CN102244002B - Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure - Google Patents

Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure Download PDF

Info

Publication number
CN102244002B
CN102244002B CN 201110197871 CN201110197871A CN102244002B CN 102244002 B CN102244002 B CN 102244002B CN 201110197871 CN201110197871 CN 201110197871 CN 201110197871 A CN201110197871 A CN 201110197871A CN 102244002 B CN102244002 B CN 102244002B
Authority
CN
China
Prior art keywords
semiconductor
metal
preparation
semiconductor nanowires
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110197871
Other languages
Chinese (zh)
Other versions
CN102244002A (en
Inventor
吴春艳
揭建胜
王莉
于永强
胡治中
张梓晗
周国方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN 201110197871 priority Critical patent/CN102244002B/en
Publication of CN102244002A publication Critical patent/CN102244002A/en
Application granted granted Critical
Publication of CN102244002B publication Critical patent/CN102244002B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a preparation method of a heterojunction with a metal/semiconductor nanometer wire crossing structure, which comprises the following steps: two pairs of metallic thin-film electrodes are prepared on the semiconductor nanometer wire by using an UV-lithography method, wherein a pair of metallic thin-film electrodes are communicated by the semiconductor nanometer wire and are in an ohmic contact with the semiconductor nanometer wire; AC (alternating current) electric fields are applied to the other pair of metallic thin-film electrodes; a metallic nanometer wire is adsorbed on the other pair of metallic thin-film electrodes applied with the AC (alternating current) electric fields; and the metallic nanometer wire is crossed and in a Schottky contact with the semiconductor nanometer wire to form the heterojunction with the metal/semiconductor nanometer wire crossing structure. The preparation method disclosed by the invention is simple and practicable, is stable and reliable, and can be applied to various nanometer sizes of electronic components and optical elements including metallic-semiconductor field effect tubes with Schottky diodes or metal nanometer wires as grids, such as namometer photoelectric detectors, gas sensors, solar batteries and the like.

Description

The preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure
One, technical field
The present invention relates to a kind of preparation method of semiconductor device, specifically the preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure.
Two, background technology
The metal/semiconductor heterojunction especially plays an important role in the preparation of micro-nano device at semiconductor device.In semiconductor device, usually need to utilize the metal that forms good ohmic contact with semiconductor as electrode the input or output current, and utilize metal-semiconductor rectification contact performance can make diode, be i.e. Schottky diode.Compare with the p-n junction diode, the schottky junction diode is because forward current mainly is to enter metal by the majority carrier in the semiconductor to form, it is majority carrier device, there is not charge-storage effect, have that switching frequency is high, forward conduction voltage is low, do not have the advantages such as minority carrier lifetime and reverse-recovery problems, thereby have better photoelectric characteristic, more be applicable to ultrahigh speed switching device, photodetector, solar cell and semiconductor laser etc.
At present, the generation type of metal/semiconductor nano wire hetero structure mainly contains following several: 1, the synthetic semiconductor nanowires that is inlaid with metallic particles of liquid phase forms the one-dimensional nano structure that includes the metal/semiconductor heterojunction; 2, in conjunction with template and electrochemical deposition technique, segmented deposition semiconductor and metal material, the nano-wire array top selectivity plated metal particle that forms the metal/semiconductor nanowire heterojunction or deposit in template in template forms metallic particles/semiconductor nanowires heterojunction; 3, on single semiconductor nanowires, selection area epitaxial growth metallic film or by secondary photoetching (electron beam lithography or ultraviolet photolithographic) and electron beam evaporation technique, the metal electrode of one group of ohmic contact and the metal electrode of one group of Schottky contacts on the evaporation form metallic film/semiconductor nanowires heterojunction respectively.Front two kinds of methods need to strictly be controlled experimentation, and heterojunction controls on target devices difficulty, and the third method apparatus expensive, the secondary light carving technology is comparatively complicated, and can exert an influence to device performance to a certain extent.Thereby, a kind of reliable and stable, technology can with the preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure still have great significance in field of nanometer devices.
Three, summary of the invention
The present invention is directed to the existing weak point of above-mentioned prior art, aim to provide that a kind of preparation method is simple, the preparation method of the heterojunction with metal/semiconductor nanometer wire crossing structure that is easy to realize.
Technical solution problem of the present invention adopts following technical scheme:
The preparation method's of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention characteristics are: semiconductor nanowires 3 levels are dispersed on the silicon chip 1 that is covered with insulating barrier 2, method by a ultraviolet photolithographic prepares two pairs of metal film electrodes at insulating barrier 2, wherein pair of metal membrane electrode 4 is communicated with by described semiconductor nanowires 3, and described metal film electrode 4 is ohmic contact with semiconductor nanowires 3; To be dispersed with the hanging drop of metal nanometer line 5 on insulating barrier 2, another is applied AC field to metal film electrode 6, metal nanometer line 5 is adsorbed onto on the metal film electrode 6, described metal nanometer line 5 intersects with described semiconductor nanowires 3, be Schottky contacts, form heterojunction with metal/semiconductor nanometer wire crossing structure.
The preparation method's of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention characteristics also are: described semiconductor nanowires 3 and described metal nanometer line 5 are not less than 10 μ m, diameter less than the mono-crystalline structures of 1 μ m for length.
The preparation method's of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention characteristics also are: described semiconductor nanowires 3 is element semiconductor, II-VI family semiconducting compound, I-VI family's semiconducting compound or III-V family semiconducting compound;
The preparation method's of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention characteristics also are: described element semiconductor is Si or Ge; Described II-VI family semiconducting compound is ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe or CdTe; Described I-VI family semiconducting compound is CuO, CuS, CuSe or CuTe; Described III-V family semiconducting compound is GaAs or In 2Sb 3
The preparation method's of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention characteristics also are: when described semiconductor nanowires 3 is the N-shaped semiconductor, described two pairs of metal film electrodes are one or more that comprise among In, Ti, Ag, the Al, and the work content of described two pairs of metal film electrodes is lower than the work content of described semiconductor nanowires 3; Described metal nanometer line 5 is one or more that comprise among Pt, Au, Ni, the Cu, and the work content of described metal nanometer line 5 is greater than the affinity of described semiconductor nanowires 3 with electronics;
When described semiconductor nanowires 3 was the p-type semiconductor, described two pairs of metal film electrodes were one or more that comprise among Pt, Au, Ni, the Cu, and the work content of described two pairs of metal film electrodes is greater than the work content of described semiconductor nanowires 3; Described metal nanometer line 5 is one or more that comprise among In, Ti, Ag, the Al, and the work content of described metal nanometer line 5 is lower than the affinity of described semiconductor nanowires 3 and electronics.
Preparation process of the present invention is as follows:
Semiconductor nanowires 3 levels are dispersed on the silicon chip 1 that is covered with 100-500nm insulating barrier 2, utilize mask plate to make two pairs of electrode patterns by a step photoetching by lithography at insulating barrier, wherein the pair of electrodes figure is communicated with by semiconductor nanowires, utilizes afterwards electron beam evaporation technique evaporation on two pairs of electrode patterns to obtain two pairs of metal film electrodes.The pair of metal membrane electrode 4 that is communicated with by semiconductor nanowires is ohmic contact with semiconductor nanowires 3.Subsequently, pre-synthesis metal nanometer line 5 is dispersed in absolute ethyl alcohol, deionized water or the isopropyl alcohol forms suspension, with hanging drop on insulating barrier 2, another two ends to metal film electrode 6 are added alternating current, metal nanometer line 5 is polarized in the electric field of alternation, move along the direction that increases electric field strength, until the pair of metal membrane electrode 6 that applies alternating current respectively with two end in contact of metal nanometer line 5, metal nanometer line 5 intersects with semiconductor nanowires 3 and is Schottky contacts, forms stable heterojunction with metal/semiconductor nanometer wire crossing structure.
Compared with the prior art, beneficial effect of the present invention is embodied in:
The present invention prepares respectively metal nanometer line and semiconductor nanowires, by a photoetching, utilizes the electric field suction-operated, can directly finish formation and the device preparation of heterojunction, and process is simple.In addition, the metal nanometer line that is Schottky contacts with semiconductor nanowires can also be used as grid, structure metal-semiconductor field effect pipe.This heterojunction more is applicable to the fields such as nano photodetectors owing to having very little node, is expected to obtain higher sensitivity and speed of detection faster.
Four, description of drawings
Fig. 1 is heterojunction with metal/semiconductor nanometer wire crossing structure preparation method's of the present invention flow chart.
Fig. 2 is the structural representation of heterojunction with metal/semiconductor nanometer wire crossing structure device of the present invention.
Wherein 1 is silicon chip, and 2 is insulating barrier, and 3 is semiconductor nanowires, and 4 is the pair of metal membrane electrode that is communicated with semiconductor nanowires, and 5 is metal nanometer line, and 6 is the pair of metal membrane electrode that is communicated with metal nanometer line.
Five, embodiment
Describe the preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure of the present invention in detail below in conjunction with accompanying drawing, non-limiting examples is as follows.
Embodiment 1:
With the cleaning with 300nm SiO 2The silicon chip of insulating barrier is close to by the grown substrate of p-type ZnS nano wire of chemical vapour deposition technique (CVD), along continuous straight runs promotes silicon chip gently, frictional force by orientation, realize even, the level dispersion of ZnS nano wire on silicon chip, by electron microscope observation, make its minute bulk density be about 2-10 root/mm 2Evenly behind the spin coating positive photoresist, utilize the particular mask plate to carry out uv-exposure and development, make 2 pairs of electrode patterns by lithography, the distance of every pair of eletrode tip is 5 μ m, and wherein the pair of electrodes figure is communicated with by semiconductor nanowires.Afterwards, utilize the thick metal A u of 50nm on the electron beam evaporation technique evaporation, as Ohm contact electrode, then remove the metal of unexposed photoresist and top evaporation thereof with acetone.
Subsequently, ultrasonic being dispersed in of the Al nano wire that takes a morsel pre-synthesis forms suspension in the absolute ethyl alcohol, draws on the one after another drop of silicon chip preparing metal electrode with glue head dropper, makes its minute bulk density be about 2-10 root/mm 2, at another unsettled electrode two ends are added a frequency 1kHz, voltage 30V RmsAlternating current, the Al nano wire is moved on two relative electrodes at electric field action, be communicated with electrode and intersect vertically with the ZnS nano wire, form the heterojunction with metal/semiconductor nanometer wire crossing structure of Schottky contacts, its structure as shown in Figure 2.
Embodiment 2:
Ultrasonic being dispersed in the isopropyl alcohol of N-shaped CdS nano wire that a small amount of liquid phase method is pre-synthesis drawn one with glue head dropper, drop in along specific direction the cleaning that slightly tilts with 100nm HfO 2On the silicon chip of insulating barrier, realize that the level of CdS nano wire is disperseed, make its minute bulk density be about 2-10 root/mm 2Treat after the solvent evaporation, evenly behind the spin coating positive photoresist, uv-exposure also develops, and makes 2 pairs of electrode patterns by lithography, and wherein the pair of electrodes figure is communicated with by semiconductor nanowires.Afterwards, utilize the double-level-metal electrode of 80nm In/20nm Au on the electron beam evaporation technique evaporation, as Ohm contact electrode, then remove the metal of unexposed photoresist and top evaporation thereof with acetone.
Subsequently, ultrasonic being dispersed in of pre-synthesis Au nano wire formed suspension in the absolute ethyl alcohol, drop on the silicon chip that prepares metal electrode, a minute bulk density is about 2-10 root/mm 2At another unsettled electrode two ends are added a frequency 1kHz, voltage 30V RmsAlternating current, the Au nano wire is moved on two relative electrodes at electric field action, be communicated with electrode and also intersect with the CdS nano wire, form the heterojunction with metal/semiconductor nanometer wire crossing structure of Schottky contacts.

Claims (4)

1. the preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure, it is characterized in that: semiconductor nanowires (3) level is dispersed on the silicon chip (1) that is covered with insulating barrier (2), method by a ultraviolet photolithographic prepares two pairs of metal film electrodes at insulating barrier (2), wherein pair of metal membrane electrode (4) is communicated with by described semiconductor nanowires (3), and described metal film electrode (4) is ohmic contact with semiconductor nanowires (3); To be dispersed with the hanging drop of metal nanometer line (5) on insulating barrier (2), another is applied AC field to metal film electrode (6), metal nanometer line (5) is adsorbed onto on the metal film electrode (6), described metal nanometer line (5) intersects with described semiconductor nanowires (3), be Schottky contacts, form heterojunction with metal/semiconductor nanometer wire crossing structure;
When described semiconductor nanowires (3) was the N-shaped semiconductor, described two pairs of metal film electrodes were one or more that comprise among In, Ti, Ag, the Al, and the work content of described two pairs of metal film electrodes is lower than the work content of described semiconductor nanowires (3); Described metal nanometer line (5) is one or more that comprise among Pt, Au, Ni, the Cu, and the work content of described metal nanometer line (4) is greater than the affinity of described semiconductor nanowires (3) with electronics;
When described semiconductor nanowires (3) was the p-type semiconductor, described two pairs of metal film electrodes were one or more that comprise among Pt, Au, Ni, the Cu, and the work content of described two pairs of metal film electrodes is greater than the work content of described semiconductor nanowires (3); Described metal nanometer line (5) is one or more that comprise among In, Ti, Ag, the Al, and the work content of described metal nanometer line (5) is lower than the affinity of described semiconductor nanowires (3) and electronics.
2. preparation method according to claim 1 is characterized in that: described semiconductor nanowires (3) and described metal nanometer line (5) are not less than 10 μ m, diameter less than the mono-crystalline structures of 1 μ m for length.
3. preparation method according to claim 1 is characterized in that: described semiconductor nanowires (3) is element semiconductor, group Ⅱ-Ⅵ compound semiconductor, group I-VI compound semiconductor or Ⅲ-Ⅴ compound semiconductor;
4. preparation method according to claim 3, it is characterized in that: described element semiconductor is Si or Ge; Described group Ⅱ-Ⅵ compound semiconductor is ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe or CdTe; Described group I-VI compound semiconductor is CuO, CuS, CuSe or CuTe; Described Ⅲ-Ⅴ compound semiconductor is GaAs or In 2Sb 3
CN 201110197871 2011-07-14 2011-07-14 Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure Expired - Fee Related CN102244002B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110197871 CN102244002B (en) 2011-07-14 2011-07-14 Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110197871 CN102244002B (en) 2011-07-14 2011-07-14 Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure

Publications (2)

Publication Number Publication Date
CN102244002A CN102244002A (en) 2011-11-16
CN102244002B true CN102244002B (en) 2013-01-09

Family

ID=44961986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110197871 Expired - Fee Related CN102244002B (en) 2011-07-14 2011-07-14 Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure

Country Status (1)

Country Link
CN (1) CN102244002B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420244B (en) * 2011-11-14 2013-10-09 清华大学 One-dimensional metal/semiconductor nanometer heterojunction transistor and preparation method thereof
CN102569485B (en) * 2011-12-31 2014-12-31 浙江大学 Near-infrared band full silicon-base nanometer photoelectric detector
CN102544183A (en) * 2012-02-17 2012-07-04 合肥工业大学 Silicon nanowire Schottky junction type solar battery and preparation method for same
CN102583223B (en) * 2012-03-02 2015-01-07 合肥工业大学 Preparation method of nano solar battery based on CuS quasi one-dimensional nanostructure
CN102610275B (en) * 2012-03-22 2014-08-06 合肥工业大学 Cadmium selenide nanowire-based Schottky junction type multi-byte nonvolatile memory and preparation method thereof
CN102610672A (en) * 2012-03-23 2012-07-25 合肥工业大学 Heterojunction type photoelectric detector and manufacturing method thereof
CN103337481B (en) * 2013-07-02 2015-11-04 合肥工业大学 Based on the non-volatility memorizer and preparation method thereof of P-type IIB-VIA race semiconductor nanowires schottky junction
CN103985788B (en) * 2014-05-21 2016-08-17 中国科学院上海微***与信息技术研究所 Tensile strain germanium MSM photoelectric detector and preparation method thereof
CN104952940A (en) * 2015-06-09 2015-09-30 华中科技大学 Very high bandwidth germanium-silicon photoelectric detector
CN107564917B (en) * 2016-07-01 2020-06-09 清华大学 Nano-heterostructure
CN107564862B (en) * 2016-07-01 2020-09-25 清华大学 Preparation method of nano heterostructure
CN107564910B (en) * 2016-07-01 2020-08-11 清华大学 Semiconductor device with a plurality of transistors
CN106531824A (en) * 2016-11-25 2017-03-22 罗雷 Heterojunction type photoelectric detector and manufacturing method thereof
CN108872151B (en) * 2017-09-29 2023-06-16 郑州大学 Optical sensor based on T-shaped pair and nanowire pair
CN108649094B (en) * 2018-05-14 2020-08-14 南京邮电大学 Ultraviolet light detector with Cu/CuI/ZnO structure and preparation method thereof
CN110499489B (en) * 2019-07-23 2021-06-01 电子科技大学 Preparation process of semiconductor/metal heterojunction nanowire array material
CN110620033B (en) * 2019-08-26 2021-11-05 中国科学院微电子研究所 Method for manufacturing metal nanowire or sheet and nanowire or sheet
CN114047231B (en) * 2021-11-04 2024-02-27 湖州师范学院 Diode type heterojunction gas sensor chip and preparation method thereof
CN115038251B (en) * 2022-07-20 2024-02-02 江南大学 Method for manufacturing sensor by using metal wire-based direct writing process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268363B2 (en) * 2005-02-15 2007-09-11 Eastman Kodak Company Photosensitive organic semiconductor compositions
CN1917251A (en) * 2006-09-12 2007-02-21 武汉大学 Diode of heterogenous pn junction of n-silicone Nano wire/ p- conductive organic matter, and preparation method
KR101549270B1 (en) * 2007-01-12 2015-09-01 큐나노 에이비 Nitride nanowires and method of producing such
US7892610B2 (en) * 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices

Also Published As

Publication number Publication date
CN102244002A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
CN102244002B (en) Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure
Bie et al. Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions
Wei et al. Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection
Goswami et al. GaN nanotowers grown on Si (111) and functionalized with Au nanoparticles and ZnO nanorods for highly responsive UV photodetectors
CN106571405B (en) A kind of ultraviolet detector with GaN nano wire array and preparation method thereof
CN103887360A (en) InAs/GaSb superlattice infrared photoelectric detector and manufacturing method thereof
CN111244203B (en) Based on Ga2O3Sunlight blind ultraviolet detector of/CuI heterojunction PN junction
CN110660882B (en) Grid-controlled PIN structure GaN ultraviolet detector and preparation method thereof
Faraz et al. Electrical characterization of Si/ZnO nanorod PN heterojunction diode
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
JP2016518703A (en) Two-step method of depositing transparent conductive film and method of manufacturing GaN nanowire device
CN102361046A (en) Solar blind ultraviolet detector with AlGaN-based MSM (Metal-Semiconductor-Metal) structure and manufacturing method thereof
CN109980040A (en) A kind of gallium oxide MIS structure ultraviolet detector
CN103681938A (en) Boron nitride-zinc oxide quantum dot hybrid field effect opto-transistor and manufacturing method thereof
CN203760500U (en) GaN-based GSG-type ultraviolet detector
CN210167365U (en) Homoepitaxy GaN Schottky barrier type ultraviolet avalanche detector
CN217426770U (en) Nanowire-thin film structure ultraviolet detector
KR101393092B1 (en) Ⅲ-ⅴ group compound solar cell and method for preparing the same
US20220416103A1 (en) Semiconductor device and method of manufacturing the same
Ahn et al. Electroluminescence from ZnO nanoflowers/GaN thin film pn heterojunction
CN104538489A (en) Method for increasing the switch ratio of graphene and nanowire heterojunction detector
CN108400196A (en) One kind having superlattice structure gallium nitride base ultraviolet light electric explorer and preparation method thereof
Holm et al. Bandgap optimized III–V (GaAsP) nanowire on silicon tandem solar cell, device and data
Li et al. InGaO3 Nanowire Networks for Deep Ultraviolet Photodetectors
CN111341841B (en) Based on Ga 2 O 3 /TiO 2 Heterojunction field effect tube of composite suspended floating gate, preparation method thereof and ultraviolet detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130109

Termination date: 20150714

EXPY Termination of patent right or utility model