CN102102897A - 分离式空调设备的温度控制方法 - Google Patents

分离式空调设备的温度控制方法 Download PDF

Info

Publication number
CN102102897A
CN102102897A CN200910259609XA CN200910259609A CN102102897A CN 102102897 A CN102102897 A CN 102102897A CN 200910259609X A CN200910259609X A CN 200910259609XA CN 200910259609 A CN200910259609 A CN 200910259609A CN 102102897 A CN102102897 A CN 102102897A
Authority
CN
China
Prior art keywords
temperature
controller
air conditioner
indoor
conditioner equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910259609XA
Other languages
English (en)
Other versions
CN102102897B (zh
Inventor
吴敏德
杨尧斌
黄亮桥
张钰炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN 200910259609 priority Critical patent/CN102102897B/zh
Publication of CN102102897A publication Critical patent/CN102102897A/zh
Application granted granted Critical
Publication of CN102102897B publication Critical patent/CN102102897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

一种分离式空调设备的温度控制方法,该方法先建立空调***模型及各蒸发器吸收热量模型,且据以得出***状态方程式,并结合最佳算法及Schur分解得出线性矩阵不等式,且经运算后得出控制器的最佳增益,接着输入各室内温度及其设定值、各蒸发器温度及其过热度至控制器,以供控制器依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,并据以控制该分离式空调设备的压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,同时将控制器的输出端连接至各蒸发器上,以反馈各蒸发器温度、各蒸发器过热度及室内温度至该控制器,供控制器进行该室内温度的即时控制。

Description

分离式空调设备的温度控制方法
技术领域
本发明有关一种分离式空调设备的温度控制方法,更详而言,有关一种应用于至少具有控制器、与控制器连接的至少一压缩机、膨胀阀、室外热交换器及室内热交换器的分离式空调设备中的分离式空调设备的温度控制方法。
背景技术
变频多联式空调(VRF,Variable Refrigerant Flow),如一对多空调机,是由一台或多台室外机与多台室内机组合而成,因为其采用分流管并结合变频控制和电子膨胀阀来达成冷媒流量的分配,也即,具有依需求开启的室内机的机台数量,决定压缩机转速来提供空调机需求的冷媒流量的优点,不但达成小体积具大冷房容量变化范围的压缩机特性(可以实现区域控制),又不会有用电过浪费的情形(提高节能效果),因此,变频多联式空调已被广泛的应用于较大坪数住宅或中小型商用建筑的空调***中。
随着变频压缩机的出现,分离式空调机的温度控制已不像早期单机式的空调机那么单纯,由于分离式空调机为单一或多输入对多输出的方式,因此,对于一对多空调机(一台室外机,多台室内机)或多对多空调机(多台室外机,多台室内机)而言,则需要控制更多的参数方可进行分离式空调机的温度控制,在公知技术中,分离式空调机的控制器是以平行架构概念控制压缩机转速与膨胀阀开度,以进行分离式空调机的温度控制,公知的分离式空调机的温度控制方式(如美国US6854285B2及US2009/0019872A1专利案),请参阅图1所示,该方式是先由不同室内温度差控制压缩机转速,再以经验法则定出电子膨胀阀开度,并建立实验数据库以表格方式储存数据,以供后续温度控制时可通过查表方式来进行,然,在一对一时,通过经验法则建立表格并查表尚无多大问题,但在一对多时,由于数据过多,造成表格内容繁复,因此,执行查表时的困难度即增加许多且耗费工时,此外,室内温度的稳态误差也较难控制。
因此,如何提供一种可借助简易方式即可进行分离式空调机的温度控制的温度控制装置及方法,以减少室内温度的稳态误差,实为业界亟待解决的问题。
发明内容
鉴于上述公知技术的缺点,本发明提供一种分离式空调设备的温度控制方法,以借助简易方式即可进行分离式空调机的温度控制,并减少室内温度的稳态误差。
本发明又提供一种提升室内温度的温控效率的分离式空调设备的温度控制方法。
本发明又提供一种分离式空调设备的温度控制方法,以于运转中,依照最佳化自我调节压缩机转速和膨胀阀开度,进而可节省能源。
本发明再提供一种分离式空调设备的温度控制方法,以解决繁复的时变问题。
本发明所提供的分离式空调设备的温度控制方法,应用于至少具有控制器、与该控制器连接的至少一压缩机、膨胀阀、室外热交换器及室内热交换器的分离式空调设备中,其中,该室外热交换器包括冷凝器及室外风扇,该室内热交换器包括蒸发器及室内风扇,该分离式空调设备的温度控制方法包括以下步骤:建立空调***模型及各蒸发器吸收热量模型;依据该空调***模型及各该蒸发器吸收热量模型得出***状态方程式,并据以结合最佳算法及Schur分解得出线性矩阵不等式(LMI),且经运算后得出该控制器的最佳增益;以及输入各室内温度、各室内温度设定值、各蒸发器温度、各蒸发器过热度至该控制器,以供该控制器依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,并据以控制该压缩机转速、该室外风扇转速、各该膨胀阀开度及各该室内风扇转速,同时将该控制器的输出端连接至各该蒸发器上,以反馈各该蒸发器温度、各该蒸发器过热度及该室内温度至该控制器,供该控制器进行该室内温度的即时控制。
于本发明的较佳实施例中,该空调***模型及各该蒸发器吸收热量模型通过理论推导或***识别予以建立,其中,该空调***模型通过该膨胀阀开度、该压缩机转速、该蒸发器温度及该蒸发器过热度予以建立,各该蒸发器吸收热量模型通过该蒸发器的外径与管长、热传导系数及室内空间予以建立;该空调***模型为冷气或暖气***模型;该控制器又配合积分器进行该压缩机转速、该室外风扇转速、各该膨胀阀开度及各该室内风扇转速的运算;该控制器运算过程中,若有积分饱和时,又使用反积分终结器;该分离式空调设备又具有四方阀、储液器以及液气分离器;该最佳化算法为以Linear Quadratic Regulator(简称LQR)或Linear Quadratic Gaussian(简称LQG)为基础的H2或H∞的控制算法;该线性矩阵不等式也可为H2、H或混合型H2/H
综上所述,本发明所揭示的分离式空调设备的温度控制方法及方法,主要先建立空调***模型及各蒸发器吸收热量模型,且据以得出***状态方程式,并结合最佳算法及Schur分解得出线性矩阵不等式(LMI),且经运算后得出该控制器的最佳增益,接着输入各室内温度及其设定值、各蒸发器温度及其过热度至该控制器,以供该控制器依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,并据以控制该分离式空调设备的压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,同时将该控制器的输出端连接至各蒸发器,以反馈各该蒸发器温度、各该蒸发器过热度及该室内温度至该控制器,供该控制器进行该室内温度的即时控制。相较于公知技术,本发明的分离式空调设备的温度控制方法将控制器的控制***模块化,使其控制流程简易,尤其是应用于多组压缩机或多组蒸发器匹配上,可减少整个分离式空调***的复杂度,进而以简易方式即可达成在最小稳态误差状况下进行温度控制。此外,本发明将过热度与室内温度分开处理,可提升室内温度的温控效率,再者,通过将该控制器的输出端连接至各蒸发器,以反馈各个数据资料,可以在分离式空调***运转中,依照最佳化自我调节压缩机转速和膨胀阀开度达成节省能源的效果,同时也可解决繁复的时变问题。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1为传统分离式空调设备的温度控制方法示意图;
图2为本发明的分离式空调设备的温度控制方法的流程示意图;
图3为本发明的分离式空调设备的温度控制方法所应用的分离式空调设备架构示意图;
图4为本发明的分离式空调设备的温度控制方法的控制器的最佳增益演算示意图;
图5为本发明的分离式空调设备的温度控制方法的控制器的内部控制流程示意图;
图6为本发明的分离式空调设备的温度控制方法的控制器内部运算流程搭配转移函数的实施示意图;以及
图7为本发明的分离式空调设备的温度控制方法的控制器控制流程示意图。
其中,附图标记
1    分离式空调设备
10   控制器
11   压缩机
12   膨胀阀
13   室外热交换器
130  冷凝器
131  室外风扇
14   室内热交换器
140  蒸发器
141  室内风扇
15   储液器
16   液气分离器
17   积分器
18   四方阀
S10至S12  步骤
具体实施方式
以下为借助特定的具体实例说明本发明的实施方式,本领域的技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。
请参阅图2及图3,为本发明的分离式空调设备的温度控制方法的流程示意图及本发明的分离式空调设备的温度控制方法所应用的分离式空调设备架构示意图。如图3所示,本发明的分离式空调设备的温度控制方法应用于一对多分离式空调设备1中,于本实施例中,该分离式空调设备1具有控制器10、与控制器10连接的压缩机11、多个膨胀阀12、室外热交换器13、多个室内热交换器14、四方阀18、储液器15以及液气分离器16,其中,该室外热交换器13包括冷凝器130及室外风扇131,该室内热交换器14包括蒸发器140及室内风扇141,当然,本发明的分离式空调设备的温度控制方法并非仅可应用于本实施例中所述的一对多分离式空调设备1,实际实施时也可应用于多对多分离式空调设备等。如图2所示,本发明的分离式空调设备的温度控制方法首先执行步骤S10。
于步骤S10中,建立空调***模型及各蒸发器吸收热量模型;如图4所示,于本实施例中建立空调***模型及多个蒸发器吸收热量模型1至n,其中,该空调***模型及各蒸发器吸收热量模型通过理论推导或***识别予以建立,例如通过图4中的膨胀阀开度、压缩机转速、蒸发器温度及蒸发器过热度建立空调***模型,通过蒸发器的外径与管长、热传导系数及室内空间建立各蒸发器吸收热量模型,且该空调***模型为冷气***模型,当然,于其它实施例中,该空调***模型也可实施为暖气***模型。接着进至步骤S11。
于步骤S11中,依据该空调***模型及各该蒸发器吸收热量模型得出***状态方程式,并据以结合最佳算法及Schur分解得出线性矩阵不等式(LMI)且经运算后得出该控制器10的最佳增益,如图4所示,于本实施例中,***状态方程式为结合最佳算法及Schur分解得出线性矩阵不等式,其中,该最佳化算法可为以线性二次型调节器(Linear Quadratic Regulator,简称LQR)或线性二次型高斯(Linear Quadratic Gaussian,简称LQG)为基础的H2或H的控制算法,该线性矩阵不等式也可为H2、H或混合型H2/H,其演算范例如下:
本控制***的状态空间表示为
x(k+1)=Ax(k)+B2us(k)+Bηuη(k)+B1ω(k)
z(k)=E1x(k)+E2us(k)
uη(k)=-α[uc(k)-us(k)]
uc(k)=-Kx(k)
其中,uc(k)为控制输入,由压缩机转速、膨胀阀开度、室外风扇转速与室内风扇转速组成;
x(k)为状态向量,由蒸发器温度、过热度与室内温度组成;
ω(k)为干扰输入,由室内热源与温度变化组成;
uη(k)为当积分饱和时,终结积分饱和的输入;
us(k)为***输入,由压缩机转速、膨胀阀开度、室外风扇转速与室内风扇转速组成;
z(k)为***输出,由蒸发器温度、过热度与室内温度组成;
K为反馈增益,是常数矩阵;
α为权重因子,是大于零的常数;
A、B1、B2、Bη、E1与E2是常数矩阵。
于***饱和时,LMI表示式为
- W ( B 2 + &alpha;B &eta; ) T ( B 2 + &alpha;B &eta; ) - Y < 0 , Y > 0
- Y * * * * 0 E 2 T E 2 * * * 0 0 0 * * AY + &alpha;B &eta; Z B 2 + &alpha;B 2 - &alpha; B &eta; - Y * E 1 Y 0 0 0 - I < 0
- y * * * * * 0 E 2 T E 2 * * * * 0 0 0 * * * AY + &alpha;B 2 B 2 + &alpha;B &eta; - &alpha;B &eta; - Y * * 0 0 0 B 1 T - &gamma; 2 I * E 1 Y 0 0 0 0 - I < 0
于***未饱和时,LMI表示式为
- W B 2 T B 2 - Y < 0 , Y > 0
- Y * * * 0 E 2 T E 2 * * AY + B 2 Z B 2 - Y * E 1 + E 2 Z 0 0 - I < 0
- Y * * * * 0 E 2 T E 2 * * * AY - B 2 Z B 2 - Y * * 0 0 B 1 T - &gamma; 2 I * E 1 Y + E 2 Z 0 0 0 - I < 0
其中Z=KY,可得最佳增益K=ZY-1
经由以上线性矩阵不等式解之,可得最佳增益1~n及增益k。接着进至步骤S12。
于步骤S12中,输入各室内温度1至n、各室内温度1至n设定值、各蒸发器温度、各蒸发器过热度至该控制器10,以供该控制器10依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀1至n开度及各室内风扇1至n转速,并据以控制如图3中的该压缩机11转速、该室外风扇131转速、各该膨胀阀12开度及各该室内风扇141转速,如图5所示,于本实施例中,该控制器10又配合积分器17进行该压缩机转速、该室外风扇转速、各该膨胀阀1至n开度及各该室内风扇1至n转速的运算,且该控制器10运算过程中若有积分饱和时,又可使用反积分终结器(未图示),请同时参阅图6,该控制器内部运算流程有无限多种表示法,因此以转移函数来表示,该控制器内部运算流程的转移函数如式(一)所示:
Y ( s ) U ( s ) = G 3 ( s ) &CenterDot; [ G 1 ( s ) + G 2 ( s ) ] ...(一)
此外,于步骤S12中,请同时参阅图7所示,同时将该控制器10的输出端连接至各蒸发器140上,以反馈各蒸发器140温度、各蒸发器140过热度及室内温度1至n至该控制器10,供该控制器10进行该室内温度1至n的即时控制。
综上所述,本发明所揭示的分离式空调设备的温度控制方法,主要先建立空调***模型及各蒸发器吸收热量模型,且据以得出***状态方程式,并结合最佳算法及Schur分解得出线性矩阵不等式(LMI)且经运算后得出该控制器的最佳增益,接着输入各室内温度及其设定值、各蒸发器温度及其过热度至该控制器,以供该控制器依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,并据以控制该分离式空调设备的压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,同时将该控制器的输出端连接至各蒸发器上,以反馈各蒸发器温度、各蒸发器过热度及室内温度至该控制器,供该控制器进行该室内温度的即时控制,相较于公知技术,本发明的分离式空调设备的温度控制方法将控制器的控制***模块化,使其控制流程简易,尤其是应用于多组压缩机或多组蒸发器匹配上,可减少整个分离式空调***的复杂度,进而以简易方式即可达成在最小稳态误差状况下进行温度控制,此外,本发明将过热度与室内温度分开处理,可提升室内温度的温控效率,再者,通过将该控制器的输出端连接至各蒸发器上,以反馈各个数据资料,可以在分离式空调***运转中,依照最佳化自我调节压缩机转速和膨胀阀开度达成节省能源的效果,同时也可解决繁复的时变问题。
上述的实施例仅为例示性说明本发明的特点及其功效,而非用于限制本发明的实质技术内容的范围。任何本领域的技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与变化。因此,本发明的权利保护范围,应如后述的申请专利范围所列。

Claims (10)

1.一种分离式空调设备的温度控制方法,应用于至少具有控制器、与该控制器连接的至少一压缩机、膨胀阀、室外热交换器及室内热交换器的分离式空调设备中,其中,该室外热交换器包括冷凝器及室外风扇,该室内热交换器包括蒸发器及室内风扇,其特征在于,该分离式空调设备的温度控制方法包括以下步骤:
建立空调***模型及各蒸发器吸收热量模型;
依据该空调***模型及各该蒸发器吸收热量模型得出***状态方程式,并据以结合最佳算法及Schur分解得出线性矩阵不等式,且经运算后得出该控制器的最佳增益;以及
输入各室内温度、各室内温度设定值、各蒸发器温度、各蒸发器过热度至该控制器,以供该控制器依据该最佳增益、该空调***模型及各该蒸发器吸收热量模型运算得出压缩机转速、室外风扇转速、各膨胀阀开度及各室内风扇转速,并据以控制该压缩机转速、该室外风扇转速、各该膨胀阀开度及各该室内风扇转速,同时将该控制器的输出端连接至各该蒸发器上,以反馈各该蒸发器温度、各该蒸发器过热度及该室内温度至该控制器,供该控制器进行该室内温度的即时控制。
2.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该空调***模型及各该蒸发器吸收热量模型通过理论推导或***识别予以建立。
3.如权利要求2所述的分离式空调设备的温度控制方法,其特征在于,该空调***模型通过该膨胀阀开度、该压缩机转速、该蒸发器温度及该蒸发器过热度予以建立。
4.如权利要求2所述的分离式空调设备的温度控制方法,其特征在于,各该蒸发器吸收热量模型通过该蒸发器的外径与管长、热传导系数及室内空间予以建立。
5.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该空调***模型为冷气或暖气***模型。
6.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该控制器又配合积分器进行该压缩机转速、该室外风扇转速、各该膨胀阀开度及各该室内风扇转速的运算。
7.如权利要求6所述的分离式空调设备的温度控制方法,其特征在于,该控制器运算过程中,若有积分饱和时,又使用反积分终结器。
8.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该分离式空调设备又具有与该控制器连接的四方阀、储液器以及液气分离器。
9.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该最佳化算法为以线性二次型调节器或线性二次型高斯为基础的H2或H的控制算法。
10.如权利要求1所述的分离式空调设备的温度控制方法,其特征在于,该线性矩阵不等式为H2、H或混合型H2/H
CN 200910259609 2009-12-18 2009-12-18 分离式空调设备的温度控制方法 Active CN102102897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910259609 CN102102897B (zh) 2009-12-18 2009-12-18 分离式空调设备的温度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910259609 CN102102897B (zh) 2009-12-18 2009-12-18 分离式空调设备的温度控制方法

Publications (2)

Publication Number Publication Date
CN102102897A true CN102102897A (zh) 2011-06-22
CN102102897B CN102102897B (zh) 2013-04-10

Family

ID=44155845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910259609 Active CN102102897B (zh) 2009-12-18 2009-12-18 分离式空调设备的温度控制方法

Country Status (1)

Country Link
CN (1) CN102102897B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134135A (zh) * 2011-11-25 2013-06-05 比亚迪股份有限公司 一种家用空调电子膨胀阀的控制方法及控制***
CN103245031A (zh) * 2012-02-06 2013-08-14 珠海格力电器股份有限公司 空调器及其控制方法和装置
WO2015180033A1 (zh) * 2014-05-27 2015-12-03 钟燕清 一种风扇-滤网机组矩阵式定址监测结构
CN105571069A (zh) * 2016-01-04 2016-05-11 广东美的暖通设备有限公司 空调室内风机控制方法及空调
CN106574797A (zh) * 2014-09-01 2017-04-19 三菱电机株式会社 空调***的控制装置以及空调***的控制方法
US9746224B2 (en) 2012-11-21 2017-08-29 Liebert Corporation Expansion valve setpoint control systems and methods
US10174977B2 (en) 2012-11-21 2019-01-08 Vertiv Corporation Apparatus and method for subcooling control based on superheat setpoint control
CN112665254A (zh) * 2020-12-28 2021-04-16 江苏拓米洛环境试验设备有限公司 制冷***多间室电子膨胀阀的控制方法、装置及制冷***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0161217B1 (ko) * 1996-05-06 1999-01-15 구자홍 멀티형 공기조화기의 제어방법
CN100561062C (zh) * 2005-06-28 2009-11-18 乐金电子(天津)电器有限公司 空调温度控制方法
CN101105320A (zh) * 2006-07-13 2008-01-16 海尔集团公司 一拖多空调控制风机运行的方法
CN101191644B (zh) * 2006-11-29 2011-11-16 海尔集团公司 一拖多空调冷媒流量智能分配***及其方法
CN101140096A (zh) * 2007-10-18 2008-03-12 苏州艾隆科技有限公司 中央空调的节电器集中管理的方法和***

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134135A (zh) * 2011-11-25 2013-06-05 比亚迪股份有限公司 一种家用空调电子膨胀阀的控制方法及控制***
CN103134135B (zh) * 2011-11-25 2015-08-26 比亚迪股份有限公司 一种家用空调电子膨胀阀的控制方法及控制***
CN103245031A (zh) * 2012-02-06 2013-08-14 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN103245031B (zh) * 2012-02-06 2015-11-11 珠海格力电器股份有限公司 空调器及其控制方法和装置
US9746224B2 (en) 2012-11-21 2017-08-29 Liebert Corporation Expansion valve setpoint control systems and methods
US10174977B2 (en) 2012-11-21 2019-01-08 Vertiv Corporation Apparatus and method for subcooling control based on superheat setpoint control
WO2015180033A1 (zh) * 2014-05-27 2015-12-03 钟燕清 一种风扇-滤网机组矩阵式定址监测结构
CN106574797A (zh) * 2014-09-01 2017-04-19 三菱电机株式会社 空调***的控制装置以及空调***的控制方法
CN106574797B (zh) * 2014-09-01 2019-08-06 三菱电机株式会社 空调***的控制装置以及空调***的控制方法
CN105571069A (zh) * 2016-01-04 2016-05-11 广东美的暖通设备有限公司 空调室内风机控制方法及空调
CN105571069B (zh) * 2016-01-04 2019-11-22 广东美的暖通设备有限公司 空调室内风机控制方法及空调
CN112665254A (zh) * 2020-12-28 2021-04-16 江苏拓米洛环境试验设备有限公司 制冷***多间室电子膨胀阀的控制方法、装置及制冷***

Also Published As

Publication number Publication date
CN102102897B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
CN102102897B (zh) 分离式空调设备的温度控制方法
EP3228958B1 (en) Linkage control method and apparatus for indoor and outdoor units of precision air conditioner
CN106777711B (zh) 建立车载变风量空调***风量预测模型的方法
Zhou et al. Comparison of HVAC system modeling in EnergyPlus, DeST and DOE-2.1 E
CN111637596A (zh) 一种空调的控制方法、装置、空调、存储介质及处理器
CN201177563Y (zh) 发动机进气调节装置
CN104019520A (zh) 基于spsa的制冷***最小能耗的数据驱动控制方法
CN204534899U (zh) 一种实验室专用低湿度精密空调机组
CN105605753A (zh) 基于多联机与新风机复合空调***的新风送风温控***
Sayadi et al. Exergy-based control strategies for the efficient operation of building energy systems
CN113221373B (zh) 一种配置多台机力通风冷却塔的循环水冷端***优化方法和***
CN108386953B (zh) 一种产生恒定温湿度气体的控制***及调节方法
CN204880405U (zh) 一种空气净化及温度调节***
CN203605337U (zh) 一种冷凝热回收节能型屋顶式空调机组
CN105363502B (zh) 一种一次回风混流型洁净室模拟实验台
Zhao et al. Decentralized optimization for vapor compression refrigeration cycle
He et al. Control strategy analysis of multistage speed compressor for vehicle air conditioning based on particle swarm optimization
Sielemann et al. Optimization of an unconventional environmental control system architecture
CN203224015U (zh) 一种低能耗恒温恒湿调节装置
Qin et al. Research on heat pump air conditioner compressor speed control strategy based on whale algorithm
Yu et al. Variable recycled air controls of HVAC systems for energy savings in high-tech industries
CN104214903A (zh) 基于半闭式空间的空调冷却塔群控制方法
CN105627529B (zh) 基于变速积分pid型迭代学习算法的空调控制***及方法
Chen et al. Optimal power dispatch for district cooling system considering cooling water transport delay
CN205227600U (zh) 一种全热回收专设风机空调机组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant