CN102218271B - 以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池 - Google Patents

以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池 Download PDF

Info

Publication number
CN102218271B
CN102218271B CN201110099809.0A CN201110099809A CN102218271B CN 102218271 B CN102218271 B CN 102218271B CN 201110099809 A CN201110099809 A CN 201110099809A CN 102218271 B CN102218271 B CN 102218271B
Authority
CN
China
Prior art keywords
metal oxide
superfine fibre
composite separating
separating film
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110099809.0A
Other languages
English (en)
Other versions
CN102218271A (zh
Inventor
赵诚戊
金东英
张盛然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of CN102218271A publication Critical patent/CN102218271A/zh
Application granted granted Critical
Publication of CN102218271B publication Critical patent/CN102218271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0004Organic membrane manufacture by agglomeration of particles
    • B01D67/00041Organic membrane manufacture by agglomeration of particles by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本发明涉及一种以金属氧化物超细纤维为基本成分的耐热性复合分离膜及利用其制备的蓄电池。本发明的所述分离膜含有多孔体,所述多孔体是由金属氧化物前体物溶胶-凝胶溶液或所述金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物经过电纺丝(electrospinning)处理排出的超细金属氧化物/高分子复合纤维或超细金属氧化物纤维连续随机地排列、堆积而形成(此时,所述含有超细金属氧化物纤维的多孔体表面具有高分子树脂涂布层)。并且所述分离膜在150至250℃时的热收缩率为10%以下,温度在200℃以下时,不会发生由熔融引起的崩解。

Description

以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池
技术领域
本发明涉及一种以金属氧化物超细纤维为基本成分的耐热性复合分离膜,所述分离膜热收缩率低,具有优异的耐热性及离子导电性。本发明还涉及含有所述分离膜的蓄电池,其具有优异的循环性能及输出性能,并且其为高能密度及大容量蓄电池。 
背景技术
受高性能化、轻型化,以及汽车电源用大型化趋势的影响,要求锂离子蓄电池、锂离子高分子电池及超级电容器(电双层电容器及类似电容器)等蓄电池具有高能密度及大容量。 
但是,在耐热性方面及用作高能密度及大容量电池方面,现有锂离子蓄电池以及锂离子高分子电池还存在很多不足。所述锂离子蓄电池使用的是聚烯烃分离膜和液体电解质。所述锂离子高分子电池使用的是胶状高分子电解质膜或在聚烯烃分离膜上涂布有凝胶的高分子电解质。 
分离膜位于电池的阳极和阴极之间,其起到绝缘的作用,并且其还通过维持电解液来提供离子传导的通路,其还提供一种闭锁(shutdown)功能,所述闭锁功能是指在电池温度过高时为了切断电源,分离膜的一部分发生熔融,进而堵住气孔的功能。当温度继续升高时,分离膜熔融会形成一个大的孔,从而使得阳极和阴极之间发生短路。此时的温度称为短路温度(short circuit temperature),通常情况下分离膜应当具有低的闭锁温度和较高的短路温度。分离膜为聚烯烃分离膜的情况,当电池发生异常发热时,即温度高于150℃时会发生收缩,使得电极部位暴露,从而会有诱发短路的可能性。 
因此,为了制备高能密度及大容量的蓄电池,需要一种耐热性优 异、收缩率低,具有高离子导电性,具有优异的循环性能的分离膜。 
为了制备上述分离膜,美国公开专利第2006/0019154A1号提供了一种聚烯烃分离膜,其是将聚烯烃系分离膜(透气度(air permeability)200秒/分以下)浸渍在溶点高于180℃的聚酰胺、聚酰亚胺或聚酰胺-酰亚胺溶液中,然后浸渍到凝固液中以提取出溶剂,从而制备得到涂布有多孔性耐热性树脂的聚烯烃分离膜。 
为了充分确保在高能密度化及大型化时的安全性,日本公开专利第2005-209570号公开了一种聚烯烃分离膜,其是将熔点高于200℃的芳香族聚酰胺、聚亚酰胺、聚醚砜、聚醚酮、聚醚酰亚胺等耐热性树脂溶液涂布于分离膜的两面,然后将其浸渍于凝固液中、然后经过水洗、干燥来制备得到涂布有耐热性树脂的聚烯烃分离膜。此时,为了减少离子导电性的降低,在上述耐热性树脂溶液中加入了相分离剂,使得具有多孔性,并且将耐热性树脂的涂布量也限制在0.5-6.0g/m2。 
但是,如上所述的浸渍于耐热性树脂中或用耐热性树脂进行涂布的方法会堵住聚丙烯分离膜的气孔,进而限制锂离子的移动,因此会引起充放电性能的降低。此外,即使聚烯烃分离膜的气孔构造不会被堵住,但普遍使用的聚烯烃分离膜具有40%左右的气孔率及数十纳米的气孔大小,因此不能够提供给大容量电池充分的离子导电性。 
美国专利第6,447,958B1号公开了一种制备耐热性分离膜的方法,其是将含有陶瓷粉和含有氮的耐热性芳香族高分子的液体悬浮液涂布于聚烯烃、人造丝、维尼纶、聚酯、丙烯酸、聚苯乙烯、尼龙等多孔性织布、非织布、纸、多孔性薄膜上面,然后浸渍到凝固液中提取出溶剂,从而制备得到耐热性分离膜。但是,该方法中,涂布耐热性高分子、水洗及干燥等一连串的工序过于复杂,会有费用增加的缺点。 
日本公开专利第2001-222988号及第2006-59717号公开了一种制备耐热性电解质膜的方法,其是将熔点为150℃以上的聚酰胺、聚酰亚胺织造布、非织造布、布料、多孔性薄膜等支持物浸渍于聚氧乙烯、 聚氧化丙烯、聚醚及聚乙二烯等高分子胶状电解质中或在上述支持物上涂布上述高分子胶状电解质,从而制备耐热性电解质膜。但是,这种情况下虽然能够满足耐热性,但在离子传导方面,支持物及耐热性芳香族高分子层中的离子移动与现有的锂离子电池分离膜或胶状电解液的情况类似,仍然受到限制。 
国际公开第WO05/057700A1号公开了一种多孔性复合膜,其是对含有固体粒子的高分子溶液进行电纺丝来制备得到。所述固体粒子含有微细无机粒子。但是含有高浓度固体粒子的高分子溶液为不均匀的分散溶液,因此会发生喷嘴堵塞的问题,并且制造的超细纤维表面不均匀地分布有凝结状态的固体粒子。因此与均匀混合的情况不同,凝结的固体粒子和高分子之间产生粒子排列缺陷,使得机械性能比均匀混合的情况低下。此外,使用上述多孔性复合膜作为电池的分离膜时,由于露出的固体粒子的电化学不稳定性,使得分离膜的电化学稳定性大大降低,寄托于通过将微细无机粒子混合使用来增加耐热性的方法,其效果微乎其微。 
综上所述,上述现有技术公开的分离膜及电解质膜仍然不能够同时满足耐热性和离子导电性,耐热性涂布会使得输出性能降低。因此,提供一种不仅具有耐热性,而且在急速充放电等严酷条件下也具有优异性能的电池-例如应用于汽车电源等高能密度及大容量电池上还存在困难 
发明内容
为解决上述问题,本发明的目的在于提供一种分离膜,所述分离膜收缩率低,并且具有优异的耐热性及离子导电性,使得在构成电池时能够提高循环性能及输出性能。本发明还提供利用该分离膜制备的蓄电池。 
为了达到上述目的,本发明提供一种超细纤维状复合分离膜,其特征在于,所述分离膜含有多孔体,其是由金属氧化物前体物溶胶- 凝胶溶液或所述金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物经过电纺丝(electrospinning)处理排出的超细金属氧化物/高分子复合纤维或超细金属氧化物纤维连续随机地排列、堆积而形成。此时,所述由超细金属氧化物纤维形成的多孔体表面具有高分子树脂涂布层,并且所述分离膜在150至250℃时的热收缩率为10%以下,当温度在200℃以下时,不会发生由熔融引起的崩解。 
本发明还提供一种包括阳极、阴极以及位于它们两个电极之间的上述超细纤维复合分离膜和电解质的蓄电池。 
附图说明
图1为本发明使用的电纺丝装置之一的模式图; 
图2为本发明比较例1制备得到的金属氧化物纳米颗粒/高分子复合超细纤维透射电子显微镜图片,(a)SiO2/PAN(1/1.8重量比),(b)TiO2/PVdF(1∶2重量比),(c)TiO2/PVdF(1∶1重量比); 
图3为比较例1制备得到的金属氧化物纳米颗粒复合高分子分离膜的电化学稳定性的测定结果,(a)SiO2/PVdF(1∶2重量比),(b)TiO2/PVdF(1∶2重量比); 
图4为实施例1-1,1-2及1-3分别制备得到的超细纤维金属氧化物多孔体的投射电子显微镜图片,(a)为SiO2,(b)为Al2O3,(C)为浸渍过高分子树脂的SiO2超细纤维状多孔体; 
图5为实施例2-1中制备得到的超细纤维状SiO2/PVdF(1∶1重量比)耐热性复合分离膜的透射电子显微镜图片,其中(a)为热压之前,(b)为热压之后,(c)为使用溶剂提取去除PVdF成分之后; 
图6为实施例2-1制备得到的超细纤维状耐热性复合分离膜的电化学稳定性的测定结果,(a)SiO2/PVdF(1∶1重量比),(b)TiO2/PVdF(1∶1重量比); 
图7为实施例2-1制备得到的耐热性复合分离膜的TMA分析结果(高温熔融保存性),(a)PE分离膜及PVdF超细纤维状分离膜,(b) 超细纤维状SiO2/PVdF(1∶1重量比),(c)在250℃下放置约1小时后的超细纤维状SiO2/PVdF(1∶1重量比); 
图8为实施例2-1制备得到的SiO2/PVdF(1∶1重量比)耐热性复合分离膜的输出特性曲线图。 
图9为实施例2-1制备得到的SiO2/PVdF(1∶1重量比)耐热性复合分离膜的充放电特性曲线图。 
具体实施方式
本发明提供的耐热性超细纤维状复合分离膜,其特征在于,所述分离膜含有多孔体,所述多孔体为金属氧化物前体物溶胶-凝胶溶液或金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物经过电纺丝(electrospinning)处理而制备得到的“超细金属氧化物/高分子复合纤维的多孔体”,或是由电纺丝处理制备得到的“表面具有高分子树脂涂布层的超细金属氧化物纤维的多孔体”,所述耐热性超细纤维状复合分离膜在150-250℃时的热收缩率为10%以下,温度在200℃以下时,不会发生由熔融引起的崩解。 
构成本发明复合分离膜的超细纤维多孔体是将“金属氧化物前体物的溶胶-凝胶溶液”或“金属氧化物前体物的凝胶-溶胶溶液和高分子树脂溶液的混合物”经过电纺丝处理制备得到。上述超细纤维与一般情况下用肉眼观察为粉末状的采用化学合成方法制备得到的金属氧化物系纳米纤维、纳米棒、纳米碳管、纳米颗粒等不同,其是在高压电场下通过喷嘴将上述相应溶液进行物理压出而形成的纤维,因此其为具有数nm乃至数μm直径及数十cm乃至数百m长度的超细构造,呈连续纤维状。用肉眼观察时,本发明金属氧化物超细纤维的多孔体呈现出一种多孔性分离膜形态,其是由电纺丝而制备得到的超细纤维经过连续、随机地排列堆积而形成。 
在很多文献中记载有本发明形成金属氧化物超细纤维状的电纺丝原理[G.Taylor.Proc.Roy.Soc.London A,313,453(1969);J.Doshi and D.H.Reneker,J.Electrostatics,35151(1995)],与低粘度的液体在临界电压以上的高压电场下,喷雾形成极微小的粒子的静电喷涂法(electrostatic spray)不同,如图1中所示,所述电纺丝是指当具有充分粘度的高分子树脂溶液或高分子树脂熔融体被赋予高电压静电力时,形成超细纤维的工艺。所述电纺丝装置包括管桶、定量泵、纺丝喷嘴。所述管桶用来储存高分子树脂溶液,所述定量泵以一定速度喷出高分子树脂溶液,所述纺丝喷嘴连接有高压发生器。通过定量泵喷出的金属氧化物前体物溶液通过依靠高电压发生器而带电的纺丝喷嘴,从而喷出超细纤维,其是以一定速度移动的传送带形式,在接地的集电板上堆积形成多孔性超细纤维。根据这种金属氧化物前体物溶液的电纺丝工艺能够制造出具有数纳米乃至数千纳米大小的超细纤维,在形成纤维的同时,以3次元的网状结构熔接、积层,从而能够形成想要得到的金属氧化物超细纤维状多孔性网。这种超细纤维状多孔性网为超薄膜、超轻量网,其体积比表面积远远高于现有的纤维,具有高气孔率。(参照图1)
本发明中构成金属氧化物超细纤维状多孔体的纤维,其平均直径对分离膜的通气性及气孔大小分布有很大的影响。纤维直径越小气孔大小也变小,随之气孔大小分布也变小。此外,纤维直径越小,纤维的比表面积增大,随之使得电解液补液能力增强,从而会减小电解液漏液的可能性。金属氧化物超细纤维状多孔体的纤维直径范围为1-3000nm,优选范围为1-1000nm,更优选范围为50-800nm。超细纤维状分离膜的气孔率优选为40-75%。当气孔率不到40%时,会使离子导电性降低,当超过75%时,会使分离膜的机械性能变差。 
本发明的金属氧化物超细纤维状多孔体能够采用由扩大了上述电纺丝概念的熔融吹袭法(melt-blowing),瞬时纺丝法,或是由上述工艺的变形,即根据高电压电场和空气喷射来制备超细纤维的电吹袭法(electro-blowing)来形成。上述这些方法与电纺丝方法具有相 同的概念。所述电纺丝方法是在电场下通过喷嘴压出,因此本发明所指的电纺丝包括上述这些方法。 
更具体地说,本发明的超细纤维复合分离膜可由下述方法制备得到。 
(i)采用超细金属氧化物/高分子复合纤维的多孔体制备得到。上述多孔体是将金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物经过电纺丝处理而制备得到。(不经过烧结工艺的方法) 
(ii)采用表面具有高分子树脂涂布层的超细金属氧化物纤维的多孔体制备得到。上述多孔体是将金属氧化物前体物溶胶-凝胶溶液,或将所述溶胶-凝胶溶液和高分子树脂溶液(第一高分子树脂溶液)的混合物经过电纺丝处理得到一种多孔体,然后将其在300至1000℃下进行烧结处理(通过烧结除去高分子树脂成分),然后用第二高分子树脂溶液浸渍或涂布后制备得到(经过烧结工艺的方法)。 
制备不经过烧结工艺的金属氧化物/高分子复合纤维的多孔体时适合使用的高分子树脂包含:由于与蓄电池的电解液具有亲和力而使电解液富有膨润性的高分子树脂,熔点高于180℃或不熔融的耐热性高分子树脂,或是它们的混合物。使电解液富有膨润性的高分子树脂只要是在电化学方面稳定,对其没有特别的限制,使电解液富有膨润性的高分子树脂的具体例有:聚偏二氟乙烯(polyvinylidene fluoride)、偏氟乙烯-全氟丙烯共聚物(poly(vinylidene fluoride-co-hexafluoropropylene))、全氟聚合物(perfluoro polymer)、全氟共聚物、聚乙二醇二烷基醚(polyethyleneglycol dialkylether)及聚乙二醇二烷基酯(polyethyleneglycol dialkylester)等聚乙二醇衍生物;聚环氧乙烷(polyethylene oxide)及聚环氧丙烷(polypropylene oxide)等多氧化物;聚丙烯腈(polyacrylonitrile)、聚丙烯腈甲基丙烯酸甲酯共聚物等聚丙烯腈共聚物;聚氨酯(polyurethane)、聚甲基丙烯酸甲酯(polymethylmethacrylate)、聚甲基丙烯酸甲酯共聚物 及它们的混合物。 
熔点高于180℃或不熔融的耐热性高分子树脂的具体例有:聚酰胺(polyamide)、聚酰亚胺、聚酰亚胺(polyimide)、聚酰胺酰-亚胺(polyamideimide)、聚(甲基-亚苯基间苯二甲酰胺)(poly (meta-phenylene isophthalamide)、聚砜(polysulfone)、聚醚砜(polyethersulfone)、聚亚苯基砜(polyphenylenesulfone)、聚醚酮(polyetherketone)、聚醚酰亚胺(polyetherimide)、聚乙二醇对苯二甲酸酯(polyethyleneterephthalate)、聚三亚甲基对苯二酸酯(polytri methyleneterephthalate)、聚萘二甲酸乙二醇酯(polyethylenenaphthalate)等芳香族聚酯;聚四氟乙烯(polytetrafluoroethylene)、聚氨酯(polyurethane)、聚醚聚氨酯等聚氨酯共聚物及它们的混合物。 
经过烧结工艺、具有高分子树脂涂布层超细金属氧化物纤维的多孔体的制备中使用的高分子树脂(第1高分子树脂)适合选用在300至1000℃范围内烧结后不会残留碳成分的树脂。这样的高分子树脂的具体例有:聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)、聚乙烯醇(Polyvinylalcohol,PVA)、聚乙烯乙酸酯(polyvinylacetate,PVAc)、聚环氧乙烷(Polyethylene oxide,PEO)及它们的混合物,只要是在烧结过程中不会残留碳成分的高分子均可。 
在烧结工艺后,用于浸渍或涂布超细纤维多孔体的高分子树脂(第二高分子树脂)可以使用使电解液具有膨润性的高分子树脂、熔点高于180℃或不熔融的耐热性树脂、或它们的混合物。具体例如上面所述。所述第二高分子树脂增大了超细纤维状金属氧化物多孔性支持物的纤维间粘合力,从而提高了复合分离膜的机械性能,此外,使电解液富有亲和力的高分子成分还起到了增大电解液的保持力,增加电化学稳定性的作用。现有技术中将聚烯烃多孔膜浸渍于高分子树脂中或将其用高分子树脂进行涂布,然后浸渍于水或有机溶剂水溶液的 凝固液中进行浸渍凝固处理,然后经水洗干燥处理,从而形成耐热性复合分离膜。这种方法存在气孔构造闭锁的问题。但是,本发明中根据电纺丝法制备得到的金属氧化物超细纤维多孔体通常具有70-95%之高的气孔率,并且气孔构造也是开放气孔构造,因此在高分子树脂的浸渍或涂布的粘合过程中,气孔不会闭锁,从而不会降低分离膜的性能。 
本发明的金属氧化物前体物溶胶-凝胶溶液所使用的溶剂包括水、醇类或它们的混合物,因此具有亲水性。醇类可以使用甲醇、乙醇、丙醇、丁醇等碳元素比较少的低级醇类。与此相反,本发明中使用的上述高分子树脂不溶于水或醇。作为高分子树脂溶液的溶剂包括二甲基甲酰胺dimethylformamide,DMF)、二甲基乙酰胺(dimethylacetamide,DMAc)、二甲亚砜(dimethylsulfoxide DMSO)、丙酮(acetone)、四氢呋喃(tetrahydrofurane,THF)及它们的混合物等有机溶剂。 
当固形份(金属氧化物和高分子树脂的含量)浓度低时,金属氧化物前体物的溶胶-凝胶溶液和高分子树脂溶液的混合物形成均质溶液,但当固形份浓度高时所述金属氧化物溶胶-凝胶溶液和高分子树脂溶液之间发生相分离,从而形成非均质溶液。总之结果为:在电纺丝时,固形份浓度过低或过高时都会发生明显的相分离上述两种情况均难以形成纤维,在室温下对混合溶液进行电纺丝处理时,虽然也可以使用具有能够形成纤维的固形份浓度的溶液,但是,即使是由于固形份浓度高,从而使得在室温下会发生相分离的溶液时,只要升高溶液的温度,固形份的溶解度就会随之增大,进而金属氧化物溶胶凝胶溶液和高分子树脂溶液间的亲和力随之增强,因此也能够降低相分离的发生。 
因此,对本发明中金属氧化物溶胶-凝胶溶液和高分子树脂溶液的混合物实施电纺丝工序的温度优选为室温至150℃,高于上述温度 会过度促进金属氧化物溶胶-凝胶反应,会使得金属氧化物颗粒析出,进而溶液固化,从而不能用于电纺丝处理不能够实施。 
此外,虽然金属氧化物前体物溶胶-凝胶溶液与高分子树脂溶液的有机溶剂容易混合,但是高分子树脂不溶于金属氧化物前体物溶胶-凝胶溶液,因此金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物中,当金属氧化物前体物的溶胶-凝胶溶液的含量升高时会析出高分子。因此金属氧化物的含量相对于超细金属氧化物/高分子复合纤维的重量优选5-80重量%,更有选为5-50重量%。 
此外,为了增加超细纤维状分离膜的强度,还可以在超细纤维多孔体中分布可强化超细纤维间结合的粘合剂。在电纺丝过程中,这种粘合剂不是通过金属氧化物前体物溶胶-凝胶溶液的纺丝喷嘴或所述金属氧化物前体物溶胶-凝胶溶液和高分子树脂的混合物的纺丝喷嘴进行导入,而是使用另外的纺丝喷嘴一同喷射粘合剂分散液,从而制备得到多孔体,所述多孔体的超细纤维相之间还分散有粘合剂的多孔体。使用的粘合剂只要是能够进行化学交联反应的粘合剂,例如有尿烷,热可塑性树脂等;或是能够通过熔融或化学交联反应使得超细纤维间进行结合的粘合剂,例如有:聚四氟乙烯及其衍生物,聚乙烯,聚丙烯,低熔点聚酯等均可,优选的粘合剂所含有的树脂应在电化学方面稳定并且具有尽可能高的熔点。 
本发明使用的金属氧化物前体物选自M(OR)x、MRx(OR)y、MXy、M(NO3)y(M=Si、Al、Zn、Li、Ti、Ba等金属,R=烷基基团;X=F、Cl、Br、I;x及y=1-4)中的一种或它们的混合物,构成超细纤维多孔体的金属氧化物的具体例有:二氧化硅(SiO2)、氧化铝(Al2O3)、勃姆石(boehmite)、ZnO2、LiAlO2、TiO2、BaTiO3、LiTiO3及它们的混合物,但是不限于这些。 
为了制备柔软且耐热性优异的分离膜,本发明中使用的金属氧化物前体物溶胶-凝胶溶液还可以含有选自二氧化硅(SiO2)、氧化铝 (Al2O3)、勃姆石(boehmite)、ZnO2、LiAlO2、TiO2、BaTiO3、LiTiO3及它们的混合物的金属氧化物纳米颗粒。金属氧化物纳米颗粒呈粉末状。其具有纳米棒、纳米碳管、纳米纤维等形状。此时金属氧化物纳米颗粒的使用量相对于由金属氧化物前体物溶胶-凝胶溶液得到的金属氧化物的重量为0.1-200重量%,优选为0.1-100重量%,更优选为0.1-50重量%。现有技术中仅使用这种纳米大小粉末状的金属氧化物纳米颗粒,这样使得纳米颗粒不能够均匀地分散于高分子树脂溶液中,从而难于制备含有高浓度金属氧化物纳米颗粒的高分子超细纤维,并且由于非均质分散,不能制备得到具有满意的物理化学特性的纤维。 
通过本发明的电纺丝处理而得到的超细纤维多孔体通常具有70-95%左右的高气孔率,因此为了赋予其适合的气孔率,提高其机械性能,优选地,在高分子树脂的游离转移温度(Tg)以上且熔融温度(Tm)以下的温度下进行热压处理,或是在热压后进行热延伸处理,或是在热压处理,热延伸处理后再进行热压处理,此外,必要时可在上述热压处理或热延伸处理后进行一定时间的热处理。所述热处理的温度为100-250℃。根据热压及热延伸工艺使得含有的高分子成分发生超细纤维间的熔接或高分子链配向,从而提高了超细纤维状多孔体的机械性能,经过上述工艺制备得到的超细纤维状多孔体的气孔率为40-75%。当含有粘合剂的情况下,通过上述热压工艺会使得纤维之间发生粘着,从而能够制得提高了机械性能的多孔体。 
这样制备得到的本发明中的超细纤维状复合分离膜,其含有超细金属氧化物/高分子复合纤维多孔体或表面涂布有高分子树脂涂布层的超细金属氧化物纤维多孔体,将其在150-250℃下放置1小时以上时,其显示出了10%以下的热收缩率,并且由于膜的形状稳定性优异温度在200℃以下时,不会发生由熔融引起的崩解。将这种复合分离膜的耐热特性称为高温熔融保存性(high temperature melt integrity, HTMI),其是由一种温度来定义,所述温度为使用热机械分析(thermo mechanical analysis,TMA)仪器对特定长度的复合分离膜施加一定的荷重,并且在这种状态下渐渐升高温度,从而使得复合分离膜由于熔融而伸长并且断裂的温度。 
此外,本发明的超细纤维状复合分离膜具有高透气度和高气孔率,因此提供的电池具有高的离子导电性,并且在构成该电池时,不仅赋予其优异的耐热性,而且还使其具有优异的输出性能。即、本发明提供的气孔率为60%左右的超细纤维状复合分离膜的输出性能比具有相似气孔率的聚乙烯分离膜的输出性能还要优异,因此与在聚乙烯分离膜上涂布了陶瓷颗粒的耐热性分离膜相比会显示出更为优异的输出性能。与本发明提供的超细纤维状多孔体不同,当将金属氧化物微细颗粒和高分子的混合溶液经过电纺丝处理而制备的纤维状分离膜时,由于在高分子熔点以上的温度下使得高分子熔融流出,从而不能够维持纤维状结构而崩解,因此不能够制备得到耐热性高的分离膜。 
此外,实现本发明目的另一个方面提供一种蓄电池,其特征在于,其包括阳极、阴极、以及位于这两个电极之间的上述超细纤维状复合分离膜和电解质。 
本发明的蓄电池是在含有阳极活性物质的阳极和含有阴极活性物质的阴极之间***分离膜进行层压处理,然后注入有机电解液,高分子电解质或固体电解质来制备得到。阳极活性物质可以使用锂钴复合氧化物,锂镍复合氧化物,镍锰复合氧化物,磷酸吡哆醛化合物或它们的混合物,阴极活性物质没有特别的限制,只要是能够用于锂蓄电池等非水系电解质电池即可,其具体例有:石墨、焦炭等碳材料,锡氧化物,金属锂,二氧化硅,氧化钛及它们的混合物。 
对有机电解液,高分子电解质或固体电解质中所含的锂盐种类没有特别的限制,只要是通常在锂蓄电池领域使用的任何一种锂盐均 可,其具体例有:LiPF6、LiClO4、LiAsF6、LiBF4、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiPF6-x(CnF2n+1)x(1<x<6,n=1或2)及它们的混合物。其中更优选为LiPF6。锂盐的浓度为0.5-3.0M,主要使用1M的有机电解液。 
综上所述,本发明提供的耐热性超细纤维复合分离膜热收缩率低,具有优异的耐热性及离子导电性,并且与电极的接触性优异,从而,在构成电池时能够提高循环性能及输出性能,因此能够应用于制备高能密度和大容量的蓄电池。 
即、本发明的耐热性超细纤维复合分离膜特别适用于制备电汽车、混合动力电汽车及燃料电池汽车等对于耐热性和热稳定性要求高的电化学元件(锂离子蓄电池,锂离子高分子电池,超级电容器)。 
下面,通过下述实施例对本发明更为详细地说明。但,下列实施例只是为了预示本发明,本发明的范围并不仅限于此。 
实施例1 
用下述方法测定由下列实施例及比较例制备得到的各个分离膜的物理性质及含有所述分离膜的电池的物理性质。 
分离膜的气孔率
用下列数学式1对显气孔率进行了评价,采用丁醇浸渍法,用数学式2对气孔率进行了评价。 
【数学式1】 
显气孔率(%)={1-(ρMp)}×100 
上述式中,ρM为纤维层的密度,ρp为高分子密度。 
【数学式2】 
气孔率(%)={(MBuOHBuOH)/(MBuOHBuOH+Mmp)}×100 
上述式中,MBuOH为吸收的丁醇重量,Mm为分离膜的重量,ρBuOH为丁醇密度,ρp为高分子密度。 
分离膜的电解液吸收率
在室温下,将3cm×3cm的试验用分离膜在1M的LiPF6EC/DMC/DEC(1/1/1)电解质溶液中浸渍约2小时后,将粘在表面的过量的电解液用滤纸去除,然后称重,从而确定电解液吸收率。 
分离膜的热收缩率
在150-250℃下,将3cm×3cm的试验用分离膜放置1小时,然后计算出热收缩率。 
分离膜的耐热性能(高温熔融保存性)
对作为分离膜耐热特性的高温熔融保存性(high temperature melt integrity,HTMI)进行了调查。其是在50-400℃的温度范围内,使用TMA(Perkin-Elmer,TMA-7),根据温度变化测定1cm×0.5cm大小试样的长度变化。此时,加热速度为5℃/分钟,荷重为200g(静电力:50mN)。 
电池的耐热性能
以LiCoO2//电解液浸渍分离膜//MCMB的结构形成单电池,将电池充电至50%SOC,然后以每分钟5℃的速度升温至40-250℃。分别在每10℃区间赋予各5min的稳定化时间,然后在100mHz至1MHz频率之间测量阻抗,测量时间为150秒,然后测量10秒OCV,然后在1kHz下连续测量阻抗10秒。 
分离膜的电化学稳定性
分离膜的电化学稳定性评价是以不锈钢板(stainless steel plate)//电解液浸渍分离膜//不锈钢板构成单元,然后通过对浸渍在一定量的电解液中的分离膜采用线性扫描伏安法(linear sweep voltammetry)来确定的,具体地说是在室温下,使用由镍工作(working)电极,锂参照(reference)电极及相对电极构成的3-电极电化学单元,由电化学分析器(electrochemical analyzer,CHI model 600),在2-6V(Li+/Li)区域测定了1mV/分的扫描速度。 
电池的充放电性能
对电池的充放电性能的评价是在电流密度为0.68mA/cm2(0.2C),4.2V的固定电流和固定电压下,用电池循环装置(WBCS 3000,WonATech Co.)进行充电,在3.4mA/cm2(1C)的条件下放电至2.75V。充放电循环试验评价了在室温下循环到500次时保持的容量%。 
电池的输出性能
电池的输出性能方面是对混合脉冲功率性能(hybrid pulse power characterization,HPPC)进行了评价调查。形成单电池后,用恒电流/恒电压充电至4.2V,然后稳定10分钟,1C放电至10%SOC,然后稳定20分钟。为测定放电脉冲功率(discharge pulse power)接着5C放电10秒,然后稳定40s。然后为了测定再生脉冲功率(regeneration pulse power)3C充电10s。在第一阶段测定结束后,为了后续阶段的测定,重新将电池以1C放电20%SOC,30%SOC,40%SOC,50%SOC,60%SOC,70%SOC,80%SOC,直至90%SOC,反复做类似的测量。 
电极的制备
将由PVdF粘合剂,超级-P碳,LiCoO2(Japan Chemical公司制品)构成的悬浮液铸在铝箔(SKC供应品)上(SKC供应品)作为阳极,将由MCMB(Osaka Gas社制品),PVdF粘合剂,超级-P碳构成的悬浮液铸在铜箔上作为阴极(SKC供应品)。该电极的理论容量为145mAh/g。 
在制备上述阳极和阴极时,为了增加颗粒间及与金属箔之间的粘合力,因此分别浇铸相应的悬浮液,然后进行压辊使电极厚度约为50μm。 
比较例1 
在38g的二甲基甲酰胺(DMF)中加入2g的二氧化硅(Aldrich公司制品),利用超声波发生器作用1小时左右,使其分散,然后加入3.6g的聚丙烯腈(PAN,Mw150,000,polyscience公司)于75℃下搅拌1小时使PAN溶解,进而制备得到二氧化硅/PAN混合溶液。用如图 1所示的电纺丝设备(17kV的高电压电场,27G的纺丝喷嘴和金属集电板之间的距离为14cm,吐出量为30μl/分)制备得到分布有二氧化硅纳米颗粒的PAN(SiO2/PAN)超细纤维。此外,用同样的方法使用38g的DMF、2g的二氧化硅、以及4g的聚偏二氟乙烯(PVdF,Kynar761)制备得到分布有二氧化硅的PVdF(SiO2/PVdF)超细纤维。 
此外,用同样的方法使用二氧化硅纳米颗粒(P25,大邱公司制品)和聚偏二氟乙烯(PVdF,Kynar761)制备得到TiiO2/PVdF重量比为1∶2及1∶1的TiO2/PVdF超细纤维。 
图2为所述SiO2/PAN及TiO2/PVdF超细纤维的投射电子显微镜图片。((a)SiO2/PAN(1/1.8重量比),(b)TiO2/PVdF(1∶2重量比),(c)TiO2/PVdF(1∶1重量比)),在制备的纤维表面观察到了很多金属氧化物纳米颗粒,看到的表面非常粗糙。 
图3示出了制备得到的SiO2/PVdF及TiO2/PVdF超细纤维状分离膜的电化学稳定性。((a)SiO2/PVdF(1∶2重量比),(b)TiO2/PVdF(1∶2重量比))上述SiO2/PVdF及TiO2/PVdF超细纤维状分离膜3.7V附近电解液发生了分解,显示出非常差的电化学稳定性,作为试验用分离膜分别取3cm×3cm大小的上述SiO2/PVdF及TiO2/PVdF超细纤维状分离膜,在180℃下约放置1小时左右时,它们分别发生了13.7%及14.5%的收缩。 
实施例1-1 
将20.8g正硅酸乙酯(TESO)、9.2g乙醇、3.5g水及0.1g的盐酸水溶液混合溶液于70℃下约搅拌3小时左右,从而制备得到溶胶-凝胶溶液,然后用图1所示的电纺丝设备在20kV高压电场下,以20μl/分的吐出速度,使用30G的纺丝喷嘴制备了二氧化硅超细纤维。将制备得到的二氧化硅纤维在400℃下烧结,从而制备得到平均直径为680nm的二氧化硅超细纤维状多孔体。图4(a)示出了制备得到的上述二氧化硅超细纤维的透射电子显微镜图片。 
实施例1-2 
将7.0g异丙醇铝、40ml乙醇、10ml水,25ml盐酸水溶液进行混合搅拌,从而制备得到异丙醇铝溶胶-凝胶溶液,然后在该溶液中添加5ml乙醇中溶解了1.5g聚乙烯吡咯烷酮(PVP)的溶液,然后在约70℃下搅拌2小时,从而制备得到混合溶液。利用图1所示的电纺丝设备将该混合溶液于15.5kV高压电场下,使用24G的纺丝喷嘴,以30μl/分的吐出速度制备了氧化铝/PVP超细纤维状多孔体。将其在约500℃下进行烧结除去PVP,从而得到平均直径为600nm的氧化铝超细纤维状多孔体。图4(b)示出了制备得到的氧化铝超细纤维的透射电子显微镜图片。 
实施例1-3 
将实施例1中制备得到的超细纤维状二氧化硅多孔体浸渍于以5%的重量比溶解了PVdF和聚醚酰亚胺(1∶1重量比)的DMF溶液中,然后经过干燥,于约150℃下进行热压处理,从而制备得到气孔率为65%的复合分离膜。图4(c)示出了该分离膜的投射电子显微镜图片。将该分离膜放入200℃的烤箱中保存1小时,然后测定其热收缩率,结果显示出了4.3%的收缩,用TMA对耐热特性进行评价的结果为显示出了到达300℃也没有因为熔融而使得分离膜崩解等优异的热稳定性。 
实施例2-1 
将113g的TEOS,50g乙醇、19g水、0.56g盐酸水溶液的混合溶液进行反应,从而制备得到TEOS溶胶-凝胶溶液,取该混合溶液的一部分与在21.5g的DMF中溶解了3.5g的PVdF(Kynar761)的溶液进行混合,然后于50℃下进行搅拌,从而制备得到14重量%的SiO2/PVdF(1∶1重量比)混合溶液。将该溶液利用图1所示的电纺丝设备(溶液温度50℃,13.8kV的高压电场,27G的喷嘴,溶液吐出速度27μl/分)制备得到平均纤维直径为262nm的具有90%气孔率的二氧化硅/PVdF超细 纤维状多孔体。图5(a)(热压处理前)示出了制备得到的超细纤维状多孔体的透射电子显微镜图片。 
此外,为提高机械性能并具有60%和75%的气孔率,在约140℃下进行热压处理,然后在150℃下进行热延伸处理,然后在150℃下进行约30分钟热处理,从而制得二氧化硅/PVdF耐热性复合分离膜。图5(b)(热压处理后)示出了制备得到的超细纤维状多孔体的透射电子显微镜图片。 
此外,图5(c)示出了使用丙酮提取去除PVdF成分后的二氧化硅超细纤维透射电子显微镜图片。其与比较例1中使用金属氧化物纳米颗粒的情况不同,能够看出纤维整体上均匀地分布有超细二氧化硅。这说明二氧化硅成分和PVdF成分非常均匀地分布于二氧化硅/PVdF复合超细纤维内,由此能够预想到具有优异的耐热性和机械性能。 
此外,采用与上述类似的方法将Ti(OBu)4的溶胶-凝胶溶液和PVdF混合溶液经过电纺丝处理后得到的超细纤维状分离膜于180℃下进行热处理约10分钟,从而制备得到TiO2/PVdF耐热性超细复合分离膜。将该耐热性分离膜于150-250℃的烤箱中保存约1小时,然后测定热收缩率的结果均显示出了1.5%以内的收缩。 
此外,如图6所示,所述耐热性复合分离膜显示出了4.5V以上的优异电化学稳定性((a)SiO2/PVdF(1∶1重量比),(b)TiO2/PVdF(1∶1重量比))。此外,由图7(a)可以看出对使用TMA的耐热性评价(高温熔融保存性)中,将常用聚乙烯系(PE)分离膜及PVdF溶液经过电纺丝处理后制备得到的超细纤维状PVdF分离膜由于高分子的熔融,因此在PE及PVdF的熔点附近开始急剧伸长,从而发生了断裂的膜崩解。但是,由图7(b)可以看出所述二氧化硅/PVdF超细纤维状分离膜即使温度为200℃以上时,也没有发生由PVdF引起的膜崩解,从而显示出了优异的耐热性。此外,由图7(c)可以看出二氧 化硅/PVdF超细纤维状分离膜在250℃下放置约1小时的情况下也只是部分PVdF发生了熔融,进而溶出的现象,但并没有因熔融引起分离膜崩解,从而显示出了优异的形态稳定性。 
此外,如图8所示,气孔率为60%的二氧化硅/PVdF复合分离膜比气孔率为60%的常用PE分离膜显示出了2%左右更为优异的输出性能,而气孔率为75%的二氧化硅/PVdF复合分离膜显示出了8%以上的更为优异的输出性能。 
此外,如图9所示,对由气孔率为60%的常用PE分离膜和气孔率为60%的二氧化硅/PVdF复合分离膜构成的单电池进行500循环充放电试验结果为:PE分离膜保持了初期容量的83%,与此相反二氧化硅/PVdF复合分离膜能够保持初期其容量的86%。 
实施例2-2 
将113g的TEOS,50g乙醇、19g水、0.56g盐酸水溶液的混合溶液进行反应,从而制备得到TEOS溶胶-凝胶溶液,取该混合溶液的一部分与在21g的DMF中溶解了7.62g的PVdF(Kynar761)的溶液进行混合,然后于约50℃下进行搅拌,从而制备得到16重量%的SiO2/PVdF(1∶1重量比)混合溶液。然后将该溶液温度维持在70℃,在18kV高压电场下使用27G的喷嘴以20μl/分的吐出速度制备了气孔率为88%的二氧化硅/PVdF复合超细纤维。将该超细纤维进行热压处理,然后于150℃下进行热延伸处理,然后进行约30分钟热处理,从而得到气孔率为60%的耐热性分离膜。将该耐热性分离膜放入200℃的烤箱中保存约1小时,然后测定其热收缩率的结果显示出了约3.0%以内的收缩。所述分离膜比气孔率为60%的PE分离膜显示出了约2%左右更为优异的输出性能。 
实施例2-3 
将113g的TEOS,50g乙醇、19g水、0.56g盐酸水溶液的混合溶液进行反应,从而制备得到TEOS溶胶-凝胶溶液,取该混合溶液的一部 分与在21g的DMF中溶解了4g的PVdF(Kynar761)的溶液进行混合,然后于60℃下进行搅拌,从而制备得到16重量%的SiO2/PVdF(6∶4重量比)混合溶液。然后将该溶液温度维持在70℃,在16kV高压电场下使用27G的喷嘴以30μl/分的吐出速度制备了气孔率为90%的二氧化硅/PVdF复合超细纤维。将该超细纤维进行热压处理,然后于150℃下进行热延伸处理,然后进行约30分钟热处理,从而得到气孔率为65%的耐热性分离膜。将该耐热性分离膜放入200℃的烤箱中保存约1小时,然后测定其热收缩率的结果显示出了约2.5%以内的收缩。所述分离膜比气孔率为60%的PE分离膜显示出了约2.1%左右更为优异的输出性能。 
实施例2-4 
将113g的TEOS,50g乙醇、19g水、0.56g盐酸水溶液的混合溶液进行反应,从而制备得到TEOS溶胶-凝胶溶液,取该混合溶液的一部分与在21g的DMF中溶解了3.81g的二氧化硅纳米颗粒的溶液进行混合,然后于约为50℃下进行搅拌,从而制备得到16重量%的SiO2/PVdF(1∶1重量比)混合溶液。然后将该溶液温度维持在70℃,在18kV高压电场下使用27G的喷嘴以20μl/分的吐出速度制备了气孔率为88%的二氧化硅/PVdF复合超细纤维。将该超细纤维进行热压处理,然后于150℃下进行热延伸处理,然后进行约30分钟热处理,从而得到气孔率为60%的耐热性分离膜。所述分离膜的柔软性比实施例2-2所制备的分离膜的略为要好一些,但是将该耐热性分离膜放入200℃的烤箱中保存约1小时,然后测定其热收缩率的结果为显示出了约5.5%以内的收缩,所述分离膜比气孔率为60%的PE分离膜显示出了2%左右更为优异的输出性能。 

Claims (18)

1.一种超细纤维状复合分离膜,其特征在于,其含有多孔体,所述多孔体是由(i)金属氧化物前体物溶胶-凝胶溶液或(ii)所述金属氧化物前体物溶胶-凝胶溶液和高分子树脂溶液的混合物经过电纺丝方法处理排出的超细金属氧化物纤维或超细金属氧化物/高分子复合纤维连续随机地排列、堆积而形成,此时,所述多孔体的表面具有高分子树脂涂布层,并且所述分离膜在150至250℃时的热收缩率为10%以下,温度在200℃以下时,不会发生由熔融引起的崩解。
2.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述具有高分子树脂涂布层的多孔体是将金属氧化物前体物溶胶-凝胶溶液或所述金属氧化物前体物溶胶-凝胶溶液和第一高分子树脂溶液的混合物经过电纺丝处理所得到的多孔体在300至1000℃下进行烧结处理,然后用第二高分子树脂溶液浸渍或涂布后制备得到。
3.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述高分子树脂溶液包含使电解液富有膨润性的高分子树脂,熔点高于180℃或不熔融的耐热性高分子树脂,或它们的混合物。
4.根据权利要求3所述的超细纤维状复合分离膜,其特征在于,所述使电解液富有膨润性的高分子树脂选自聚偏二氟乙烯、偏氟乙烯-全氟丙烯共聚物、包括全氟共聚物的全氟聚合物、聚乙二醇二烷基醚、聚乙二醇二烷基酯、聚环氧乙烷、聚环氧丙烷、聚丙烯腈、包括聚丙烯腈甲基丙烯酸甲酯共聚物的聚丙烯腈共聚物、聚氨酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸甲酯共聚物及它们的混合物。
5.根据权利要求3所述的超细纤维状复合分离膜,其特征在于,所述熔点高于180℃或不熔融的耐热性高分子树脂选自聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚(甲基-亚苯基间苯二甲酰胺)、聚砜、聚醚砜、聚亚苯基砜、聚醚酮、聚醚酰亚胺、聚乙二醇对苯二甲酸酯、聚三亚甲基对苯二酸酯、聚萘二甲酸乙二醇酯、聚四氟乙烯、聚氨酯、聚氨酯共聚物及它们的混合物。
6.根据权利要求2所述的超细纤维状复合分离膜,其特征在于,所述第一高分子树脂溶液含有的高分子树脂选自聚乙烯吡咯烷酮、聚乙烯醇、聚乙烯乙酸酯、聚环氧乙烷及它们的混合物。
7.根据权利要求2所述的超细纤维状复合分离膜,其特征在于,所述第二高分子树脂溶液包含使电解液富有膨润性的高分子树脂、熔点高于180℃或不熔融的耐热性高分子树脂及它们的混合物。
8.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,构成所述多孔体的金属氧化物选自二氧化硅、氧化铝、勃姆石、ZnO2、LiAlO2、TiO2、BaTiO3、LiTiO3及它们的混合物。
9.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述超细金属氧化物/高分子复合纤维含有5-80重量%的金属氧化物。
10.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述金属氧化物前体物溶胶-凝胶溶液还含有金属氧化物的纳米颗粒,含有的所述纳米颗粒的量相对于由金属氧化物前体物溶胶-凝胶溶液得到的金属氧化物的重量为0.1-200重量%,所述金属氧化物纳米颗粒选自二氧化硅、氧化铝、勃姆石、ZnO2、LiAlO2、TiO2、BaTiO3、LiTiO3及它们的混合物。
11.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述多孔体还包含分散在超细纤维相之间的粘合剂。
12.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述多孔体在高分子树脂的游离转移温度以上且熔融温度以下的温度下进行热压处理,或是在热压后进行热延伸处理,或是在热压处理,热延伸处理后再进行热压处理。
13.根据权利要求12所述的超细纤维状复合分离膜,其特征在于,所述多孔体在热压处理或热延伸处理之后还进行热处理,所述热处理温度为100-250℃。
14.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述电纺丝采用熔融吹袭法、瞬时纺丝法、电吹袭法。
15.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述电纺丝是在室温至150℃的温度下进行。
16.根据权利要求1所述的超细纤维状复合分离膜,其特征在于,所述超细纤维的直径范围为1-3000nm。
17.根据权利要求12所述的超细纤维状复合分离膜,其特征在于,所述分离膜的气孔率为40-75%。
18.一种蓄电池,其特征在于,所述蓄电池包括,阳极、阴极,以及位于所述阳极和阴极之间的权利要求1所述的超细纤维状复合分离膜及电解质。
CN201110099809.0A 2010-04-19 2011-04-19 以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池 Active CN102218271B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100035935A KR101117126B1 (ko) 2010-04-19 2010-04-19 금속산화물 초극세 섬유-기반 내열성 복합 분리막 및 이를 이용한 이차전지
KR10-2010-0035935 2010-04-19

Publications (2)

Publication Number Publication Date
CN102218271A CN102218271A (zh) 2011-10-19
CN102218271B true CN102218271B (zh) 2014-12-03

Family

ID=44775124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110099809.0A Active CN102218271B (zh) 2010-04-19 2011-04-19 以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池

Country Status (3)

Country Link
US (1) US9180412B2 (zh)
KR (1) KR101117126B1 (zh)
CN (1) CN102218271B (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
KR101117126B1 (ko) 2010-04-19 2012-02-24 한국과학기술연구원 금속산화물 초극세 섬유-기반 내열성 복합 분리막 및 이를 이용한 이차전지
WO2012011944A2 (en) 2010-07-19 2012-01-26 Optodot Corporation Separators for electrochemical cells
US9666848B2 (en) 2011-05-20 2017-05-30 Dreamweaver International, Inc. Single-layer lithium ion battery separator
CN103094513B (zh) * 2011-10-28 2015-02-18 三门峡兴邦特种膜科技发展有限公司 锂离子电池薄膜原位制备方法、锂离子电池薄膜以及电池
WO2013130690A1 (en) * 2012-03-02 2013-09-06 Cornell University Lithium ion batteries comprising nanofibers
JP2015516518A (ja) * 2012-03-19 2015-06-11 コーネル・ユニバーシティーCornell University 荷電ナノファイバーおよびその製造方法
KR101319558B1 (ko) * 2012-08-17 2013-10-17 한국과학기술연구원 나노그물망 구조의 보헤마이트를 포함하는 나노복합체 및 그 제조 방법
KR101880603B1 (ko) * 2012-08-22 2018-07-23 동국대학교 산학협력단 리튬이차전지의 음극 활물질용 실리콘 산화물-탄소 복합체의 제조방법
KR101522451B1 (ko) * 2012-08-30 2015-05-28 주식회사 엘지화학 분리막의 제조공정 및 그 제조장치, 상기 분리막을 포함하는 전기화학소자
CN103255490A (zh) * 2012-09-29 2013-08-21 彩虹集团公司 一种用于静电纺丝技术的纳米复合溶液的制备方法
CN102931369A (zh) * 2012-10-16 2013-02-13 能一郎科技股份有限公司 一种高安全性凝胶聚合物膜及制备方法
KR101699037B1 (ko) 2012-11-12 2017-01-23 주식회사 엘지화학 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자
US10700326B2 (en) * 2012-11-14 2020-06-30 Dreamweaver International, Inc. Single-layer lithium ion battery separators exhibiting low shrinkage rates at high temperatures
JP6337777B2 (ja) * 2012-12-12 2018-06-06 日本電気株式会社 セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法
US10607790B2 (en) 2013-03-15 2020-03-31 Dreamweaver International, Inc. Direct electrolyte gelling via battery separator composition and structure
CN103236512A (zh) * 2013-04-19 2013-08-07 厦门大学 一种陶瓷隔膜及其在锂离子电池中的应用
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
KR20160032146A (ko) * 2013-07-15 2016-03-23 솔베이(소시에떼아노님) 플루오로중합체 섬유
KR20150084337A (ko) * 2014-01-13 2015-07-22 성균관대학교산학협력단 유기-무기 복합 다공성 분리막, 이의 제조 방법, 및 이를 포함하는 전기화학소자
US9554463B2 (en) 2014-03-07 2017-01-24 Rogers Corporation Circuit materials, circuit laminates, and articles formed therefrom
KR101707193B1 (ko) * 2014-04-01 2017-02-27 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
EP3866244A1 (en) * 2014-12-05 2021-08-18 Celgard, LLC Improved coated separators for lithium batteries and related methods
CN104466064B (zh) * 2014-12-12 2017-03-29 天津工业大学 一种电池隔膜的制备方法
US10777795B2 (en) * 2015-03-05 2020-09-15 Nec Corporation Separator including resin member formed inside porous substrate, and secondary battery equipped therewith
EP3282502B1 (en) * 2015-04-06 2019-10-30 Toshiba Infrastructure Systems & Solutions Corporation Electrode, electrode group and nonaqueous electrolyte battery
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
EP3104430A1 (en) * 2015-06-11 2016-12-14 Nano and Advanced Materials Institute Limited Nonwoven nanofiber separator and method of improving physical stability of battery separator
CN106531928A (zh) * 2015-09-10 2017-03-22 中国科学院大连化学物理研究所 一种多孔复合膜在锂离子电池中的应用
US9994715B2 (en) * 2016-02-16 2018-06-12 Sila Nanotechnologies Inc. Formation and modifications of ceramic nanowires and their use in functional materials
US20170362740A1 (en) * 2016-06-16 2017-12-21 Eurekite Holding BV Flexible ceramic fibers and polymer composite and method of making the same
CN107785519A (zh) * 2016-08-29 2018-03-09 比亚迪股份有限公司 一种聚合物复合膜及其制备方法以及包括其的锂离子电池
CN108166091A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种多孔复合纳米纤维及其制备及电极
CN107240663B (zh) * 2017-05-02 2020-08-28 佛山市金辉高科光电材料股份有限公司 一种聚合物涂层隔膜及其制备方法
WO2019088698A2 (ko) * 2017-10-31 2019-05-09 주식회사 엘지화학 분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자
KR102685138B1 (ko) * 2017-10-31 2024-07-15 주식회사 엘지에너지솔루션 분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자
EP3718157A4 (en) * 2017-11-28 2021-09-29 Massachusetts Institute of Technology SEPARATORS INCLUDING ELONGATED NANOSTRUCTURES AND ASSOCIATED DEVICES AND PROCESSES FOR STORING AND / OR USING ENERGY
WO2019126208A1 (en) * 2017-12-22 2019-06-27 Sila Nanotechnologies, Inc. Separator with a ceramic-comprising separator layer
JP6876648B2 (ja) * 2018-03-22 2021-05-26 株式会社東芝 二次電池、電池パック及び車両
FR3080945A1 (fr) * 2018-05-07 2019-11-08 I-Ten Electrolytes mesoporeux pour dispositifs electrochimiques en couches minces
KR102351623B1 (ko) 2018-05-14 2022-01-14 주식회사 엘지에너지솔루션 분리막 기재가 없는 분리막
CN109632602B (zh) * 2018-12-29 2024-03-19 武汉中兴创新材料技术有限公司 一种电池隔膜热压检测的方法和装置
CN109888152A (zh) * 2019-02-19 2019-06-14 浙江超威创元实业有限公司 一种锂离子电池复合隔膜及其制备方法
WO2020183215A1 (en) * 2019-03-14 2020-09-17 Sorbonne Université Separator, process for manufacturing said separator and sodium ion batterie comprising said separator
CN110707268B (zh) * 2019-04-24 2022-01-11 中南大学 一种SiO2-聚合物复合水系电池隔膜材料及其制备方法和应用
CN112391698B (zh) * 2019-08-19 2022-10-11 Tcl科技集团股份有限公司 纳米材料及其制备方法和量子点发光二极管
CN110565269A (zh) * 2019-09-10 2019-12-13 西京学院 一种同轴静电纺丝制备锂电池隔膜的方法
KR102572651B1 (ko) 2020-03-24 2023-08-31 삼성에스디아이 주식회사 복합 세퍼레이터, 이를 채용한 리튬 전지, 및 이의 제조방법
CN113493958B (zh) * 2020-04-05 2023-02-28 北京化工大学 一种同轴包覆勃姆石的聚酰亚胺纳米纤维膜及其制备方法
EP4015679B1 (en) * 2020-12-16 2024-04-10 Korea University Research and Business Foundation Biomineralization-inspired synthesis of microscale-urchin with zinc-oxide nano-spicules for super-hydrophilic bactericidal surfaces
CN114530630A (zh) * 2022-02-17 2022-05-24 中国科学院物理研究所 一种低溶剂聚合物电解质、其制备方法、电极及固态电池
US20240052525A1 (en) * 2022-08-12 2024-02-15 City University Of Hong Kong Electrospun Radiative Cooling Textile
CN115411451B (zh) * 2022-08-26 2024-03-08 深圳市朗泰沣电子有限公司 一种抗冲击锂电池复合膜及其制备方法
WO2024088417A1 (zh) * 2022-10-28 2024-05-02 扬州纳力新材料科技有限公司 低热收缩率复合集流体及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563522A (zh) * 2004-04-13 2005-01-12 复旦大学 一种采用高频电场制备纳米纤维的方法与装置
CN1610177A (zh) * 2003-07-09 2005-04-27 韩国科学技术研究院 包括细纤维多孔聚合物膜的二次锂电池和它的制造方法
WO2005057700A1 (en) * 2003-12-10 2005-06-23 Sungkyunkwan University Porous and continuous composite membrane and method of preparing the same
JP2005209570A (ja) * 2004-01-26 2005-08-04 Teijin Ltd 非水系二次電池用セパレータ、その製造法および非水系二次電池
JP2006059717A (ja) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd 電池用セパレータ
JP2007327148A (ja) * 2006-06-06 2007-12-20 Tokyo Institute Of Technology 高分子電解質繊維およびその製造方法
WO2008018657A1 (en) * 2006-08-07 2008-02-14 Korea Institute Of Science And Technology Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
WO2008018656A1 (en) * 2006-08-07 2008-02-14 Korea Institute Of Science And Technology Heat resisting ultrafine fibrous separator and secondary battery using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853101A (en) * 1984-09-17 1989-08-01 Eltech Systems Corporation Porous separator comprising inorganic/polymer composite fiber and method of making same
TW460505B (en) 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
JP2001222988A (ja) 2000-02-08 2001-08-17 Teijin Ltd 電解液担持ポリマー膜及びそれを用いた二次電池
JP2006032246A (ja) 2004-07-21 2006-02-02 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
EP2267199A3 (en) * 2006-09-29 2012-09-12 The University of Akron Metal oxide fibers and nanofibers, method for making same, and uses thereof
CN101161705B (zh) 2006-10-13 2010-05-12 中国科学院化学研究所 功能性聚合物纳米复合材料及其制备方法和用途
KR100890594B1 (ko) 2007-07-31 2009-03-25 주식회사 에이엠오 공기투과도가 높은 전기화학소자용 분리막 및 그의제조방법
KR101025555B1 (ko) 2008-09-29 2011-03-28 이명창 정압기 가스 압력 제어 시스템
CN101481855A (zh) 2008-11-27 2009-07-15 江南大学 一种二氧化硅/聚偏氟乙烯复合纳米纤维膜的制备方法
KR101117126B1 (ko) 2010-04-19 2012-02-24 한국과학기술연구원 금속산화물 초극세 섬유-기반 내열성 복합 분리막 및 이를 이용한 이차전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610177A (zh) * 2003-07-09 2005-04-27 韩国科学技术研究院 包括细纤维多孔聚合物膜的二次锂电池和它的制造方法
WO2005057700A1 (en) * 2003-12-10 2005-06-23 Sungkyunkwan University Porous and continuous composite membrane and method of preparing the same
JP2005209570A (ja) * 2004-01-26 2005-08-04 Teijin Ltd 非水系二次電池用セパレータ、その製造法および非水系二次電池
CN1563522A (zh) * 2004-04-13 2005-01-12 复旦大学 一种采用高频电场制备纳米纤维的方法与装置
JP2006059717A (ja) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd 電池用セパレータ
JP2007327148A (ja) * 2006-06-06 2007-12-20 Tokyo Institute Of Technology 高分子電解質繊維およびその製造方法
WO2008018657A1 (en) * 2006-08-07 2008-02-14 Korea Institute Of Science And Technology Heat resisting separator having ultrafine fibrous layer and secondary battery having the same
WO2008018656A1 (en) * 2006-08-07 2008-02-14 Korea Institute Of Science And Technology Heat resisting ultrafine fibrous separator and secondary battery using the same

Also Published As

Publication number Publication date
CN102218271A (zh) 2011-10-19
US9180412B2 (en) 2015-11-10
US20120003524A1 (en) 2012-01-05
KR101117126B1 (ko) 2012-02-24
KR20110116489A (ko) 2011-10-26

Similar Documents

Publication Publication Date Title
CN102218271B (zh) 以金属氧化物超细纤维为基本成分的耐热性复合分离膜以及利用其制备的蓄电池
EP2835843B1 (en) Separator
KR100820162B1 (ko) 내열성 초극세 섬유상 분리막 및 그 제조 방법과, 이를 이용한 이차전지
JP5031836B2 (ja) 耐熱性超極細繊維層を有する分離膜及びそれを利用した二次電池
KR100699215B1 (ko) 전자부품용 세퍼레이터 및 그 제조 방법
KR101340357B1 (ko) 리튬 이온 2 차 전지용 세퍼레이터 및 리튬 이온 2 차 전지
EP2479820B1 (en) Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries
KR101479749B1 (ko) 폴리올레핀에 폴리비닐리덴플루오라이드(pvdf)를 전기방사하고 무기물을 코팅한 이차전지용 다공성 분리막 및 이의 제조방법
CN102516585B (zh) 用于锂离子二次电池的生物质纤维素多孔复合隔膜
KR101676688B1 (ko) 미세 다공성 복합 분리막, 그 제조방법 및 이를 포함한 전기화학소자
KR20150043423A (ko) 세퍼레이터 및 그의 제조 방법, 및 리튬 이온 이차 전지
JP2014512650A (ja) セパレータ、その製造方法及びこれを備えた電気化学素子
KR20140046137A (ko) 리튬이차전지용 분리막의 제조방법 및 이에 따라 제조된 분리막 및 이를 구비하는 리튬이차전지
JP2006338917A (ja) 電子部品用セパレータおよび電子部品
JP6347690B2 (ja) 電気化学素子用セパレータ
WO2021260380A1 (en) Three-dimensional nanostructures created by electrospinning
IT201800010452A1 (it) Materiali nanocompositi elettrofilati a base cu2o/carbone come anodi per batterie a litio
JP5488990B2 (ja) リチウムイオン二次電池
JP5840990B2 (ja) 電気化学素子用セパレータ及び電気化学素子
TWI640434B (zh) Composite separator and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant