution that the mass body volume concentrations is 0.01-2mg/mL;
2) the CNT sponge is dipped in the solution of cadmium sulfide nano-particles, CNT and cadmium sulfide nano-particles mass ratio are 1~200: 1, are under 0~50 ℃ of condition in temperature, soak 0.5~24 hour; Make cadmium sulfide nano-particles be attached to the surface of CNT sponge and the hole inside of CNT sponge, form three-dimensional carbon nanotube nano composite catalyst;
3) three-dimensional carbon nanotube nano composite catalyst is taken out vacuum drying.
Further this three-dimensional carbon nanotube nano composite catalyst of research is as the application of photochemical catalyst dye molecule in catalytic degradation water.Described dyestuff is rhodamine B, methyl orange or methyl blue.
The cadmium sulfide nano-particles that satisfies above-mentioned requirements can be synthetic according to existing method.For example, can be with reference to K.T.Yong, Y.Sahoo, M.T.Swihart, P.N.Prasad, J.Phys.Chem.C 2007,111, and disclosed method is synthetic among the 2447-2458.
Particularly, described cadmium sulfide nano-particles can prepare according to the method that comprises the steps:
Take by weighing 1mM CdCl 2.2.5H 2O is dissolved in the 10mL oleyl amine, under the protection of Ar gas this solution is warming up to 175 ℃, heats 20~35 minutes.6mM sulphur powder is dissolved in the 5mL oleyl amine prepares another part solution.Under stirring condition, with the oleyl amine solution adding CdCl of sulphur powder 2Oleyl amine solution in, under Ar gas protection, continue heating 4 hours.Add ethanol precipitation cadmium sulfide nano-particles after the cooling, centrifugation.Make it precipitation with adding again ethanol behind the n-hexane dissolution cadmium sulfide nano-particles, centrifugal again.Three times so repeatedly.The vacuum drying of gained cadmium sulfide nano-particles is made pressed powder, be distributed to again the solution that is made into variable concentrations in the chloroformic solution.
But the preparation reference literature X.C.Gui of CNT sponge disclosed by the invention, J.Q.Wei, K.L.Wang, A.Y.Cao, H.W.Zhu, Y.Jia, Q.K.Shu, D.H.Wu.Adv.Mater.2010, disclosed method is synthetic among 22, the 617-621.
Particularly, the synthetic of described CNT sponge can prepare according to the method that comprises the steps:
1) takes by weighing 6.0g ferrocene powder and be dissolved in the 100mL dichlorobenzene solution, be made into the reaction solution that ferrocene concentration is 0.06g/mL;
2) quartz plate that cleans up is pushed reaction zone, the sealed silica envelope two ends;
3) pass into flow be the argon gas of 800mL/min getting rid of residual air in the quartz ampoule, heating reaction zone temperature to 820~940 ℃ are heated preheating zone temperature to 250 ℃ simultaneously;
4) adjust argon flow amount to 2000mL/min, and pass into the hydrogen that flow is 100~500mL/min;
5) open the precise injection pump, reaction solution is injected quartz ampoule through capillary, feed rate is 0.10~0.25mL/min; Reaction time is 0.5~4h.
6) after reaction reaches the scheduled time, stop the carbon source feeding and close hydrogen, stopped heating is also adjusted argon flow amount to 20mL/min, makes product cool to room temperature with the furnace in argon gas atmosphere, collects product and describes the present invention in detail below in conjunction with embodiment.
Embodiment 1-4 is used for explanation prepares three-dimensional carbon nanotube nano composite catalyst of the present invention by method load cadmium sulfide nano-particles on the CNT sponge of immersion deposition method.
Embodiment 1
The preparation of three-dimensional carbon nanotube nano composite catalyst:
Getting density is 7.3mg/cm 3CNT sponge 3.8mg at room temperature immerse in the toluene solution that 3mL concentration is the 1mg/mL cadmium sulfide nano-particles, soak 24h and take out.Vacuum drying gets three-dimensional block product.Wherein the mass ratio of CNT sponge and cadmium sulfide is 2: 1.Observe by SEM (model is Hitachi S4800 FESEM), cadmium sulfide nano-particles is positioned at surface and the hole inside of CNT sponge.The particle diameter that records cadmium sulfide nano-particles by transmission electron microscope (model is Tecnai T20) is 4~6nm.
The photo of the three-dimensional carbon nanotube nano composite catalyst that the present embodiment prepares as shown in Figure 1.The electron scanning micrograph of the three-dimensional carbon nanotube nano composite catalyst that the present embodiment prepares as shown in Figure 2.
Embodiment 2
The preparation of three-dimensional carbon nanotube nano composite catalyst:
Getting density is 5.8mg/cm 3CNT sponge 3.8mg lower to immerse 3mL concentration be in the chloroformic solution of 0.01mg/mL cadmium sulfide nano-particles at 0 ℃, soak 0.5h and take out.Vacuum drying gets three-dimensional block product.Wherein the mass ratio of CNT sponge and cadmium sulfide is 200: 1.Observe by SEM (model is Hitachi S4800FESEM), cadmium sulfide nano-particles is positioned at surface and the hole inside of CNT sponge.The particle diameter that records cadmium sulfide nano-particles by transmission electron microscope (model is Tecnai T20) is 3~5nm.
Embodiment 3
The preparation of three-dimensional carbon nanotube nano composite catalyst:
Getting density is 7.3mg/cm 3CNT sponge 3.8mg lower to immerse the 3mL concentration be in the tetrahydrofuran solution of 2mg/mL cadmium sulfide nano-particles at 50 ℃, soak 12h and take out.Vacuum drying chamber gets three-dimensional block product.Wherein the mass ratio of CNT sponge and cadmium sulfide is 1: 1.Observe by SEM (model is Hitachi S4800 FESEM), cadmium sulfide nano-particles is positioned at surface and the hole inside of CNT sponge.The particle diameter that records cadmium sulfide nano-particles by transmission electron microscope (model is Tecnai T20) is 6~8nm.
Embodiment 4
The preparation of three-dimensional carbon nanotube nano composite catalyst:
Getting density is 11.6mg/cm 3CNT sponge 3.8mg at room temperature immerse in the chloroformic solution that 3mL concentration is the 0.1mg/mL cadmium sulfide nano-particles, soak 4h and take out.Vacuum drying gets three-dimensional block product.Wherein the mass ratio of CNT sponge and cadmium sulfide is 20: 1.Observe by SEM (model is Hitachi S4800 FESEM), cadmium sulfide nano-particles is positioned at surface and the hole inside of CNT sponge.The particle diameter that records cadmium sulfide nano-particles by transmission electron microscope (model is Tecnai T20) is 3~5nm.
Embodiment 5-8 is used for three-dimensional carbon nanotube nano composite catalyst of the present invention being described in the application of the water treatment that contains dyestuff, uses the sample among the embodiment 1.
Embodiment 5-8
The three-dimensional carbon nanotube nano composite catalyst of embodiment 1 preparation of 3.9mg respectively is dipped in the aqueous solution of rhodamine B of 2mL variable concentrations, the optical filter that uses the xenon source of 300W to add 420nm carries out visible illumination reaction.The concentration of rhodamine B adopts uv-visible absorption spectra (UV-Vis) to detect in the solution after the illumination.Catalyst is as shown in table 1 to the degradation efficiency of rhodamine B under different condition.
As can be seen from Table 1, the three-dimensional carbon nanotube nano composite catalyst dye molecule in the catalytic degradation water efficiently.

Claims (6)

1. a three-dimensional carbon nanotube nano composite catalyst is characterized in that, this nano-composite catalyst contains CNT sponge and cadmium sulfide nano-particles; The mass ratio of described CNT sponge and described cadmium sulfide nano-particles is 1~200:1; Described cadmium sulfide nano-particles is attached to the surface of described CNT sponge and the hole inside of described CNT sponge; The density of described CNT sponge is 5.8~11.6mg/cm 3The particle diameter of described cadmium sulfide nano-particles is 3~8nm.
2. a kind of three-dimensional carbon nanotube nano composite catalyst according to claim 1 is characterized in that, the mass ratio of CNT sponge and described cadmium sulfide nano-particles is 2~20:1.
3. the preparation method of a three-dimensional carbon nanotube nano composite catalyst is characterized in that the method carries out as follows:
1) cadmium sulfide nano-particles is dissolved in the organic solvent, makes the solution that the mass body volume concentrations is 0.01-2mg/mL;
2) the CNT sponge is dipped in the solution of cadmium sulfide nano-particles, CNT and cadmium sulfide nano-particles mass ratio are 1~200:1, are under 0~50 ℃ of condition in temperature, soak 0.5~24 hour; Make cadmium sulfide nano-particles be attached to the surface of CNT sponge and the hole inside of CNT sponge, form three-dimensional carbon nanotube nano composite catalyst;
3) three-dimensional carbon nanotube nano composite catalyst is taken out vacuum drying.
4. the preparation method of a kind of three-dimensional carbon nanotube nano composite catalyst according to claim 3, it is characterized in that: described organic solvent comprises chloroform, n-hexane, oxolane, toluene or ethyl acetate.
5. three-dimensional carbon nanotube nano composite catalyst as claimed in claim 1 is as the application of photochemical catalyst dye molecule in catalytic degradation water.
6. three-dimensional carbon nanotube nano composite catalyst as claimed in claim 5 is characterized in that as the application of photochemical catalyst dye molecule in catalytic degradation water: described dyestuff is rhodamine B, methyl orange or methyl blue.
CN 201110141023 2011-05-27 2011-05-27 Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof Expired - Fee Related CN102294250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110141023 CN102294250B (en) 2011-05-27 2011-05-27 Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110141023 CN102294250B (en) 2011-05-27 2011-05-27 Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN102294250A CN102294250A (en) 2011-12-28
CN102294250B true CN102294250B (en) 2013-01-23

Family

ID=45355066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110141023 Expired - Fee Related CN102294250B (en) 2011-05-27 2011-05-27 Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN102294250B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316692A (en) * 2013-06-24 2013-09-25 江苏大学 Preparation method and application of CdS/CNTs composite photocatalyst
CN103736475B (en) * 2014-01-08 2015-08-19 国家纳米科学中心 A kind of three-dimensional porous titanium dioxide nano tube catalyst, preparation method and its usage
CN103979523B (en) * 2014-04-28 2015-04-01 中国石油大学(北京) Method for filling multi-walled carbon nano-tubes with cadmium sulfide
CN103980668B (en) * 2014-05-30 2016-05-18 哈尔滨工业大学 A kind of preparation method of CNT/amorphous carbon/epoxy resin composite material
CN105056974B (en) * 2015-08-03 2017-05-03 南京信息工程大学 Flower-shaped cadmium sulfide-antimony sulfide compound, preparation method and application thereof
CN105833840A (en) * 2016-06-10 2016-08-10 苏州巨联环保科研有限公司 Preparation method of carbon nanometer tube sponge base adsorption material
CN106513017A (en) * 2016-10-26 2017-03-22 华南理工大学 Compound photocatalytic material and preparation method and application thereof
CN111229268B (en) * 2020-02-13 2021-06-08 中国石油大学(华东) Full-spectrum response bismuth oxide/silver phosphate/carbon nanotube sponge composite photocatalyst for well drilling waste liquid treatment, and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364798B2 (en) * 2002-07-26 2009-11-18 ズードケミー触媒株式会社 Method for producing manganese compound and method for using the same
CN101070153B (en) * 2007-05-24 2010-05-19 上海大学 Radiation synthesizing method for cadminium sulfide coated carbon nano tube composite nano material
CN101581687B (en) * 2009-06-24 2012-05-30 中南大学 Cadmium sulfide coating carbon nano tube gas-sensitive material and manufacture method of gas-sensitive element

Also Published As

Publication number Publication date
CN102294250A (en) 2011-12-28

Similar Documents

Publication Publication Date Title
CN102294250B (en) Three-dimensional carbon nanotube nano composite catalyst, and preparation method and application thereof
Inonu et al. An emerging family of hybrid nanomaterials: metal–organic framework/aerogel composites
Koo et al. Hierarchical metal–organic framework-assembled membrane filter for efficient removal of particulate matter
Yang et al. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials
Zong et al. Shapeable aerogels of metal–organic-frameworks supported by aramid nanofibrils for efficient adsorption and interception
Hou et al. High adsorption pearl‐necklace‐like composite membrane based on metal–organic framework for heavy metal ion removal
CN101607704B (en) Carbon nanotube cotton and preparation method thereof
Sun et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges
Pan et al. Graphdiyne: an emerging two-dimensional (2D) carbon material for environmental remediation
Luzzi et al. Mechanically coherent zeolite 13X/chitosan aerogel beads for effective CO2 capture
Yang et al. One‐pot synthesis of high N‐doped porous carbons derived from a N‐rich oil palm biomass residue in low temperature for CO2 capture
Shayesteh et al. Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation
CN106044770A (en) Method for preparing cellulose base hierarchical porous carbon material by adopting halloysite as template
Koo et al. Surface hydration of fibrous filters by using water-absorbing metal–organic frameworks for efficient ultrafine particulate matter removal
Liao et al. Flexible Porous SiO2–Bi2WO6 Nanofibers Film for Visible‐Light Photocatalytic Water Purification
Yan et al. Micro-mesoporous graphitized carbon fiber as hydrophobic adsorbent that removes volatile organic compounds from air
Liu et al. N-doping copolymer derived hierarchical micro/mesoporous carbon: Pore regulation of melamine and fabulous adsorption performances
Shi et al. Review on multidimensional adsorbents for CO2 capture from ambient air: recent advances and future perspectives
Jiang et al. Fabrication and characterization of a hierarchical porous carbon from corn straw–derived hydrochar for atrazine removal: efficiency and interface mechanisms
Rezvani et al. Activated carbon surface modification by catalytic chemical vapor deposition of natural gas for enhancing adsorption of greenhouse gases
Zhang et al. MOF-derived 3D porous carbon aerogels as an efficient adsorbent for toluene in humid air
CN111330640A (en) Piezoelectric catalytic membrane for air purifier and preparation method thereof
Che Othman et al. Polyethyleneimine-impregnated activated carbon nanofiber composited graphene-derived rice husk char for efficient post-combustion CO2 capture
CN102600667A (en) Air filter material based on carbon nano tube and preparation method thereof
Peng et al. Hierarchically Porous Mg-MOF-74/Sodium Alginate Composite Aerogel for CO2 Capture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20130527