CN102139219B - Method for preparing carrier loaded Pt-Cu Nanocube catalyst - Google Patents

Method for preparing carrier loaded Pt-Cu Nanocube catalyst Download PDF

Info

Publication number
CN102139219B
CN102139219B CN201110029583.7A CN201110029583A CN102139219B CN 102139219 B CN102139219 B CN 102139219B CN 201110029583 A CN201110029583 A CN 201110029583A CN 102139219 B CN102139219 B CN 102139219B
Authority
CN
China
Prior art keywords
nanocube
catalyst
preparation
carrier
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110029583.7A
Other languages
Chinese (zh)
Other versions
CN102139219A (en
Inventor
雷一杰
李彤
顾军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Dong Yan Hydrogen Energy Technology Co Ltd
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201110029583.7A priority Critical patent/CN102139219B/en
Publication of CN102139219A publication Critical patent/CN102139219A/en
Application granted granted Critical
Publication of CN102139219B publication Critical patent/CN102139219B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The invention relates to a method for preparing a carrier loaded Pt-Cu Nanocube catalyst, belonging to the technical field of fuel cell and catalyst synthesis. The method comprises the following steps: (1) firstly reducing a Cu precursor by utilizing a stronger reducer in the presence of a surfactant, washing to obtain Cu Nanocube, and carrying out redispersion on the Cu Nanocube by utilizing an appropriate solvent; and (2) weighing a certain amount of Cu size obtained in the step (1) to be mixed with a Pt precursor, and reducing the mixture by utilizing a weaker reducer in the presence of the surfactant; and washing to obtain Pt-Cunanocubes, and then carrying out redispersion on the Pt-Cunanocubes by utilizing the appropriate solvent. The preparation method has the characteristics that reduction is carried out through substeps, different catalysts are adopted aiming at metal precursors at different reduction potentials, and compared with synchronous reduction, the synthesis efficiency of Pt-Cu double-metal nanocube and the success rate are greatly improved.

Description

A kind of preparation method supporting the Pt-Cu Nanocube catalyst of carrier
Technical field
The present invention relates to a kind of preparation method of Pt-Cu Nanocube catalyst, belong to fuel cell and catalyst synthesis technology field.
Background technology
Pt catalyst is used as fuel-cell catalyst and is studied application widely.But due to the costliness of Pt catalyst cost, and its corrosion-prone attribute in fuel cell opening and closing process.Target is transferred to non-Pt or Pt alloy catalyst by increasing researcher, and the different-shape of catalyst also has deep research to the impact of its catalytic performance in addition.Pt-Cu nanocube also obtains certain research as a kind of Pt alloy catalyst of specific morphology.
For the synthesis of Pt-Cu Nanocube catalyst, mostly adopt synchronous reduction, the presoma in view of most of non-Pt metal compares and is difficult to reduction (such as Cu 2+, Fe 2+, Ni 2+), and the presoma of Pt is than being easier to reduction, again because pattern control overflow reaction speed can not be too fast, thus needs to adopt weak reductant reaction for a long time.Obviously, under identical conditions, the presoma of Pt and the reducing degree of non-Pt common metal presoma, reduction speed, the gathering of particle and the size of size etc. are inevitable different, and this governs efficiency and the success rate of Pt-Cu bimetallic nanocube synthesis.
Summary of the invention
The technical problem to be solved in the present invention is the defect overcoming existing synchronous method of reducing, provides the high-efficiency synthetic method that a kind of step-by-step reduction prepares Pt-Cu bimetallic nanocube.
In order to solve the problems of the technologies described above, the invention provides following technical scheme:
Support a preparation method for the Pt-Cu Nanocube catalyst of carrier, comprise the steps,
(1) first use comparatively strong reductant, under the existence of surfactant, reduced by the presoma of Cu, washing can obtain Cu Nanocube, then it is again disperseed with appropriate solvent;
(2) get the Cu slurry of a certain amount of step (1), the presoma with Pt mixes, and under the existence of surfactant, reduces with weak reductant; Washing can obtain Pt-Cu nanocubes, then it is again disperseed with appropriate solvent.
Further, described preparation method also comprises the steps,
(3) do functionalization with acid to carrier, by the carrier after process with the mixing of scattered Pt-Cu nanocube slurry, washing, drying, must support the Pt-Cu nanocube catalyst of carrier.
Described strong reductant is selected from N 2h 4h 2o, NaBH 4one of; Described weak reductant is selected from PVP, one of many alkylols.
The surfactant of step (1) is selected from PVP, one of TTAB, SLS, DBS; The surfactant of step (2) is selected from halogen-containing ion Br -, I -one of solution, many alkyl phosphate ions TTAB.
Step (1) disperses solvent for use to be selected from one of water, ethylene glycol again; Step (2) disperses solvent for use to be alcohol again.
The described carrier of step (3) is selected from XC-72, mesoporous TiO 2one of.
A special feature of preparation method of the present invention is its step-by-step reduction, for the metal precursor of different reduction potential, adopts different catalyst, and relative to synchronous reduction, the efficiency that Pt-Cu bimetallic nanocube synthesizes and success rate all have and significantly improve.
The emphasis of the present invention's innovation is the improvement of synthetic method.If synchronously reduce the presoma of Pt, Cu, take into account the power of two oxidation of precursor abilities, the final weak reductant that adopts at higher temperature (more than 200oC), reaction long period (more than 5h).Reaction process is then divided into two by the present invention, and the presoma for different oxidability adopts strong and weak different reducing agents, and significantly reduce the reaction time (about 2h), reaction temperature also can be controlled in about 150oC.Most critical part is due to step-by-step reduction, and such reaction system facilitates adjustable, not only can adopt organic phase system but also can adopt aqueous solution phase system (change of solvent).Research work due to forefathers shows that Pt-Cu nanocube can improve the electrocatalysis characteristic of fuel cell well.Thus, the present invention can be more efficient, synthesizes the Pt-Cu nanocube of required pattern more easily, and can improve the electrocatalysis characteristic of fuel cell well.
Accompanying drawing explanation
Accompanying drawing is used to provide a further understanding of the present invention, and forms a part for description, together with embodiments of the present invention for explaining the present invention, is not construed as limiting the invention.In the accompanying drawings:
Fig. 1 is the Pt-Cu nanocube not supporting carrier adopting the inventive method to prepare;
Fig. 2 is that another that adopt the inventive method to prepare does not support the Pt-Cu nanocube of carrier;
Fig. 3 is the electromicroscopic photograph of Pt-Cu nanocube/XC-72 prepared by the inventive method.
Detailed description of the invention
Below in conjunction with accompanying drawing, the preferred embodiments of the present invention are described, should be appreciated that preferred embodiment described herein is only for instruction and explanation of the present invention, is not intended to limit the present invention.
Support a preparation method for the Pt-Cu Nanocube catalyst of carrier, step is:
(1) by 0.5mmol CuCl 2be dissolved in 70ml EG, and add 5mmol SLS, stir and be heated to 120oC, logical argon shield, then dropwise drips 7.5mmol N simultaneously 2h 4h 2o, reaction 1h, after cooling with alcohol and deionized water washing and centrifugal.According to proportioning consumption by gained Cu nanocube ultrasonic disperse in a certain amount of EG, be made into the slurry of 0.1mol/L.
(2) 0.3mmol H is got 2ptCl 6eG solution, join in 50ml EG, be heated to 120 oC and logical argon shield, then dropwise drip the Cu nanocube slurry that 3ml prepares, after stirring, temperature is raised to 150 oC, and wherein EG not only be solvent but also be reducing agent, at this thermotonus 1h.After reaction terminates, alcohol and deionized water washing, obtain Pt-Cu bimetallic nanocubes.With alcohol, it is scattered again.
(3) XC-72 nitric acid is carried out the ultrasonic process of 5h, these carriers introduce oxygen-containing functional group.Then by admixed together according to different catalyst proportion consumptions (5%, 10%, 20%, 30%) with scattered Pt-Cu nanocube slurry for the carrier after process, ultrasonic 20h.Afterwards, washing is dry, obtains the required Pt-Cu nanocube catalyst supporting carrier.
Gained supports the electromicroscopic photograph of the Pt-Cu nanocube catalyst of carrier as Figure 1-3, as can be seen here, step-by-step reduction method can adopt different reducing agents, activating agent and the solvent needed for reaction for different presomas, can improve Reactive Synthesis efficiency to greatest extent, improve the quality of products.
It is noted that the foregoing is only the preferred embodiments of the present invention, be not limited to the present invention, although with reference to previous embodiment to invention has been detailed description, for a person skilled in the art, it still can be modified to the technical scheme described in foregoing embodiments, or carries out equivalent replacement to wherein portion of techniques feature.Within the spirit and principles in the present invention all, any amendment done, equivalent replacement, improvement etc., all should be included within protection scope of the present invention.

Claims (6)

1. support a preparation method for the Pt-Cu Nanocube catalyst of carrier, it is characterized in that: comprise the steps,
(1) first use comparatively strong reductant, under the existence of surfactant, reduced by the presoma of Cu, washing can obtain Cu Nanocube, then it is again disperseed with appropriate solvent, and described comparatively strong reductant is selected from N 2h 4h 2o, NaBH 4one of;
(2) get the Cu slurry of a certain amount of step (1), the presoma with Pt mixes, and under the existence of surfactant, reduces with weak reductant; Washing can obtain Pt-Cu nanocube, then it is again disperseed with appropriate solvent, and described weak reductant is selected from PVP, one of many alkylols;
(3) do functionalization with sour to carrier, by the scattered Pt-Cu nanocube slurry mixing of rapid for the bearer synchronization after process (2) gained, washing, drying, must support the Pt-Cu nanocube catalyst of carrier.
2. the preparation method supporting the Pt-Cu Nanocube catalyst of carrier according to claim 1, is characterized in that: the surfactant of step (1) is selected from PVP, one of TTAB, SLS, DBS.
3. the preparation method supporting the Pt-Cu Nanocube catalyst of carrier according to claim 1, is characterized in that: the surfactant of step (2) is selected from halogen-containing ion Br -, I -one of solution, many alkyl phosphate ions TTAB.
4. the preparation method supporting the Pt-Cu Nanocube catalyst of carrier according to claim 1, is characterized in that: step (1) disperses solvent for use to be selected from one of water, ethylene glycol again.
5. the preparation method supporting the Pt-Cu Nanocube catalyst of carrier according to claim 1, is characterized in that: step (2) disperses solvent for use to be alcohol again.
6. the preparation method supporting the Pt-Cu Nanocube catalyst of carrier according to claim 1, is characterized in that: described carrier is selected from XC-72, mesoporous TiO 2one of.
CN201110029583.7A 2011-01-27 2011-01-27 Method for preparing carrier loaded Pt-Cu Nanocube catalyst Active CN102139219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110029583.7A CN102139219B (en) 2011-01-27 2011-01-27 Method for preparing carrier loaded Pt-Cu Nanocube catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110029583.7A CN102139219B (en) 2011-01-27 2011-01-27 Method for preparing carrier loaded Pt-Cu Nanocube catalyst

Publications (2)

Publication Number Publication Date
CN102139219A CN102139219A (en) 2011-08-03
CN102139219B true CN102139219B (en) 2015-05-06

Family

ID=44407151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110029583.7A Active CN102139219B (en) 2011-01-27 2011-01-27 Method for preparing carrier loaded Pt-Cu Nanocube catalyst

Country Status (1)

Country Link
CN (1) CN102139219B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143717A (en) * 2011-12-06 2013-06-12 中国科学院大连化学物理研究所 Platinoid bimetallic nanometer material and preparation method and application thereof
CN111054384B (en) * 2018-10-16 2022-10-11 中国石油化工股份有限公司 Catalyst for organic liquid hydrogen storage material dehydrogenation and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632975A (en) * 2003-12-22 2005-06-29 中国科学院大连化学物理研究所 Cathode electrical catalyst for proton exchange film fuel cell and uses thereof
CN101168130A (en) * 2005-10-21 2008-04-30 三星Sdi株式会社 Catalyst for oxidizing carbon monoxide and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331855A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Cathode catalyst for solid polymer fuel cell and solid polymer fuel cell
US7700521B2 (en) * 2003-08-18 2010-04-20 Symyx Solutions, Inc. Platinum-copper fuel cell catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632975A (en) * 2003-12-22 2005-06-29 中国科学院大连化学物理研究所 Cathode electrical catalyst for proton exchange film fuel cell and uses thereof
CN101168130A (en) * 2005-10-21 2008-04-30 三星Sdi株式会社 Catalyst for oxidizing carbon monoxide and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dan Xu,et al.Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum-Copper Nanocubes.《Angewandte Chemie International Edition》.2009,第48卷(第23期), *

Also Published As

Publication number Publication date
CN102139219A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
CN103861657B (en) Preparation method of nano-silver loaded porous silicon dioxide
CN100531914C (en) solid phase reduction preparation method for platinum, carbon catalyst of fuel cell
CN101279255B (en) Method for directly preparing nano-catalyst based on Pd for alcohol fuel battery
CN109055961B (en) Noble metal supported nano-frame catalyst and preparation method and application thereof
CN109678193B (en) Preparation method of nano cerium oxide particles
CN108480656A (en) A kind of preparation method and application for the bismuth nanometer sheet and its alloy that thickness is controllable
CN101157033B (en) A mesoporous Pt/WO3 electro-catalyst and its preparing method
CN104923254B (en) A kind of cuprio noble metal catalyst, its preparation method and application
CN104998658A (en) Method for preparing proton-exchange membrane fuel cell oxygen reduction catalyst based on PtNi (111) octahedral single crystal nanoparticles
CN106040239A (en) Controllable high-dispersion nano simple-substance metal/carbon composite material preparation method and electrical catalytic application thereof
CN106960962B (en) A kind of platinum base of polyaniline-coated carbon carrier takes off alloy fuel cell catalyst and preparation method thereof
CN105845948B (en) A kind of preparation method of flower-shaped copper/cupric oxide Micron-nano composites carried noble metal fuel-cell catalyst
CN108435177A (en) A kind of porous carbon coating nano metal cobalt composite catalyst and its preparation and application
Ramani et al. Chemically designed CeO 2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid
CN105327700A (en) Method for preparing electrocatalysts through liquid-phase reduction of hydrogen at room temperature
CN112786906A (en) Porous Fe-Co-N doped porous carbon catalyst and preparation method and application thereof
CN109569446A (en) A kind of nickel-molybdenum alloy aeroge and preparation method thereof
CN108598509A (en) A kind of preparation method of Pt-Pd nuclear shell structure nanos catalyst
CN106180751B (en) A kind of nanometer platinum-nickel alloy and its preparation and application
CN102139219B (en) Method for preparing carrier loaded Pt-Cu Nanocube catalyst
CN109621961A (en) A method of high dispersion of metal catalyst is prepared in situ in growth two-dimensional nano piece
CN105251483A (en) Method for preparing Ag-modified TiO2 nanoflower photocatalyst controllably
CN103331174A (en) Palladium-loaded cadmium sulfide visible-light-induced photocatalyst and preparation method thereof
CN111326753B (en) Supported nano electro-catalyst and preparation method and application thereof
CN105435780A (en) Nano platinum-ruthenium alloy supporting nitrogen-doped graphene catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160229

Address after: 211135, 300, Zhi Hui Road, Qilin science and Technology Innovation Park, Nanjing, Jiangsu, Nanjing

Patentee after: Nanjing Dong Yan Hydrogen Energy Technology Co Ltd

Address before: 210093, Tang Zhongying building A103, 15 West Jin Street, Beijing West Road, Jiangsu, Nanjing

Patentee before: Nanjing University