CN102102198B - 一种调控金属纳米颗粒在树脂载体内分布的方法 - Google Patents

一种调控金属纳米颗粒在树脂载体内分布的方法 Download PDF

Info

Publication number
CN102102198B
CN102102198B CN2011100368058A CN201110036805A CN102102198B CN 102102198 B CN102102198 B CN 102102198B CN 2011100368058 A CN2011100368058 A CN 2011100368058A CN 201110036805 A CN201110036805 A CN 201110036805A CN 102102198 B CN102102198 B CN 102102198B
Authority
CN
China
Prior art keywords
resin
metal
carrier
resin carrier
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100368058A
Other languages
English (en)
Other versions
CN102102198A (zh
Inventor
潘丙才
蒋珍茂
张炜铭
吕路
谢英梅
张全兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN2011100368058A priority Critical patent/CN102102198B/zh
Priority to PCT/CN2011/073595 priority patent/WO2012106854A1/zh
Priority to US13/818,773 priority patent/US9138737B2/en
Publication of CN102102198A publication Critical patent/CN102102198A/zh
Application granted granted Critical
Publication of CN102102198B publication Critical patent/CN102102198B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种调控金属纳米颗粒在树脂载体内分布的方法。它是以具有碱性功能基团的离子交换树脂或吸附树脂为载体,先将金属以络合阴离子的形式通过离子交换作用导入到树脂载体上,然后通过改变水溶液中沉积剂或者还原剂的浓度、反应时间等条件调控金属及其化合物在树脂载体上的分布状态。本发明调控出的金属纳米颗粒在树脂载体上可呈现来不同厚度和密度的环状分布。这种不同的金属分布对于无机-有机复合材料的性能,如反应活性、反应选择性、金属稳定性等具有重要影响。本发明对于同类无机-有机纳米复合材料的设计与结构调控具有重要的借鉴意义。

Description

一种调控金属纳米颗粒在树脂载体内分布的方法
技术领域
本发明涉及一种调控金属纳米颗粒在树脂载体内分布的方法,更具体的说是一种通过改变还原剂或沉淀剂的扩散性能来调控金属纳米颗粒在树脂载体内分布的方法。
背景技术
金属有机-无机复合材料已广泛应用于环境保护、化工催化等领域。目前相关研究主要侧重于这类新型复合材料的制备方法、结构表征与工作性能,而对其结构调控及与性能之间的关系研究报道较少。国外有学者在研究阴离子交换树脂和γ-Al2O3固载Pd-Cu双金属复合催化剂还原硝酸根时发现,较低分压H2还原的金属催化剂主要分布于载体***,而用NaBH4还原的金属则均匀分布于整个载体。分布在***的金属催化剂具有较高反应活性,对产物N2的选择性高,金属流失少;而均匀分布的材料活性较低,对N2的选择性低,金属流失较多(Gašparovičová, D., Králik, M., Hronec, M., et al., Reduction of nitrates dissolved in water over palladium-copper catalysts supported on a strong cationic resin. Journal of Molecular Catalysis A: Chemical 2006, 244, 258-266; Gašparovičová, D., Králik, M., Hronec, M., et al., Supported Pd-Cu catalysts in the water phase reduction of nitrates: Functional resin versus alumina. Journal of Molecular Catalysis A: Chemical 2007, 264, 93-102)。另有研究者用蒙脱石作为模板和载体制备亚纳米级的ZVI时也发现,随着NaBH4/Fe(III)摩尔比的增加,ZVI的含量增加,且硝基苯被还原为苯胺的效率升高(Gu, C., Jia, H. Z., Li, H., et al., Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environmental Science & Technology 2010, 44, 4258-4263)。
2005年南京大学申请了《一种树脂基除砷吸附剂的制备方法》专利(ZL 200510095177.5),该专利是将水合氧化铁颗粒固载于阴离子交换树脂内表面。2009年南京大学申请了《一种催化降解污染物的载零价铁纳米复合树脂及其制备方法》(申请号: 200910028413.X;公开号:CN101474560),该专利是将零价铁纳米颗粒固载到具有阴离子交换基团的树脂载体上。2009年南京大学申请了《一种阴离子树脂基负载CdS复合材料及其制备方法》(申请号:200910232275.7;公开号:CN101716525A),该专利是将CdS纳米颗粒固载到具有阴离子交换基团的树脂载体上。这些成果均未阐述对无机金属颗粒分布的调控方法及其对性能的影响。
发明内容
1、发明要解决的技术问题
本发明的目的是提供一种调控金属纳米颗粒在树脂载体内分布的方法,亦即通过改变金属在树脂相内的还原或沉积速度来调控金属纳米颗粒在树脂载体内分布。
2、技术方案
本发明的原理:以碱性阴离子交换树脂为载体,通过离子交换作用导入FeCl4 -、CdCl4 2-、PdCl4 2-等金属无机络合阴离子,并用沉积剂或还原剂将纳米金属颗粒固定于其中。这一固定化过程中有两种作用同时进行。一是FeCl4 -、CdCl4 2-、PdCl4 2-等金属无机络合阴离子遇水水解,金属易以阳离子的形式从载体上流失;二是沉积或还原作用,这种作用可将金属及其化合物固定在载体上。本发明拟通过调控沉积剂或还原剂的扩散性能来改变上述两种作用的强弱对比,从而实现金属纳米颗粒在树脂相内的分布调控。沉积或还原作用的速度越快,强度越高,金属及其化合物越能在载体树脂上获得较均匀的分布,也即环状分布的厚度较大。
一种调控金属纳米颗粒在树脂载体内分布的方法,其步骤为:
(A)以具有碱性功能基团和树脂骨架为苯乙烯系或丙烯酸系的离子交换树脂或吸附树脂为载体,将水溶液中的FeCl4 -、CdCl4 2-或PdCl4 2-络合阴离子通过离子交换作用导入树脂内;
(B)用沉积剂或者还原剂通过沉积或者还原反应将金属固定在树脂载体上,随着沉积剂或还原剂浓度的增加和反应时间的延长,金属及其化合物纳米颗粒在树脂载体上呈现由外到内的不同厚度与密度的环状分布。
步骤(A)中的载体树脂为具有碱性功能基团的离子交换与吸附树脂,树脂骨架为苯乙烯系或丙烯酸系,树脂骨架上含有叔氨基、季氨基或碱性杂环基团,树脂的平均孔径在1-100nm之间。
步骤(A)中的载体树脂为D-201、D-301、NDA-900、Amberlite IRA-900、Amberlite IRA-958、Amberlite IRA-96、Purolite C-100、Purolite A500、WBR109、NDA-88或NDA-99树脂。
步骤(A)中的FeCl4 -、CdCl4 2-、PdCl4 2-等金属无机络合阴离子在水溶液中的浓度为0.1~2mol/L,树脂载体与金属络合阴离子溶液的固液比为0.1~20g/L。
步骤(B)中的沉积剂包括NaOH、Na2S等,还原剂包括NaBH4、KBH4等,沉积剂和还原剂的浓度(质量百分比)范围为0.5%~10%,树脂载体与含有沉积剂或还原剂的溶液的固液比为0.1~20g/L。
步骤(B)中的反应时间为0.5~30min,沉积或者还原过程需在超声振荡或者搅拌的条件下进行。
步骤(B)中的金属及其化合物包括水合氧化铁、CdS、零价铁、零价钯等。
步骤(B)中的金属及其化合物纳米颗粒在树脂载体上呈现的环状分布的厚度与载体树脂半径的比值为5%~100%。
3、有益效果
本发明提供的一种调控金属纳米颗粒在树脂载体内分布的方法所制得复合材料中,金属及其化合物纳米颗粒在树脂载体上呈现的环状分布厚度可以实现人为调控,这一厚度与载体树脂半径的比值可为5%~100%。这种不同厚度的金属分布对于无机-有机复合材料的性能(如反应活性、反应选择性、金属稳定性等)具有重要影响。具有较薄分布厚度的金属复合材料对于制备高性能复合光催化剂具有重要意义;具有较厚分布厚度的金属复合材料在氧化还原反应及吸附分离等过程中往往可表现出化学活性高、反应速率快、金属流失少等优点。
附图说明
图1为实施例1制备得到的材料的扫描电子显微图;
图2为实施例2制备得到的材料的扫描电子显微图;
图3为实施例3制备得到的材料的扫描电子显微图;
图4为实施例4制备得到的材料的扫描电子显微图;
图5为实施例5制备得到的材料的扫描电子显微图;
图6为实施例6制备得到的材料的扫描电子显微图;
图7为实施例7制备得到的材料的扫描电子显微图;
图8为实施例8制备得到的材料的扫描电子显微图;
图9为实施例9制备得到的材料的扫描电子显微图。
具体实施方式
以下通过实施例进一步说明本发明
实施例1:
将5gD-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度(重量百分比)为0.9%的NaBH4或KBH4溶液与之混合,超声振荡下反应15min,然后用无氧水洗涤。40℃下真空干燥24h。制得的纳米零价铁分布在树脂载体***,其厚度占载体剖面半径的25%左右。此材料的扫描电子显微图片如图1所示。
此复合材料在溶液初始pH=2时还原50mg/LNO3 --N的转化率为40%,Fe的流失率为90%;pH=6时产物NH4 +生成速率为0.010min-1
实施例2:
将5gD-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度为1.8%的NaBH4或KBH4溶液与之混合,超声振荡下反应15min,然后用无氧水洗涤。40℃下真空干燥24h。制得的纳米零价铁分布在树脂载体***,其厚度占载体剖面半径的50%左右。此材料的扫描电子显微图片如图2所示。
此复合材料在溶液初始pH=2时还原50mg/LNO3 --N的转化率为44%,Fe的流失率为76%;pH=6时产物NH4 +生成速率为0.018min-1
实施例3:
将5gD-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度为3.6%的NaBH4或KBH4溶液与之混合,超声振荡下反应15min,然后用无氧水洗涤。40℃下真空干燥24h。制得的纳米零价铁分布在树脂载体***,其厚度占载体剖面半径的80%左右。此材料的扫描电子显微图片如图3所示。
此复合材料在溶液初始pH=2时还原50mg/LNO3 --N的转化率为45%,Fe的流失率为73%;pH=6时产物NH4 +生成速率为0.021min-1
实施例4:
将5g D-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度为7.2%的NaBH4或KBH4溶液与之混合,超声振荡下反应15min,然后用无氧水洗涤。40℃下真空干燥24h。制得的纳米零价铁均匀分布在树脂载体整个剖面,其厚度占载体剖面半径的100%。此材料的扫描电子显微图片如图4所示。
此复合材料在溶液初始pH=2时还原50mg/LNO3 --N的转化率为49%,Fe的流失率为70%;pH=6时产物NH4 +生成速率为0.024min-1
实施例5:
将5g D201树脂树脂加入0.1mol/L的CdCl4 2-溶液中,固液比为0.1g/L。振荡,使CdCl4 2-和树脂发生离子交换反应24h ,过滤。将浓度为1.0%的Na2S溶液与之混合,超声振荡下反应0.5min,然后用蒸馏水洗涤。40℃下真空干燥24h。制得的纳米CdS分布在树脂载体***,其厚度占载体剖面半径的约10%。此材料的扫描电子显微图片如图5所示。
此复合材料能在5小时内将50mL浓度为20mg/L的罗丹明B染料溶液降解95%。
实施例6:
将5g D201树脂树脂加入0.1mol/L的CdCl4 2-溶液中,固液比为0.1g/L。振荡,使CdCl4 2-和树脂发生离子交换反应24h,过滤。将浓度为1.0%的Na2S溶液与之混合,超声振荡下反应1min,然后用蒸馏水洗涤。40℃下真空干燥24h。制得的纳米CdS分布在树脂载体***,其厚度占载体剖面半径的约40%。此材料的扫描电子显微图片如图6所示。
此复合材料能在6小时内将50mL浓度为20mg/L的罗丹明B染料溶液降解95%。
实施例7:
将5g D-201树脂树脂加入0.1mol/L的CdCl4 2-溶液中,固液比为0.1g/L。振荡,使CdCl4 2-和树脂发生离子交换反应24h,过滤。将浓度为1%的Na2S溶液与之混合,超声振荡下反应1.5min,然后用蒸馏水洗涤。40℃下真空干燥24h。制得的纳米CdS分布在树脂载体***,其厚度占载体剖面半径的约80%。此材料的扫描电子显微图片如图7所示。
此复合材料能在6小时内将50mL浓度为20mg/L的罗丹明B染料溶液降解95%。
实施例8:
将5g D-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度为4%的NaOH溶液与之混合,搅拌下反应30min,然后用蒸馏水洗涤。40℃下真空干燥24h。制得的纳米水合氧化铁分布在树脂载体***,其厚度占载体剖面半径的30%左右。此材料的扫描电子显微图片如图8所示。
此复合材料对浓度为60mg/L的As(Ⅴ)的溶液的吸附动力学在100min内即可达到平衡,准二级速率常数为0.00293g/mg·min。
实施例9:
将5g D-201树脂加入2mol/L的FeCl4 -溶液中,固液比为10g/L。振荡,使FeCl4 -和树脂发生离子交换反应4h,过滤。将浓度为8%的NaOH溶液与之混合,搅拌下反应30min,然后用蒸馏水洗涤。40℃下真空干燥24h。制得的纳米水合氧化铁分布在树脂载体***,其厚度占载体剖面半径的70%左右。此材料的扫描电子显微图片如图9所示:
此复合材料对浓度为60mg/L的As(Ⅴ)的溶液的吸附动力学在80min内即可达到平衡,准二级速率常数为0.00189g/mg·min。
实施例10:
将实施例1-9中的D-201树脂换成D-301或NDA-900或Amberlite IRA-900或Amberlite IRA-958或Amberlite IRA-96或Purolite C-100或Purolite A500或WBR109或NDA-88或NDA-99树脂;FeCl4 -、CdCl4 2-、PdCl4 2-等金属无机络合阴离子在水溶液中的浓度在0.1~2mol/L,固液比为0.1~20g/L;沉积剂包括NaOH、Na2S等,还原剂包括NaBH4、KBH4等,其固液比为0.1~20g/L,浓度(质量百分比)范围为0.5%~10%;反应时间为0.5~30min,沉积或者还原过程需在超声振荡或者搅拌的条件下进行;金属及其化合物包括水合氧化铁、CdS、零价铁、零价钯等;随着沉积剂或还原剂浓度的增加、反应时间的延长,金属及其化合物纳米颗粒在树脂载体上呈现的环状分布的厚度与载体树脂半径的比值为5%~100%。

Claims (7)

1.一种调控金属纳米颗粒在树脂载体内分布的方法,其步骤为:
(A)以具有碱性功能基团和树脂骨架为苯乙烯系或丙烯酸系的离子交换树脂或吸附树脂为载体,将水溶液中的FeCl4 -络合阴离子通过离子交换作用导入树脂内;
(B)用沉积剂NaOH或Na2S或者还原剂NaBH4或KBH4通过沉积或者还原反应将金属固定在树脂载体上,其中沉积剂或还原剂的质量百分比浓度为0.5%~10%,树脂载体与含有沉积剂或还原剂的溶液的固液比为0.1~20g/L,反应时间为0.5~30 min,随着沉积剂或还原剂浓度的增加和反应时间的延长,金属及其化合物纳米颗粒在树脂载体上呈现由外到内的不同厚度与密度的环状分布。
2.根据权利要求1所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(A)中的载体树脂骨架上含有叔氨基、季氨基或碱性杂环基团,载体树脂的平均孔径在1-100nm之间。
3.根据权利要求2所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(A)中的载体树脂为D-201、D-301、NDA-900、Amberlite IRA-900、Amberlite IRA-958、Amberlite IRA-96、Purolite C-100、Purolite A500、WBR109、NDA-88或NDA-99树脂。
4.根据权利要求3所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(A)中的FeCl4 -金属络合阴离子在水溶液中的浓度为0.1~2 mol/L,树脂载体与金属络合阴离子溶液的固液比为0.1~20 g/L。
5.根据权利要求4所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(B)中的金属及其化合物为水合氧化铁、CdS、零价铁、零价钯或复合金属。
6.根据权利要求4所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(B)中的金属及其化合物纳米颗粒在树脂载体上呈现的环状分布的厚度为载体树脂半径的5%~100%。
7.根据权利要求4所述的一种调控金属纳米颗粒在树脂载体内分布的方法,其特征在于步骤(B)中的沉积或者还原过程需在超声振荡或者搅拌下进行。
CN2011100368058A 2011-02-12 2011-02-12 一种调控金属纳米颗粒在树脂载体内分布的方法 Expired - Fee Related CN102102198B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011100368058A CN102102198B (zh) 2011-02-12 2011-02-12 一种调控金属纳米颗粒在树脂载体内分布的方法
PCT/CN2011/073595 WO2012106854A1 (zh) 2011-02-12 2011-05-03 一种调控金属纳米颗粒在树脂载体内分布的方法
US13/818,773 US9138737B2 (en) 2011-02-12 2011-05-03 Method for regulating the distribution of metallic nanoparticles within the resin support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100368058A CN102102198B (zh) 2011-02-12 2011-02-12 一种调控金属纳米颗粒在树脂载体内分布的方法

Publications (2)

Publication Number Publication Date
CN102102198A CN102102198A (zh) 2011-06-22
CN102102198B true CN102102198B (zh) 2013-08-07

Family

ID=44155252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100368058A Expired - Fee Related CN102102198B (zh) 2011-02-12 2011-02-12 一种调控金属纳米颗粒在树脂载体内分布的方法

Country Status (3)

Country Link
US (1) US9138737B2 (zh)
CN (1) CN102102198B (zh)
WO (1) WO2012106854A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583419B2 (en) * 2016-07-15 2020-03-10 Nanjing University Resin nanocomposite, method for preparing the same, and method for treating sewage with the same
CN106179264B (zh) * 2016-07-15 2018-07-20 南京大学 一种树脂基介孔纳米复合材料及其制备方法和应用
CN106244831B (zh) * 2016-07-29 2018-12-14 中南大学 一种从含钪溶液中去除铁离子和锆离子的方法
CN107500396A (zh) * 2017-09-29 2017-12-22 厦门理工学院 一种阴离子树脂负载纳米铁去除自来水离子的方法
CN112316896B (zh) * 2020-10-12 2022-10-14 昆明理工大学 一种废弃铜吸附剂资源化利用的方法
CN113233536B (zh) * 2021-03-31 2022-05-17 浙江工业大学 一种利用乙二胺树脂基零价钯纳米复合材料定向还原水体中亚硝酸根的方法
CN113578401A (zh) * 2021-09-09 2021-11-02 江南大学 一种去除低浓度氨氮的改性树脂
CN115770573A (zh) * 2022-11-14 2023-03-10 中国药科大学 一种Fe0/TiO2@D201型复合材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491984A (zh) * 2002-10-22 2004-04-28 中国科学院化学研究所 一种酚醛树脂纳米复合材料的制法及由其制备的产品
CN1505188A (zh) * 2002-11-30 2004-06-16 中南大学 用于锂离子电池的复合纳米金属负极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578609A (en) * 1967-10-02 1971-05-11 Mobil Oil Corp Ion exchange resin containing zero-valent metal
WO1997000134A1 (en) * 1995-06-19 1997-01-03 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JP4233654B2 (ja) * 1998-12-08 2009-03-04 日本曹達株式会社 光触媒担持構造体の製造方法及びその方法により得られた光触媒担持構造体
CN100344365C (zh) 2005-11-02 2007-10-24 南京大学 一种树脂基除砷吸附剂的制备方法
MXNL06000107A (es) * 2006-12-20 2008-10-08 Ind Penoles Sa De Cv Proceso para la fabricacion de plata metalica nanometrica, monodispersa y estable y producto obtenido.
CN101474560A (zh) * 2009-01-20 2009-07-08 南京大学 一种催化降解污染物的载零价铁纳米复合树脂及制备方法
CN101716525B (zh) * 2009-12-10 2012-08-29 南京大学 一种阴离子树脂基负载CdS复合材料及其制备方法
CN101708464B (zh) * 2009-12-10 2012-08-29 南京大学 一种阳离子树脂基负载CdS复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491984A (zh) * 2002-10-22 2004-04-28 中国科学院化学研究所 一种酚醛树脂纳米复合材料的制法及由其制备的产品
CN1505188A (zh) * 2002-11-30 2004-06-16 中南大学 用于锂离子电池的复合纳米金属负极材料及其制备方法

Also Published As

Publication number Publication date
US9138737B2 (en) 2015-09-22
WO2012106854A1 (zh) 2012-08-16
US20130310243A1 (en) 2013-11-21
CN102102198A (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
CN102102198B (zh) 一种调控金属纳米颗粒在树脂载体内分布的方法
CN113058635B (zh) 一种活化过硫酸盐生成纯单线态氧的单原子催化剂及其制备方法与应用
Wang et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR)
Dou et al. The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures
CN108816234B (zh) 一种基于ldh固定过渡金属mof的衍生物催化剂的制备方法及其应用
Wang et al. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution
Kara et al. Preparation and characterization of perlite/V2O5 nano-spheres via a novel green method: applied for oxidation of benzyl alcohol derivatives
Li et al. A gravity-driven high-flux catalytic filter prepared using a naturally three-dimensional porous rattan biotemplate decorated with Ag nanoparticles
CN113908878B (zh) 一种双金属普鲁士蓝类似物催化剂的制备方法及应用
CN107737593B (zh) 一种TiO2纳米管负载的双金属催化剂的制备方法
Song et al. Synthesis of magnetic nanocomposite Fe3O4@ ZIF-8@ ZIF-67 and removal of tetracycline in water
CN102040189A (zh) 一种可控的超细金属氧化物/碳纳米管复合材料的绿色合成方法
Liu et al. Facile synthesis of silver nanocatalyst decorated Fe 3 O 4@ PDA core–shell nanoparticles with enhanced catalytic properties and selectivity
CN110694685B (zh) 一种由超薄纳米片组装的锰铁钴类普鲁士蓝和锰氧化物复合纳米盒的制备方法及应用
CN106582634A (zh) 一种过渡金属原子改性的高活性钌碳催化剂及其制备方法
CN114082432B (zh) 一种利用高铁酸盐为铁源制备的铁氮共掺杂多孔碳及其制备方法和应用
CN102295311A (zh) 一种微波辐射法制备钒酸铋纳米材料的方法
Guo et al. Flower-like FeMoO4@ 1T-MoS2 micro-sphere for effectively cleaning binary dyes via photo-Fenton oxidation
CN112299481A (zh) 一种Bi2S3的制备方法
Mai et al. Outside-in stepwise bi-functionalization of magnetic mesoporous silica incorporated with Pt nanoparticles for effective removal of hexavalent chromium
Wang et al. Nano spinel CoFe2O4 deposited diatomite catalytic separation membrane for efficiently cleaning wastewater
CN101708464B (zh) 一种阳离子树脂基负载CdS复合材料及其制备方法
CN105289748A (zh) 一种软模板辅助合成磁性限域贵金属催化剂的制备方法
CN108525673B (zh) 一种类芬顿固体催化剂及其制备方法和应用
CN111111671A (zh) 一种ZnCo2O4/RGO异质催化剂的制备方法及其活化PS应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

CF01 Termination of patent right due to non-payment of annual fee