CN102087316B - Online monitoring method for short-circuit impedance of V/X connection traction transformer - Google Patents

Online monitoring method for short-circuit impedance of V/X connection traction transformer Download PDF

Info

Publication number
CN102087316B
CN102087316B CN 201010536799 CN201010536799A CN102087316B CN 102087316 B CN102087316 B CN 102087316B CN 201010536799 CN201010536799 CN 201010536799 CN 201010536799 A CN201010536799 A CN 201010536799A CN 102087316 B CN102087316 B CN 102087316B
Authority
CN
China
Prior art keywords
centerdot
beta
alpha
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010536799
Other languages
Chinese (zh)
Other versions
CN102087316A (en
Inventor
高仕斌
郭蕾
周利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN 201010536799 priority Critical patent/CN102087316B/en
Publication of CN102087316A publication Critical patent/CN102087316A/en
Application granted granted Critical
Publication of CN102087316B publication Critical patent/CN102087316B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention discloses an online monitoring method for the short-circuit impedance of a V/X connection traction transformer. In two time intervals when the negative feeder line current of a power supply arm is 90-95% of the rated current and 95-100% of the rated current, the method tests and records a voltage vector and a current vector of the incoming line side and the feeder line side of the transformer respectively, calculates to obtain a primary test value of the short-circuit impedance by use of a deduced formula, and repeatedly tests and calculates for n times (n is not less than 20) to obtain two groups of primary test data; for each group of data, the method judges the relative standard deviation of the primary test data to eliminate the data with large error; and if the number of the eliminated data is less than n/4, the average of the remaining data is the value of the tested short-circuit impedance. The method is simple to test and has high accuracy; and the curve of the monitored short-circuit impedance changing with time can be used as the basis for monitoring and judging the winding deformation.

Description

A kind of method of V/X Connection Traction Transformer short-circuit reactance on-line monitoring
Technical field
The present invention relates to the on-line monitoring technique of electric railway high voltage electric equipment, refer more particularly to V/X Connection Traction Transformer short-circuit reactance on-line monitoring technique, belong to status of electric power detection technique field.
Background technology
The Chinese Railway construction has welcome beyond example great development; The high speed passenger dedicated railway Large scale construction; Its total kilometrage has been broken through 7000 kilometers, military wide (Wuhan--Guangzhou), the highest running speed of Line for Passenger Transportation EMUs such as Shanghai and Nanjing (Shanghai--Nanjing) has surpassed 350km/h, on February 19th, 2010; The china railway odd-numbered day volume of the flow of passengers records high, and reaches 6,330,000 person-times; The coal of heavy duty fortune simultaneously special line improves constantly annual traffic, intends to break through in 2010 the high point of 400,000,000 tons of annual traffics like Qun Dynasty's railway; The great development of high speed and heavy haul railway is to promoting China's economy and social development significant.It is thus clear that owing to the traction power supply equipment failure causes transporting the negative effect that interruption possibly bring also is huge.Tractive transformer is the most expensive, most important traction power supply equipment; In high speed and part heavy haul railway; Extensively adopt the transformer of the V/X mode of connection at present, the transformer of this structure is used for the AT power supply mode can save the autotransformer in the traction substation, has not only saved equipment cost; Reduce floor area, eliminated in the traction substation AT autotransformer higher hidden danger of probability that breaks down simultaneously.The same with the tractive transformer of other types; The winding deformation test is an important content of the test; Its method mainly comprises Low Voltage Impulse Method, hunting of frequency method and short-circuit reactance method etc.; Because the singularity of V/X wiring transformer winding connection mode, the on-line monitoring method that is used for other deformations of transformer winding is also inapplicable to it, and therefore the present detection method that adopts all is the off-line test method.
Could detect after adopting off-line method test V/X Connection Traction Transformer winding deformation to have a power failure; And need untie the original wiring of winding, the workload of test is very big, can not reflect the situation of winding deformation in addition in real time; And invented can be used for the winding deformation on-line monitoring in V/X Connection Traction Transformer short-circuit impedance technology; Overcome the last shortcoming of off-line test, had in real time, monitoring function automatically, for the transformer state maintenance provides the basis.
Summary of the invention
Situation to prior art; The present invention provides a kind of method of V/X Connection Traction Transformer short-circuit reactance on-line monitoring; Adopt this method; Can in real time, automatically monitor the short-circuit reactance of V/X transformer, and then help to judge the winding deformation state, can carry out the basic data that repair based on condition of component provides the winding deformation aspect for the tractive transformer of V/X wiring.
The present invention solves the problems of the technologies described above the technical scheme that is adopted and comprises the steps:
The first step: at a supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and two periods of 0.95 to 1.0 times of rated current; Respectively with waveform greater than each 10 power frequency period of voltage and current of the positive feeder of the voltage and current of each phase of 4000 times/second SF record transformer high-voltage side, a supply arm and negative feeder; In view of the above, try to achieve the line voltage vector of two period high-pressure side A, B two between mutually
Figure BSA00000338874600021
A phase current vector
Figure BSA00000338874600022
The positive feeder voltage vector The positive feeder current vector
Figure BSA00000338874600024
The negative feeder voltage vector
Figure BSA00000338874600025
The negative feeder current vector Intend from the high-pressure side short-circuit reactance (x of A, the test of B end through computes KAB) preliminary test value,
x kAB = { [ Re ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Re ( I · Ta ( 1 ) I · A ( 1 ) ) - Im ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) )
- Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Re ( I · Ta ( 2 ) I · A ( 2 ) ) + Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Im ( I · Ta ( 2 ) I · A ( 2 ) ) ] Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) )
- [ Im ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Re ( I · Ta ( 1 ) I · A ( 1 ) ) + Re ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) ) -
Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Re ( I · Ta ( 2 ) I · A ( 2 ) ) + Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Im ( I · Ta ( 2 ) I · A ( 2 ) ) ] Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) )
× Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) - Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) + K U · Fa ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fa ( 2 ) I · A ( 2 ) )
× Re ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) - Re ( U · AB ( 1 ) + K U · Fa ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fa ( 2 ) I · A ( 2 ) ) Im ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) } /
[ Re ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) 2 + Im ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) 2 ]
Second step: at β supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and two periods of 0.95 to 1.0 times of rated current; Respectively with waveform greater than each 10 power frequency period of voltage and current of the positive feeder of the voltage and current of each phase of 4000 times/second SF record transformer high-voltage side, β supply arm and negative feeder; In view of the above, try to achieve the line voltage vector of two period high-pressure side C, B two between mutually C phase current vector
Figure BSA00000338874600031
The positive feeder voltage vector
Figure BSA00000338874600032
The positive feeder current vector The negative feeder voltage vector
Figure BSA00000338874600034
The negative feeder current vector
Figure BSA00000338874600035
Intend from the high-pressure side short-circuit reactance (x of C, the test of B end through computes KCB) preliminary test value,
x kCB = { [ Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) - Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) )
- Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) )
- [ Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) + Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) ) -
Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · CB ( 2 ) I · C ( 2 ) ) } /
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) )
× Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) - Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) } /
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) )
× Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) - Re ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) ) Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) } /
[ Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 + Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 ]
The 3rd step: n (n is not less than 20) is inferior altogether to repeat first, second step, obtains two groups of preliminary test datas, to every group of data; Reject the bigger number of error according to its relative standard deviation respectively, promptly when relative standard deviation more than or equal to 0.2% the time, remove number with the mean value disparity; Constantly remove the maximum number of error according to this method, till relative standard deviation is less than 0.2%, if the amount of removing data is less than n/4; Then the mean value of remaining data is the short-circuit impedance value of this monitoring; Otherwise, think because test error is bigger, abandon this monitoring.
The principle that the present invention relates to is following:
The connection synoptic diagram of the tractive transformer winding of V/X wiring is as shown in Figure 1.High side phase current
Figure BSA000003388746000315
Figure BSA000003388746000316
and the feeder current
Figure BSA000003388746000317
the relationship formula 1.
I · A I · B I · C T = 1 K 1 1 0 0 - 1 - 1 - 1 - 1 0 0 1 1 I · Ta I · Fa I · Tβ I · Fβ T - - - ( 1 )
In the formula (1), K is a scale-up factor, provides when transformer dispatches from the factory, and also can record through instrumentation.
The equivalent electrical circuit of V/X Connection Traction Transformer is shown in accompanying drawing 2.According to equivalent electrical circuit, satisfy the relation of formula (2) and formula (3) at any time.
U · AB = ( r A + j x A ) I · A + K ( r Ta + j x Ta ) I · Ta + K U · Ta (2)
= ( r A + j x A ) I · A - K ( r Fa + j x Fa ) I · Fa - K U · Fa
U · CB = ( r C + j x C ) I · C + K ( r Tβ + j x Tβ ) I · Tβ + K U · Tβ (3)
= ( r C + j x C ) I · C - K ( r Tβ + j x Tβ ) I · Fβ - K U · Fβ
For obtaining the reactance value in formula (2) and the formula (3), need obtain two groups of independently voltage and current vectors.In order to obtain intending from the high-pressure side short-circuit reactance (x of A, the test of B end KAB), can be two periods, voltage and current, the positive feeder of a supply arm and the some power frequency periods of voltage and current of negative feeder of each phase of SF record transformer high-voltage side are tried to achieve the line voltage vector between two period high-pressure side A, B two phases respectively
Figure BSA00000338874600046
Figure BSA00000338874600047
A phase current vector
Figure BSA00000338874600048
The positive feeder voltage vector
Figure BSA00000338874600049
The positive feeder current vector
Figure BSA000003388746000410
The negative feeder voltage vector
Figure BSA000003388746000412
The negative feeder current vector
Figure BSA000003388746000413
Be the influence of harmonic carcellation to sampling, SF is more than or equal to 2 times of 40 subfrequencies, promptly greater than 4000 times/second; Simultaneously in order to reduce error; Each sampling period is decided to be 10 power frequency periods, and promptly 0.2 second, in order to reduce the short-circuit reactance monitoring and the error of calculation that load variations causes; Do reference with the load current of a supply arm in definite sampling time during section, when a supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and 0.95 to 1.0 times of rated load, gather respectively.The vector of two groups of voltage and currents difference substitution formula (2), try to achieve:
Figure BSA000003388746000414
In the formula, the imaginary part of the plural X of Im (X) representative, the real part of the plural X of Re (X) representative.
When step down side T terminals and F terminals short circuit, the short-circuit impedance that the test of A and B end obtains from the high-pressure side is:
x kAB=x A+K 2(x Ta+x Fa) (5)
Therefore find the solution formula (4), obtain short-circuit impedance x KABFor:
x kAB = { [ Re ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Re ( I · Ta ( 1 ) I · A ( 1 ) ) - Im ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) )
- Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Re ( I · Ta ( 2 ) I · A ( 2 ) ) + Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Im ( I · Ta ( 2 ) I · A ( 2 ) ) ] Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) )
- [ Im ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Re ( I · Ta ( 1 ) I · A ( 1 ) ) + Re ( U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) ) -
Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Re ( I · Ta ( 2 ) I · A ( 2 ) ) + Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) ) Im ( I · Ta ( 2 ) I · A ( 2 ) ) ] Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) )
× Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) - Re ( U · AB ( 1 ) - K U · Ta ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Ta ( 2 ) I · A ( 2 ) ) Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Ta ( 1 ) I · A ( 1 ) - I · Ta ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) + K U · Fa ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fa ( 2 ) I · A ( 2 ) )
× Re ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) - Re ( U · AB ( 1 ) + K U · Fa ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fa ( 2 ) I · A ( 2 ) ) Im ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) } / - - - ( 6 )
[ Re ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) 2 + Im ( I · Fa ( 2 ) I · A ( 2 ) - I · Fa ( 1 ) I · A ( 1 ) ) 2 ]
In order to obtain intending from the high-pressure side short-circuit reactance (x of C, the test of B end KCB), can be in two other period, the voltage and current of each phase of record transformer high-voltage side, the positive feeder of β supply arm and each several power frequency period of voltage and current of negative feeder are tried to achieve the line voltage vector between two stage high-pressure side C, B two phases
Figure BSA000003388746000510
C phase current vector
Figure BSA000003388746000511
The positive feeder voltage vector
Figure BSA000003388746000512
The positive feeder current vector
Figure BSA000003388746000513
The negative feeder voltage vector
Figure BSA000003388746000514
The negative feeder current vector
Figure BSA000003388746000515
Be similarly the influence of harmonic carcellation to sampling, SF is more than or equal to 2 times of 40 subfrequencies, promptly greater than 4000 times/second; In order to reduce error; Each sampling period is decided to be 10 power frequency periods, and promptly 0.2 second, in order to reduce the short-circuit reactance monitoring and the error of calculation that load variations causes; Do reference with the load current of β supply arm in definite sampling time during section, when β supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and 0.95 to 1.0 times of rated load, gather respectively.The vector of two groups of voltage and currents difference substitution formula (3), try to achieve:
Figure BSA00000338874600061
In the formula, the imaginary part of the plural X of Im (X) representative, the real part of the plural X of Re (X) representative.
When step down side T terminals and F terminals short circuit, the short-circuit impedance that the test of C and B end obtains from the high-pressure side is:
x kCB=x C+K 2(x +x ) (8)
Therefore, find the solution formula (7), try to achieve short-circuit reactance x KCBFor:
x kCB = { [ Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) - Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) )
- Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) )
- [ Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) + Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) ) -
Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · CB ( 2 ) I · C ( 2 ) ) } /
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) )
× Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) - Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) } / - - - ( 9 )
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) )
× Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) - Re ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) ) Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) } /
[ Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 + Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 ]
Since in the on-line monitoring process, test the interference that resulting data possibly receive many-sided factor, effective in order to make test data; Follow-on test n (n is not less than 20) is inferior, obtains two groups of preliminary test datas, to every group of data; Reject the bigger number of error according to its relative standard deviation respectively, promptly when relative standard deviation more than or equal to 0.2% the time, remove number with the mean value disparity; Constantly remove the maximum number of error according to this method, till relative standard deviation is less than 0.2%, if the amount of removing data is less than n/4; Then the mean value of remaining data is the short-circuit impedance value of this monitoring; Otherwise, think because test error is bigger, abandon this monitoring.Idiographic flow is seen Fig. 3.
Description of drawings
Fig. 1 is the connection synoptic diagram of winding of the tractive transformer of V/X wiring;
Fig. 2 is the equivalent circuit diagram of the tractive transformer of V/X wiring;
Fig. 3 is short-circuit reactance test value flow chart of data processing figure.
Embodiment
Below in conjunction with accompanying drawing and embodiment, the present invention is done further detailed description.
Embodiment
Short-circuit impedance to certain traction substation 1# main transformer (mode of connection is the V/X wiring) is monitored; Its high-pressure side, low-pressure side rated voltage are respectively 110kV, 27.5kV; Capacity is 15MVA+16.5MVA; The short-circuit impedance of A, the test of B end is 67.60 Ω when dispatching from the factory, and the short-circuit impedance of C and the test of B end is 61.53 Ω, and the back of putting into operation is respectively 67.40 Ω and 61.27 Ω with accurate inductance analyser test short-circuit reactance.
According to the requirement of this on-line monitoring, need the phase voltage and the electric current of test transformer inlet wire, and the voltage-to-ground of all feeder lines and electric current; Therefore must the voltage transformer (VT) summation current transformer be installed in the relevant position, generally speaking, according to the requirement of metering and relay protection; These mutual inductors have been installed in the electric substation; In this instance, the simulating signal of electric current and voltage is all obtained from measuring screen and relay-set, through after step-down, the filtering by multi pass acquisition card image data.Accomplish the monitoring of one whole ground according to following steps:
The first step: at a supply arm negative feeder electric current is 275A and two periods of 290A; Write down the voltage and current of each phase of transformer high-voltage side, the positive feeder of a supply arm and each 10 power frequency period of voltage and current of negative feeder with 4096 times/second SF respectively, try to achieve the line voltage vector between two period high-pressure side A, B two phases A phase current vector
Figure BSA00000338874600084
The positive feeder voltage vector
Figure BSA00000338874600085
Figure BSA00000338874600086
Figure BSA00000338874600087
The positive feeder current vector
Figure BSA00000338874600088
The negative feeder voltage vector
Figure BSA000003388746000811
The negative feeder current vector
Figure BSA000003388746000812
Figure BSA000003388746000813
Through type (6) calculates the short-circuit reactance of intending from the high-pressure side A, the test of B end, obtains x KAB=67.26 Ω;
Second step: at β supply arm negative feeder electric current is 300A and two periods of 320A; Write down the voltage and current of each phase of transformer high-voltage side, the positive feeder of β supply arm and each 10 power frequency period of voltage and current of negative feeder with 4096 times/second SF respectively, try to achieve the line voltage vector between two period high-pressure side C, B two phases
Figure BSA000003388746000814
Figure BSA000003388746000815
C phase current vector
Figure BSA000003388746000817
The positive feeder voltage vector
Figure BSA000003388746000818
Figure BSA000003388746000819
Figure BSA000003388746000820
The positive feeder current vector
Figure BSA000003388746000821
The negative feeder voltage vector
Figure BSA000003388746000823
Figure BSA000003388746000824
Figure BSA000003388746000825
The negative feeder current vector
Figure BSA000003388746000826
Figure BSA000003388746000827
Through type (6) calculates the short-circuit reactance x that intends from the high-pressure side C, the test of B end KCB=61.15 Ω;
The 3rd step: repeat first, second and go on foot totally 20 times; Obtain two groups of preliminary test datas; First group is 67.44,67.15,67.30,67.26,67.42,67.37,67.24,67.07,67.39,67.24,67.31,68.20,67.43,67.36,67.13,68.00,67.44,67.43,67.23,67.42; Second group of number is 61.15,61.30,61.27,61.20,61.2,61.21,62.25,61.07,61.09,61.16,61.23,61.08,58.15,61.17,61.10,61.22,61.17,61.13,61.22,61.19, carries out data processing according to the flow process of Fig. 3 respectively below; To first group of number, the relative standard deviation of trying to achieve 20 numbers is 0.42%, greater than 0.2%; Therefore remove and maximum several 68.2 of equal value differences, the relative standard deviation of trying to achieve remaining 19 numbers is 0.3%, greater than 0.2%; Therefore remove from several 68.0 of equal value difference maximum; The relative standard deviation of trying to achieve remaining 18 numbers is 0.16%, less than 0.2%, so short-circuit reactance x KABBe 67.31 Ω, handle second group of number equally, obtain short-circuit reactance x KCBBe 61.18 Ω.
In sum, this monitoring is respectively 67.31 Ω and 61.18 Ω from the short-circuit impedance that A, B and C, the test of B end obtain, and is very identical with the off-line test result.

Claims (1)

1. the method for a V/X Connection Traction Transformer short-circuit reactance on-line monitoring is characterized in that testing according to following steps:
The first step: at α supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and two periods of 0.95 to 1.0 times of rated current; Respectively with waveform greater than each 10 power frequency period of voltage and current of the positive feeder of the voltage and current of each phase of 4000 times/second SF record transformer high-voltage side, α supply arm and negative feeder; In view of the above, try to achieve the line voltage vector of two period high-pressure side A, B two between mutually
Figure FSB00000857275800011
A phase current vector
Figure FSB00000857275800012
The positive feeder voltage vector
Figure FSB00000857275800013
The positive feeder current vector
Figure FSB00000857275800014
The negative feeder voltage vector
Figure FSB00000857275800015
The negative feeder current vector
Figure FSB00000857275800016
Intend from the high-pressure side short-circuit reactance (x of A, the test of B end through computes KAB) preliminary test value,
x kAB = { [ Re ( U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) ) Re ( I · Tα ( 1 ) I · A ( 1 ) ) - Im ( U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) ) Im ( I · Tα ( 1 ) I · A ( 1 ) )
- Re ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) ) Re ( I · Tα ( 2 ) I · A ( 2 ) ) + Im ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) ) Im ( I · Tα ( 2 ) I · A ( 2 ) ) ] Re ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) )
- [ Im ( U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) ) Re ( I · Tα ( 1 ) I · A ( 1 ) ) + Re ( U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) ) Im ( I · Tα ( 1 ) I · A ( 1 ) ) -
Im ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) ) Re ( I · Tα ( 2 ) I · A ( 2 ) ) + Re ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) ) Im ( I · Tα ( 2 ) I · A ( 2 ) ) ] Im ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) )
× Re ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) - Re ( U · AB ( 1 ) - K U · Tα ( 1 ) I · A ( 1 ) - U · AB ( 2 ) - K U · Tα ( 2 ) I · A ( 2 ) ) Im ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) } /
[ Re ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) 2 + Im ( I · Tα ( 1 ) I · A ( 1 ) - I · Tα ( 2 ) I · A ( 2 ) ) 2 ] + K { Im ( U · AB ( 1 ) + K U · Fα ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fα ( 2 ) I · A ( 2 ) )
× Re ( I · Fα ( 2 ) I · A ( 2 ) - I · Fα ( 1 ) I · A ( 1 ) ) - Re ( U · AB ( 1 ) + K U · Fα ( 1 ) I · A ( 1 ) - U · AB ( 2 ) + K U · Fα ( 2 ) I · A ( 2 ) ) Im ( I · Fα ( 2 ) I · A ( 2 ) - I · Fα ( 1 ) I · A ( 1 ) ) } /
[ Re ( I · Fα ( 2 ) I · A ( 2 ) - I · Fα ( 1 ) I · A ( 1 ) ) 2 + Im ( I · Fα ( 2 ) I · A ( 2 ) - I · Fα ( 1 ) I · A ( 1 ) ) 2 ]
In the formula, K is a scale-up factor, and the V/X Connection Traction Transformer provides when dispatching from the factory, and also available instrument records.
Second step: at β supply arm negative feeder electric current is 0.9 to 0.95 times of rated current and two periods of 0.95 to 1.0 times of rated current; Respectively with waveform greater than each 10 power frequency period of voltage and current of the positive feeder of the voltage and current of each phase of 4000 times/second SF record transformer high-voltage side, β supply arm and negative feeder; In view of the above, try to achieve the line voltage vector of two period high-pressure side C, B two between mutually
Figure FSB00000857275800021
C phase current vector
Figure FSB00000857275800022
The positive feeder voltage vector
Figure FSB00000857275800023
The positive feeder current vector
Figure FSB00000857275800024
The negative feeder voltage vector
Figure FSB00000857275800025
The negative feeder current vector Intend from the high-pressure side short-circuit reactance (x of C, the test of B end through computes KCB) preliminary test value,
x kCB = { [ Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) - Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) )
- Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) )
- [ Im ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Re ( I · Tβ ( 1 ) I · C ( 1 ) ) + Re ( U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) ) -
Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Re ( I · Tβ ( 2 ) I · C ( 2 ) ) + Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) ) Im ( I · Tβ ( 2 ) I · C ( 2 ) ) ] Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Cβ ( 2 ) I · C ( 2 ) ) } /
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) )
× Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) - Re ( U · CB ( 1 ) - K U · Tβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) - K U · Tβ ( 2 ) I · C ( 2 ) ) Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) } /
[ Re ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 + Im ( I · Tβ ( 1 ) I · C ( 1 ) - I · Tβ ( 2 ) I · C ( 2 ) ) 2 ] + K { Im ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) )
× Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) - Re ( U · CB ( 1 ) + K U · Fβ ( 1 ) I · C ( 1 ) - U · CB ( 2 ) + K U · Fβ ( 2 ) I · C ( 2 ) ) Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) } /
[ Re ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 + Im ( I · Fβ ( 2 ) I · C ( 2 ) - I · Fβ ( 1 ) I · C ( 1 ) ) 2 ]
In the formula, the value of K is identical with the first step.
The 3rd step: repeat first, second and go on foot n time altogether, n is not less than 20, obtains two groups of preliminary test datas; To every group of data, reject the bigger number of error according to its relative standard deviation respectively, promptly when relative standard deviation more than or equal to 0.2% the time; Remove the number with the biggest gap, constantly remove the maximum number of error according to this method, till relative standard deviation is less than 0.2% with mean value; If the amount of removing data is less than n/4, then the mean value of remaining data is the short-circuit impedance value of this monitoring, otherwise; Think because test error is bigger, abandon this monitoring.
CN 201010536799 2010-11-09 2010-11-09 Online monitoring method for short-circuit impedance of V/X connection traction transformer Expired - Fee Related CN102087316B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010536799 CN102087316B (en) 2010-11-09 2010-11-09 Online monitoring method for short-circuit impedance of V/X connection traction transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010536799 CN102087316B (en) 2010-11-09 2010-11-09 Online monitoring method for short-circuit impedance of V/X connection traction transformer

Publications (2)

Publication Number Publication Date
CN102087316A CN102087316A (en) 2011-06-08
CN102087316B true CN102087316B (en) 2012-12-19

Family

ID=44099210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010536799 Expired - Fee Related CN102087316B (en) 2010-11-09 2010-11-09 Online monitoring method for short-circuit impedance of V/X connection traction transformer

Country Status (1)

Country Link
CN (1) CN102087316B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543315A (en) * 2013-09-23 2014-01-29 华中科技大学 Impedance network analysis method of short-circuit current of 500 kV autotransformer
CN106353564B (en) * 2016-09-30 2019-01-15 广东电网有限责任公司电力调度控制中心 The Power System Shortcuts electric current acquisition methods of meter and V/X Connection Traction Transformer
CN110146744B (en) * 2019-03-11 2021-05-28 国网浙江省电力有限公司 Intelligent analysis method for impedance of power supply loop of low-voltage transformer area
CN110057283A (en) * 2019-03-11 2019-07-26 国网江苏省电力有限公司淮安供电分公司 A kind of deformation of transformer winding intelligent detecting method based on short-circuit reactance
CN110837025A (en) * 2019-11-15 2020-02-25 国网江苏省电力有限公司盐城供电分公司 Distribution line fault node identification system and method based on current analysis
CN111257689B (en) * 2020-02-11 2020-11-27 西南交通大学 AT power supply contact network electrical performance evaluation method
CN114325494B (en) * 2021-12-14 2022-08-26 西南交通大学 Method for calculating overload capacity evaluation factor of dry-type vehicle-mounted traction transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555946B1 (en) * 1992-02-14 1998-12-09 Elpro BahnstromAnlagen GmbH Line testing device for traction current systems, especially standard gauge railway systems
CN101344566A (en) * 2008-09-03 2009-01-14 中国电力科学研究院 Test device and method for detecting winding deformation of power transformer
CN201259518Y (en) * 2008-09-27 2009-06-17 福建省福州电业局 Short circuit impedance test instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555946B1 (en) * 1992-02-14 1998-12-09 Elpro BahnstromAnlagen GmbH Line testing device for traction current systems, especially standard gauge railway systems
CN101344566A (en) * 2008-09-03 2009-01-14 中国电力科学研究院 Test device and method for detecting winding deformation of power transformer
CN201259518Y (en) * 2008-09-27 2009-06-17 福建省福州电业局 Short circuit impedance test instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王果.变压器绕组变形在线监测研究.《2003年硕士论文集》.2003,第19-62页. *

Also Published As

Publication number Publication date
CN102087316A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
CN102087316B (en) Online monitoring method for short-circuit impedance of V/X connection traction transformer
CN103018627B (en) Adaptive fault type fault line detection method for non-effectively earthed system
CN103438797B (en) Deformation of transformer winding online test method and system
CN105425107B (en) A kind of method and its system of active power distribution network fault diagnosis and location
CN102495336A (en) Distributed single-phase earth fault ranging system and ranging method thereof
EP2680017A1 (en) A method of early detection of feeder lines with a high-ohm ground fault in compensated power networks
CN108303614B (en) 10kV cable network low-current grounding system fault positioning system and method
CN104698311B (en) A kind of DC line direct current arrester live detection method
CN102540001A (en) Method of checking alternating current loop of a 500kV transformer substation through carrying out simulated through-type three-phase short circuit
CN108614180B (en) Single-phase earth fault line searching method
CN102565618A (en) Method for detecting zero-sequence voltage circuit of transformer substation
CN105259488A (en) 500kV high-voltage parallel electric reactor turn-to-turn insulation performance testing platform
CN105093054A (en) Method for fast diagnosing direction connection of big power rectifier switch tube online
CN106443315A (en) Multi-information fusion-based power transformer winding deformation diagnosis method
CN111624444A (en) Distribution line ground fault positioning method and device
CN105866592B (en) Dynamic passive compensation response wave shape acquisition system and acquisition method
CN204256059U (en) A kind of 10kV shunt reactor switching service test system
CN108051699A (en) A kind of secondary loop of mutual inductor of transformer substation exception live detection method and system
CN205139307U (en) 500kV high pressure parallel reactor interturn insulation capability test device
CN109142873B (en) Full-loop direct current resistance testing method for rail transit direct current power supply system
CN117007909A (en) Negative sequence voltage-based broken line and ground fault line selection method and device
CN108732450B (en) Short-circuit detection method between high-power transformer rewinding material piece
CN115469189A (en) Cable sheath fault judgment method based on sheath head-end current ratio and sheath circulation ratio
CN205786889U (en) Dynamic passive compensation response wave shape acquisition system
Zhang et al. Leakage inductance variation based monitoring of transformer winding deformation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20131109