CN102113519B - Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material - Google Patents

Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material Download PDF

Info

Publication number
CN102113519B
CN102113519B CN 200910265083 CN200910265083A CN102113519B CN 102113519 B CN102113519 B CN 102113519B CN 200910265083 CN200910265083 CN 200910265083 CN 200910265083 A CN200910265083 A CN 200910265083A CN 102113519 B CN102113519 B CN 102113519B
Authority
CN
China
Prior art keywords
doped semiconductor
layer
preparation
multifunctional composite
pillared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910265083
Other languages
Chinese (zh)
Other versions
CN102113519A (en
Inventor
董发勤
马丽阳
冯启明
王维清
代群威
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN 200910265083 priority Critical patent/CN102113519B/en
Publication of CN102113519A publication Critical patent/CN102113519A/en
Application granted granted Critical
Publication of CN102113519B publication Critical patent/CN102113519B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material. The method comprises the steps of: loading metal ions by taking a two-dimensional lamellar mineral as a carrier; pillaring the lamellar mineral by taking rare-earth ion doped semiconductor type polymerized hydroxyl metal cations as a pillaring agent and using a doped pillaring layer bearing method to prepare the composite material, and preparing air-purification coatings, broad-spectrum antibacterial textiles, antibacterial plastic master batches and antibacterial and mildewproof rubber products by using the composite material. In the invention, by means of the synchronous compounding of metal-ion-loaded lamellar mineral and the semiconductor pillaring lamellar mineral, the synergistic effect of different functions and different mechanisms is realized, and a high-efficiency material for antibiosis, bacteriostasis, air purification and photocatalytic degradation is obtained.

Description

Preparation and the using method of pillared layer year/doped semiconductor type multifunctional composite
(1) technical field the present invention relates to preparation and the using method of pillared layer year/doped semiconductor type multifunctional composite, belongs to catalysis material and field of environment protection.Be specifically related to two-dimensional layer mineral (one or more in rectorite, holder shellfish mullite, molybdenite, the tobermorite) carrying metal ion (Zn 2+, Fe 3+In one or more); Rare earth ion (Tb 3+Or Dy 3+) and Th 3+Doped semiconductor (In 2O 3Or SnO 2) the pillared layer mineral of polymerization hydroxy metal cation, two kinds of layer mineral mechanism of modifications are compound synchronously, prepare pillared layer and carry/doped semiconductor type multifunctional composite and using method thereof.
(2) background technology is along with the reinforcement of environmental consciousness, and the processing of pollutants such as bacterium, organic sewage research has caused the great attention of researcher.Present stage, mineral material and semi-conducting material have incomparable advantage in absorption and aspects such as catalysis pollutant, antibacterial bacteriostatic, and its correlative study has become one of hot fields.
The layer mineral material has good physical and chemical performance, makes it have great potential in the environmental protection field.Handling fields such as organic suspension thing, heavy metal, bacterium, virus, the adsorption capacity of layer mineral material surpasses activated carbon.For further improving the adsorptivity of layer mineral material, often utilize different column-supporting agents and synthetic method to obtain novel composite material, to satisfy the needs of different field.By to the layer mineral microstructure, size and distribution, heat endurance, chemism, electric conductivity, thermal conductivity and optical property etc. as the hole are studied, and can predict the new capability of catalyzer and catalytic carrier, environment-friendly materials, ion-exchanger, photoelectric material, energy storage material and nanocomposite.
Semi-conducting material has advantages such as photocatalytic activity height, good stability, has become generally acknowledged optimal catalyst, and it is widely used in purifies waste water, and decomposes in the fields such as various hazardous contaminants.But semi-conducting material has certain limitation, and is wideer as energy gap, and its absorbing wavelength is shorter, and energy utilization ratio is lower.For improving its catalytic capability, modification method commonly used is carried out modification to it.In numerous modification methods, rare earth ion is owing to have special electron structure, and its doping can make semi-conductive energy gap narrow down, and it can expand semi-conductive absorption region, and feasibility is high.
What research application at present was more is the commutative characteristic of utilizing in the layer mineral structure of cation, and different metal ion exchanged is prepared multifunctional material to mineral structure, and the domestic patent of this respect has 122.Chinese patent CN1978517 discloses a kind of preparation method of argent intercalation modifying molybdenum bisuphide, and this method is to utilize Prepared by Sol Gel Method intercalation molybdenum bisuphide under the polymer protection condition; Chinese patent CN101070147 discloses a kind of preparation method of Zirconium sulfuride intercalation assembling functional material, be carrier with the bedded zirconium phosphate, by intercalation molecule, interlayer structure, assembling mode design and regulation and control, prepare a kind of have an absorption meet coordination function material phosphoric acid zirconium intercalation assembling functional material.Although doping metals can reduce semi-conductive light induced electron one hole-recombination rate, effect is also not obvious.
The method of another kind of modified layered mineral is with TiO 2, ZrO 2, Al 2O 3Be column-supporting agent etc. semi-conductive polymerization hydroxy metal cation, pillared layered mineral.Patent through inquiring about in this respect on the net has 41 (domestic).Chinese patent CN1341484 discloses a kind of preparation method of Nanotitanium dioxide column supported bentonite, this method be a kind of be that titanium dioxide below the 1nm is pillared thing with the particle diameter, be embedded in the novel substance of passage between bentonite bed with this pillared thing; Chinese patent CN101069846 discloses the preparation method that a kind of high activity carries silver/titanium dioxide pillared montmorillonite composite Nano photochemical catalyst, this method is to be carrier with the imvite, titanium dioxide and silver are active component, and wherein the load capacity of element ti, Ag changes between 5-10% (wt).But pillared semi-conductive light induced electron is less to what separate.Be carrier and this patent carries metal cation with the two-dimensional layer mineral, polymerization hydroxy metal cation with rare earth ion doped semi-conductor type is column-supporting agent, carry method by the pillared layer of mixing, direct synthetic composite with functions such as antibiotic, air cleaning, photocatalytic degradations in solution.
In sum, based on rare earth ion and Th 3+The multifunctional composite preparation of the layer mineral gained of pillared year metal cation of doped semiconductor and the patent of application facet yet there are no report.The invention provides a kind of preparation and using method of pillared layer year/doped semiconductor type composite multifunction material.The prepared product of this using method has multiple good performance, and preparation technology is simple for this method, need not special complex device, and raw material is easy to get, and production cost is low, is applicable to production in enormous quantities, has a extensive future.
(3) summary of the invention
1, goal of the invention the purpose of this invention is to provide a kind of preparation and using method of pillared layer year/doped semiconductor type multifunctional composite.The technical problem to be solved in the present invention is to avoid the prepared multifunctional material of above-mentioned pillared method existing problem in the prior art, provides a kind of raw materials consumption few, and technology is simple, the preparation technology that production cost is low.
2, summary of the invention
Technical scheme of the present invention is:
A kind of pillared layer carries/doped semiconductor type multifunctional composite, it is characterized in that, and be carrier with the two-dimensional layer mineral, be written into metal ion; And be column-supporting agent with the polymerization hydroxy metal cation of rare earth ion doped semi-conductor type; Carry method by the pillared layer of mixing, layer mineral is carried out pillared, prepare have antibiotic, air cleaning, the composite of function such as photocatalytic degradation; In turn include the following steps:
A, preparation layer mineral suspension: the configuration metal ions Zn that layer mineral is joined 1.0mol/L 2+, Fe 3+In one or more salting liquid in, fully mix the static 6h in back, namely get the layer mineral suspension of carrying metal ion;
B, preparation mixed solution: the InCl that takes by weighing the 4mmol/g amount of rectorite 34H 2O or SnCl 45H 2O is dissolved in the deionized water, slow dropping ammonia and constantly stirring, will precipitate centrifuge washing after, the rare earth ion Tb of adding nitric acid dissolve 3+Or Dy 3+, Th 3+Become mixed solution with polyethylene glycol;
C, preparation gel: mix with 1: 1 the volume ratio of layer mineral suspension of carrying metal ion by above-mentioned mixed solution again, continue dispersed with stirring and evenly become colloidal sol, reflux into gel at 80 ℃ of-90 ℃ of constant temperature;
D, the pillared layer of preparation carry/doped semiconductor type multifunctional composite: above-mentioned gel is dried down in 100 ℃-120 ℃, behind 500 ℃ of-600 ℃ of calcining at constant temperature 3h, grind again, namely prepare antibiotic property: antibiotic rate 〉=99%, antibiotic persistence: antibiotic rate 〉=95%, purifying formaldehyde rate 〉=80%, toluene purifying rate 〉=50%, photocatalytic degradation phenol solution rate 〉=99%, air is through exciting, negative ion concentration in the air 〉=4000/cm 3Pillared layer carry/doped semiconductor type multifunctional composite.
The using method of pillared layer year/doped semiconductor type multifunctional composite:
(1) preparation method of the pillared layer year/multi-functional composite coating of doped semiconductor type is, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0750mm, carry/doped semiconductor multifunctional composite powder 1-10% benzene emulsion 25-35%, other fillers 20-40% according to pillared layer, coalescents 1-5%, dispersant 0.1-2%, wetting agent 0.1-1%, defoamer 0.1-0.8%, thickener 0.1-2%, an amount of component of water cooperates; Pillared layer is carried/doped semiconductor multifunctional composite powder adds in coalescents through dispersed with stirring, dispersant, wetting agent, the defoamer, disperseed 5-30 minute, after ammoniacal liquor transfers to PH=8-9, add benzene emulsion, emulsify at a high speed 5-30 minute, static back added thickener and stirs, and namely prepares antibiotic rate 〉=99%, antibiotic persistence: antibiotic rate 〉=95%, purifying formaldehyde rate 〉=80%, toluene purifying rate 〉=50%, air is through exciting, negative ion concentration in the air 〉=4000/cm 3Air purifying paint.
(2) preparation method of the pillared layer year/multi-functional compound fabric of doped semiconductor type is, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0630mm, according to mass ratio be 0.3~1.0% pillared layer carry/doped semiconductor multifunctional composite powder joins in the water that contains mass ratio 0.01%-0.5% adhesive, after the mechanical agitation, to immerse wherein without cotton textiles or the blended textile of soft treatment, adopt open width padding machine one to soak a pressure, it is 80-100% that surplus rate is pressed in control, send into that 120-180 finalizes the design second in 120 ℃ of baking ovens, namely get antibiotic property: antibiotic rate 〉=98%, antibiotic persistence: the broad-spectrum antiseptic textile of antibiotic rate 〉=94%.
(3) preparation method of the pillared layer year/multi-functional composite plastic of doped semiconductor type is, it is characterized in that, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0750mm, again with polyolefin plastics, pillared layer carries/doped semiconductor multifunctional composite powder, inorganic filler and dispersant are in 1: 0.05-0.5: 0.05-0.5: the ratio of 0.005-0.05 is after the high speed kneader mixes, under 180-220 ℃ through double-screw melt blending, cooling back pelletizing, make nontoxic mother particles of antibacterial plastics, the antibiotic property of its plastic products: antibiotic rate 〉=98%, antibiotic persistence: antibiotic rate 〉=94%.
(4) preparation method of pillared layer year/doped semiconductor type antibacterial and mouldproof rubber is; the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0750mm; content according to 0.5~2.5% adds deionized water; be mixed with the mixed liquor that concentration is 10-30%; the rubber blank of the not demoulding is immersed in the mixed liquor; after drying; putting into 100-120 ℃ curing box handled 2-3 minute; again through the demoulding; both made and had antibiotic property: antibiotic rate 〉=98%; antibiotic persistence: antibiotic rate 〉=94%; weightless protective rate P 〉=80%, the antibacterial and mouldproof rubber of surface damage≤2.
3, beneficial effect the present invention compares with prior art, has following advantage and beneficial effect:
(1) carrier that adopts is the layer mineral that rectorite, holder shellfish mullite, molybdenite, tobermorite etc. have good materializations such as efficient adsoption catalysis performance, stable high and low cost.
(2) described doping ion Th 3+For containing energy ion such as low dosage gamma-rays, utilization contains can ion Th 3+The gamma-rays that produces increases the concentration of anion in the air, thereby has the adjusting human physiological functions, eliminates effects such as tired, raising body immunity.
(3) it is directly to carry out metal ion to be written in solution that the pillared layer of the doping that proposes carries method, and the technology that semiconductor is pillared has been saved a large amount of costs and time than prior art.
(4) realized configuration metal ions Zn 2+, Fe 3+Be written into the compound synchronously of layer mineral and the pillared layer mineral of semiconductor, realized the synergy of the different mechanism of difference in functionality, thereby obtained antibacterial bacteriostatic, air cleaning, photocatalytic degradation material efficiently.
(4) the invention will be further described below in conjunction with concrete embodiment for embodiment.
Following table is the part embodiment of pillared layer year/doped semiconductor type multifunctional composite of preparation of the present invention:
Embodiment Layer mineral Metal ion The semiconductor predecessor The doping ion The constant temperature reflux temperature Bake out temperature Calcining heat
Embodiment 1 Rectorite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 2 Holder shellfish mullite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 3 Molybdenite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 4 Tobermorite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 5 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 6 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 7 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 8 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 9 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 10 6g molybdenite+6g tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 11 Rectorite, holder shellfish mullite and molybdenite 4g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 12 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 13 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 14 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 15 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 16 Rectorite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 17 Holder shellfish mullite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 18 Molybdenite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 19 Tobermorite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 20 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 21 Each 6g of rectorite and molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 22 Each 6g of rectorite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 23 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 24 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 25 Each 6g of molybdenite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 26 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 27 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 28 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 29 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 30 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 31 Rectorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 32 Holder shellfish mullite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 33 Molybdenite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 34 Tobermorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 35 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 36 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 37 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 38 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 39 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 40 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 41 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 42 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 43 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 44 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 45 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 46 Rectorite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 47 Holder shellfish mullite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 48 Molybdenite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 49 Tobermorite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 50 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+ 14g SnCl 4·5H2 O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 51 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 52 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 53 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 54 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 55 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 56 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 57 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 58 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 59 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 60 Rectorite, holder shellfish mullite, molybdenite and each 3 g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 61 Rectorite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 62 Holder shellfish mullite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 63 Molybdenite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 64 Tobermorite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 65 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 66 Each 6g of rectorite and molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 67 Each 6g of rectorite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 68 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 69 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 70 Each 6g of molybdenite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 71 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 72 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 73 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 74 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 75 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 76 Rectorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 77 Holder shellfish mullite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 78 Molybdenite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 79 Tobermorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 80 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 81 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 82 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 83 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 84 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 85 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 86 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 87 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 88 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 89 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 90 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gTb 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 91 Rectorite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 92 Holder shellfish mullite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 93 Molybdenite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 94 Tobermorite 12g 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 95 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 96 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 97 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 98 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 99 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 100 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 101 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 102 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 103 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 104 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 105 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 106 Rectorite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 107 Holder shellfish mullite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 108 Molybdenite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 109 Tobermorite 12g 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 110 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 111 Each 6g of rectorite and molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 112 Each 6g of rectorite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 113 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 114 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 115 Each 6g of molybdenite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 116 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 117 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 118 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 119 4g holder shellfish mullite+4g molybdenite+each 4g of 4g tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 120 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 121 Rectorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 122 Holder shellfish mullite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 123 Molybdenite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 124 Tobermorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 125 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 126 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 127 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 128 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 129 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 130 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 131 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 132 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 133 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 134 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 135 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g InCl 3·4H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 136 Rectorite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 137 Holder shellfish mullite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 138 Molybdenite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 139 Tobermorite 12g 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 140 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 141 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 142 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 143 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 144 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 145 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 146 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 147 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 148 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 149 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 150 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 151 Rectorite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 152 Holder shellfish mullite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 153 Molybdenite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 154 Tobermorite 12g 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 155 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 156 Each 6g of rectorite and molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 157 Each 6g of rectorite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 158 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 159 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 160 Each 6g of molybdenite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 161 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 162 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 163 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 164 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 165 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 166 Rectorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 167 Holder shellfish mullite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 168 Molybdenite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 169 Tobermorite 12g 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 170 Rectorite and each 6g of Tuo Bei mullite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 171 Each 6g of rectorite and molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 172 Each 6g of rectorite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
Embodiment 173 Holder shellfish mullite and each 6g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 600 ℃
Embodiment 174 Holder shellfish mullite and each 6g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 600 ℃
Embodiment 175 Each 6g of molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 600 ℃
Embodiment 176 Rectorite, holder shellfish mullite and each 4g of molybdenite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 600 ℃
Embodiment 177 Rectorite, holder shellfish mullite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 100℃ 500 ℃
Embodiment 178 Each 4g of rectorite, molybdenite and tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 100℃ 500 ℃
Embodiment 179 Holder shellfish mullite, molybdenite and each 4g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 80℃ 120℃ 500 ℃
Embodiment 180 Rectorite, holder shellfish mullite, molybdenite and each 3g of tobermorite 1.0mol/L Zn 2+And Fe 3+ 14g SnCl 4·5H 2O 0.14gDy 3+、 0.07gTh 3+ 90℃ 120℃ 500 ℃
The layer mineral of the various embodiments described above is joined in the metal ion solution, static after fully mixing; Get the semiconductor predecessor again and be dissolved in the deionized water, slow dropping ammonia and constantly stirring, will precipitate centrifuge washing after, the doping ion of adding nitric acid dissolve becomes mixed solution with polyethylene glycol; Press solution again and mix with 1: 1 the volume ratio of layer mineral suspension of carrying metal ion, continue dispersed with stirring and evenly become colloidal sol, under constant temperature reflux temperature condition, become gel; Again with sample under the bake out temperature condition oven dry after, in grinding after the calcining at constant temperature under the calcining heat condition, namely prepare antibiotic rate 99.98%-99.99%, purifying formaldehyde rate 85.6%-90.2%, toluene purifying rate 65.7%-84.3%, photocatalytic degradation phenol solution rate 99.95%-99.99%, the pillared layer that excites air to make negative ion concentration in the air reach 4000-5500/cm3 carries/doped semiconductor type multifunctional composite.
Embodiment 181. utilizes pillared layer year/doped semiconductor type multifunctional composite to prepare functional paint:
The pillared layer of embodiment 1--180 preparation is carried/doped semiconductor type multifunctional composite grinding is to-0.0750mm, carry/doped semiconductor multifunctional composite powder 5% according to pillared layer, benzene emulsion 30%, other fillers 30%, coalescents 3%, dispersant 1%, wetting agent 0.5%, defoamer 0.4%, thickener 1%, an amount of component of water cooperates.Pillared layer is carried/doped semiconductor multifunctional composite powder adds in coalescents through dispersed with stirring, dispersant, wetting agent, the defoamer, disperseed 20 minutes, after ammoniacal liquor transfers to PH=8.5, add benzene emulsion, emulsify at a high speed 20 minutes, static back adds thickener and stirs, namely prepare anti-microbial property 99.9%, antibiotic persistence 96.5%, toluene purifying rate 93.5%, purifying formaldehyde rate 94.6%, photocatalytic degradation phenol solution rate 99.9%, air is through exciting the air purifying paint of 55000/cm3 of negative ion concentration in the air.
Embodiment 182. utilizes pillared layer year/doped semiconductor type multifunctional composite to prepare function fabric:
The pillared layer of embodiment 1--180 preparation is carried/doped semiconductor type multifunctional composite grinding is to-0.0630mm, according to mass ratio be 0.8% pillared layer carry/doped semiconductor multifunctional composite powder joins in the water that contains mass ratio 0.2% adhesive, after the mechanical agitation, to immerse wherein without cotton textiles or the blended textile of soft treatment, adopt open width padding machine one to soak a pressure, it is 90% that surplus rate is pressed in control, send into typing in 150 seconds in 120 ℃ of baking ovens, both got the broad-spectrum antiseptic textile of anti-microbial property 99.9%, antibiotic persistence 94.4%.
Embodiment 183. utilizes pillared layer year/doped semiconductor type multifunctional composite to prepare functional plastics:
The pillared layer of embodiment 1-180 preparation is carried/doped semiconductor type multifunctional composite grinding is to-0.0750mm, again polyolefin plastics, pillared layer are carried/doped semiconductor multifunctional composite powder, inorganic filler and dispersant be in 1: 0.2: 0.2: 0.2 ratio is after the mixing of high speed kneader, in pelletizing after double-screw melt blending, cooling under 200 ℃, make nontoxic mother particles of antibacterial plastics, the anti-microbial property 99.9% of its plastic products, antibiotic persistence 96.5%.
Embodiment 184. utilizes pillared layer year/doped semiconductor type multifunctional composite to prepare functional rubber:
The pillared layer of embodiment 1-180 preparation is carried/doped semiconductor type multifunctional composite grinding is to-0.0750mm; content according to 1.5% adds deionized water; be mixed with concentration and be 20% mixed liquor; the rubber blank of the not demoulding is immersed in the mixed liquor; after drying, put into 110 ℃ curing box and handled 3 minutes, both made through the demoulding again and have anti-microbial property 99.9%; weightless protective rate P=85%, the antibacterial and mouldproof rubber that surface damage=3 are seen.
Can prepare the product that reaches the object of the invention by the various embodiments described above and according to aforementioned production method.Embodiments of the invention all can be implemented, and the invention is not restricted to these embodiment.

Claims (6)

1. the preparation method of a pillared layer year/doped semiconductor type multifunctional composite is characterized in that, is carrier with the two-dimensional layer mineral, is written into metal ion; And be column-supporting agent with the polymerization hydroxy metal cation of rare earth ion doped semi-conductor type; Carry method by the pillared layer of mixing, layer mineral is carried out pillared, that preparation is provided is antibiotic, the composite of air cleaning, photocatalytic degradation function; In turn include the following steps:
A, preparation layer mineral suspension: the configuration metal ions Zn that a certain amount of layer mineral is added 1.0mol/L 2+, Fe 3+In one or more salting liquid in, fully mix the static 6h in back, namely get the layer mineral suspension of carrying metal ion;
B, preparation mixed solution: take by weighing a certain amount of InCl 34H 2O or SnCl 45H 2O is dissolved in the deionized water, slow dropping ammonia and constantly stirring, will precipitate centrifuge washing after, rare earth ion Tb3+ or Dy3+, the Th3+ of adding nitric acid dissolve become mixed solution with polyethylene glycol;
C, preparation gel: mix with 1: 1 the volume ratio of layer mineral suspension of carrying metal ion by above-mentioned mixed solution again, continue dispersed with stirring and evenly become colloidal sol, reflux into gel at 80 ℃ of-90 ℃ of constant temperature;
D, the pillared layer of preparation carry/doped semiconductor type multifunctional composite: above-mentioned gel in 100 ℃-120 ℃ oven dry down, is ground behind 500 ℃ of-600 ℃ of calcining at constant temperature 3h again, namely prepare pillared layer and carry/doped semiconductor type multifunctional composite.
2. pillared layer according to claim 1 carries/preparation method of doped semiconductor type multifunctional composite, it is characterized in that, described layer mineral is that in rectorite, holder shellfish mullite, molybdenite, the tobermorite one or more mix, its purity all is higher than 80%, and granularity is less than 0.074mm; When using, several mixing press any proportioning between them.
3. the preparation method of pillared layer year/doped semiconductor type multifunctional composite according to claim 1 is characterized in that the doping ion is rare earth ion and Th3+ in the described ion doping type semiconductor; Its middle rare earth is Tb3+ or Dy3+, and Th3+ can ion for containing.
4. utilize pillared layer year/doped semiconductor type multifunctional composite of the described method preparation of claim 1 to prepare the method for antibacterial fabric, it is characterized in that, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0630mm, according to mass ratio be 0.3~1.0% pillared layer carry/doped semiconductor multifunctional composite powder joins in the water that contains mass ratio 0.01%-0.5% adhesive, after the mechanical agitation, to immerse wherein without cotton textiles or the blended textile of soft treatment, adopt open width padding machine one to soak a pressure, it is 80-100% that surplus rate is pressed in control, send into that 120-180 finalizes the design second in 120 ℃ of baking ovens, namely get antibacterial fabric.
5. utilize pillared layer year/doped semiconductor type multifunctional composite of the described method preparation of claim 1 to prepare the method for antibiotic plastic, it is characterized in that, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0750mm, again with polyolefin plastics, pillared layer carries/doped semiconductor multifunctional composite powder, inorganic filler and dispersant are in 1: 0.05-0.5: 0.05-0.5: the ratio of 0.005-0.05 is after the high speed kneader mixes, under 180-220 ℃ through double-screw melt blending, cooling back pelletizing makes nontoxic mother particles of antibacterial plastics.
6. utilize pillared layer year/doped semiconductor type multifunctional composite of the described method preparation of claim 1 to prepare the method for antibacterial and mouldproof rubber, it is characterized in that, the pillared layer of preparation is carried/doped semiconductor multifunctional composite grinding is to-0.0750mm, content according to 0.5~2.5% adds deionized water, be mixed with the mixed liquor that concentration is 10-30%, the rubber blank of the not demoulding is immersed in the mixed liquor, after drying, put into 100-120 ℃ curing box and handled 2-3 minute, namely make the antibacterial and mouldproof rubber through the demoulding again.
CN 200910265083 2009-12-31 2009-12-31 Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material Active CN102113519B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910265083 CN102113519B (en) 2009-12-31 2009-12-31 Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910265083 CN102113519B (en) 2009-12-31 2009-12-31 Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material

Publications (2)

Publication Number Publication Date
CN102113519A CN102113519A (en) 2011-07-06
CN102113519B true CN102113519B (en) 2013-07-17

Family

ID=44212541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910265083 Active CN102113519B (en) 2009-12-31 2009-12-31 Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material

Country Status (1)

Country Link
CN (1) CN102113519B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103349977B (en) * 2013-07-19 2014-10-29 西安建筑科技大学 Preparation and application of rectorite loading indium oxide photocatalyst
CN110451770A (en) * 2019-09-02 2019-11-15 河南工程学院 The method for preparing medicament based on iron the pillared rectorite load calper calcium peroxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341484A (en) * 2001-08-27 2002-03-27 陈英旭 Nanotitanium dioxide column supported bentonite and its preparation method
CN1772375A (en) * 2005-10-27 2006-05-17 南京大学 Nanometer doped zinc oxide and its prepn and application in photocatalysis to degrade organic matter and kill bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341484A (en) * 2001-08-27 2002-03-27 陈英旭 Nanotitanium dioxide column supported bentonite and its preparation method
CN1772375A (en) * 2005-10-27 2006-05-17 南京大学 Nanometer doped zinc oxide and its prepn and application in photocatalysis to degrade organic matter and kill bacteria

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
袁昌来,等.(Ag Nd) / TiO2 纳米材料光催化活性及其表面能带结构分析.《功能材料》.2007
袁昌来,等.(Ag,Nd) / TiO2 纳米材料光催化活性及其表面能带结构分析.《功能材料》.2007,第38卷(第2期),第316-319页. *

Also Published As

Publication number Publication date
CN102113519A (en) 2011-07-06

Similar Documents

Publication Publication Date Title
CN101927177B (en) Preparation method of nitrogen-doped attapulgite load nano TiO2 visible light photocatalyst
CN103752268B (en) The filter core preparation method and application of heavy metal and arsenic, fluorine in absorption drinking water
CN107951902B (en) Graphene antibacterial composition and sanitary material using same
CN103801284B (en) A kind of preparation method of pucherite-graphene composite photocatalyst
CN101322497A (en) Active stephanoporate mineral TiO2-doped composite catalytic antimicrobial material preparation and using method
CN102614940A (en) Preparation method of visible light response water-based photocatalysis spray coating slurry
CN104772158A (en) Preparation method of WO3/C3N4 mixed photocatalyst
CN105728010A (en) Preparation method of antibacterial silver molybdate and graphite-phase carbon nitride composite visible-light-induced photocatalyst
CN102580739A (en) Graphene/silver molybdenum oxide compound visible-light catalyst and preparation method thereof
CN107570191B (en) Preparation method and application of visible light catalyst
CN110075923A (en) A kind of g-C3N4The bionical construction method and application thereof of/BiOI-pDA@PVDF photocatalysis membrana
CN106633364A (en) Antibacterial polypropylene and a preparing method thereof
CN109701515A (en) Air cleaning nano zine oxide/graphene optic catalytic composite material and preparation method thereof
CN106436322A (en) Method for preparing antibiotic finishing agent for home textile fabric
CN102113519B (en) Method for preparing and using pillaring layer bearing/doped semiconductor type multifunctional composite material
CN106179473B (en) Nano zero valence iron/carbon nanotube/zeolite hybridization mesoporous molecular sieve composite material preparation method
CN102773105A (en) Supported bismuth tungstate photocatalyst and preparation method thereof
CN100432157C (en) Siliver-carried micron kaolin and its prepn. method
CN102553623B (en) Method for preparing porous tourmaline slab with photocatalytic performance
CN102319446A (en) Material for air purification
CN105964248A (en) Preparation method of coal ash microsphere loaded modified nanometer titanium dioxide composite photocatalyst
Wang et al. Preparation of non-polluting Tb-doped mesoporous carbon nitride photocatalyst and study on the efficacy and mechanism of degradation of antibiotics in water
Wang et al. Photocatalytic degradation of antibiotics in water by pollution-free photocatalytic films with a three-dimensional layered structure and the reaction mechanism study
CN106268844A (en) A kind of preparation method of photocatalyst bismuth ferrite
CN102517887A (en) Method for preparing silicon protective in-situ deposition photocatalytic functional textile

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant