CN102006095A - 一种多频多模无线收发器的自动频率校准信道选择滤波器 - Google Patents

一种多频多模无线收发器的自动频率校准信道选择滤波器 Download PDF

Info

Publication number
CN102006095A
CN102006095A CN2010105135350A CN201010513535A CN102006095A CN 102006095 A CN102006095 A CN 102006095A CN 2010105135350 A CN2010105135350 A CN 2010105135350A CN 201010513535 A CN201010513535 A CN 201010513535A CN 102006095 A CN102006095 A CN 102006095A
Authority
CN
China
Prior art keywords
input
pipe
links
grid
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105135350A
Other languages
English (en)
Inventor
谢淼
任旭
马聪
黄飞
朱彤
张润曦
赖宗声
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN2010105135350A priority Critical patent/CN102006095A/zh
Publication of CN102006095A publication Critical patent/CN102006095A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种多频多模无线收发器的自动频率校准信道选择滤波器,该滤波器包括全差分运算放大器、三个开关电阻阵列、译码器、自动频率校准电路、两个开关电容阵列和电容。本发明可应用于支持无线局域网、全球移动通讯、射频识别和时分同步码分多址的多频多模无线收发器,支持八种不同频段,降低了***实现成本,提高了***集成度;本发明的自动频率校准电路能够实现截止频率的精确可调,误差在3%以内。

Description

一种多频多模无线收发器的自动频率校准信道选择滤波器
技术领域
本发明涉及一种信道选择滤波器,特别是一种同时支持射频识别(UHF RFID)、时分同步码分多址(TD-SCDMA)、全球移动通信***(GSM)、无线局域网(WLAN 802.11 a/b/g)的多频多模信道选择滤波器。
背景技术
随着无线通信技术的飞速发展,新的技术和标准层出不穷,用户希望能通过手中的多模终端,根据自己的需求随意地接入相应的网络进行通信,实现灵活、便捷、无限自由沟通的通信,未来的发展趋势将是各种无线技术间的不断融合。
多模多频段无线收发器可以同时满足高速率数据业务、中等速率射频识别与低速率语音业务三种应用需求,整合802.11a/b/g三个不同模式,衔接我国第二代主流、第三代高容量高频谱效率的无线通信技术,覆盖国内非接触式超高频射频识别频段的单片CMOS全集成电路,形成低功耗、低成本、高集成度、高灵活性的优势。
通常,在进行数据采样之前需要采用抗混叠滤波器以限制信号带宽,而不同的通信***对信号带宽的要求不尽相同,比如,GSM***的信号带宽典型值为250KHz,TD-SCDMA的信号带宽典型值为1.3MHz,UHF RFID的信号带宽典型值为300KHz,802.11a/b/g的信号带宽典型值为2~10MHz,这就要求滤波器的截止频率能够随不同的应用而改变,由于滤波器的截止频率与RC时间常数相关,改变阻容值即可获得不同的截止频率,目前通常的做法:一是采用开关电阻阵列或开关电容阵列,称之为ACTIVE-RC滤波器;二是采用栅极电压可调的工作于线性区的MOS管,称之为MOSFET-C滤波器;这两种方法都需要用到运算放大器,对于高频滤波器,运算放大器简化到可能的最简单结构,它们仅由差分对组成,称之为跨导单元。第三种方法便由跨导单元和电容构成,称之为Gm-C滤波器,其截止频率与跨导电容比相关,由于跨导直接依赖于偏置电流,通过调节电流就可以达到调节截止频率的目的。MOSFET-C滤波器在输入信号摆幅过大的时候会出现很大的非线性,采用差分结构能够提升电路的线性度,但是由于MOS管的寄生电容影响,其高频特性不如ACTIVE-RC滤波器,Gm-C滤波器有着很好的高频特性,其问题在于跨导的非线性以及输入动态范围较小,ACTIVE-RC滤波器有着较好的动态范围和线性度,其缺点是采用了无源元件,而无源元件的绝对精度比较低,它的绝对误差可能高达15%到20%,因此需要对滤波器部分进行调谐。
发明内容
本发明公开了一种应用于支持无线局域网(WLAN 802.11 a/b/g)、全球移动通讯(GSM)、射频识别(UHF RFID)和时分同步码分多址(TD-SCDMA)的多频多模无线收发器的信道选择滤波器,该滤波器能够在八个不同频段间切换,并实现了截止频率的精确校正。
实现本发明目的的具体技术方案是:
一种多频多模无线收发器的自动频率校准信道选择滤波器,特点是该滤波器包括全差分运算放大器A、开关电阻阵列B1、B2及B3、译码器C,自动频率校准电路D、开关电容阵列E1及E2和电容F,其中:第一开关电阻阵列B1的第一输出端、第二开关电阻阵列B2的第一输入端、第一开关电容阵列E1的输入端与第三开关电阻阵列B3的第一输入端连接在一起;第一开关电阻阵列B1的第二输出端、第二开关电阻阵列B2的第二输入端、第二开关电容阵列E2的输入端与第三开关电阻阵列B3的第二输入端连接在一起;第二开关电阻阵列B2的第一输出端、电容F的一端与全差分运算放大器A的第一差分输入端相连;第二开关电阻阵列B2的第二输出端、电容F的另一端与全差分运算放大器A的第二差分输入端相连;第一开关电容阵列E1的输出端、第三开关电阻阵列B3的第一输出端与全差分运算放大器A的第一差分输出端连接;第二开关电容阵列E2的输出端、第三开关电阻阵列B3的第二输出端与全差分运算放大器A的第二差分输出端连接;三个开关电阻阵列B1、B2及B3有八个开关控制位、分别对应连接译码器C的八个输出端;两个开关电容阵列E1及E2有五个开关控制位、分别对应连接自动频率校正电路D的五个数字信号输出端。
所述全差分运算放大器A是一个两级密勒补偿运算放大器,第一级为折叠式共源共栅放大器,第二级为共源放大器,有两个差分输入端,两个差分输出端以及七个偏置电压端,依次是第一差分输入端IN1,第二差分输入端IN2,第一差分输出端OUT1,第二差分输入端OUT2,第一偏置电压端VB1,第二偏置电压端VB2,第三偏置电压端VB3,第四偏置电压端VB4,第五偏置电压端VB5,第六偏置电压端VB6,共模参考电压端VCMFB,该放大器包括第一输入NMOS管M1,第二输入NMOS管M2,第一尾电流NMOS管M3,第二尾电流PMOS管M4,第三尾电流PMOS管M5,第一负载PMOS管M6,第二负载PMOS管M7,第三负载NMOS管M8,第四负载NMOS管M9,第四尾电流NMOS管M10,第五尾电流NMOS管M11,第六尾电流PMOS管M12,第七尾电流PMOS管M13,第三输入NMOS管M14,第四输入管NMOS管M15,第八尾电流PMOS管M16,第九尾电流PMOS管M17,第一共模反馈输入PMOS管M18,第二共模反馈输入PMOS管M19,第三共模反馈输入PMOS管M20,第四共模反馈输入PMOS管M21,第一共模反馈NMOS管M22,第二共模反馈NMOS管M23,第三共模反馈NMOS管M24,第四共模反馈NMOS管M25,第一密勒补偿电容C1,第二密勒补偿电容C2,第一调零电阻R1,第二调零电阻R2,器件之间的连接点分别为第一交点P1,第二交点P2,第三交点P3,第四交点P4,第五交点P5,第六交点P6,第七交点P7,第八交点P8,第九交点P9,第十交点P10,第十一交点P11,第十二交点P12,第十三交点P13,第十四交点P14;第一输入NMOS管M1源极、第二输入NMOS管M2源极、第一尾电流NMOS管M3漏极与第一交点P1相连,第一输入NMOS管M1的栅级和第一差分输入端IN1连接;第二输入NMOS管M2的栅极与第二差分输入端IN2连接;第一尾电流NMOS管M3栅极连第一偏置电压端VB1,第二尾电流PMOS管M4的漏极、第一负载PMOS管M6的源极与第二交点P2相连;第三尾电流PMOS管M5的漏极、第二负载PMOS管M7的源极与第三交点P3相连;第二尾电流PMOS管M4的栅极、第三尾电流PMOS管M5的栅极与第二偏置电压端VB2相连;第一负载PMOS管M6的栅极、第二负载PMOS管M7的栅极、第六尾电流PMOS管M12的栅极、第七尾电流PMOS管M13的栅极与第三偏置电压端VB3相连;第一负载PMOS管M6的漏极、第三负载NMOS管M8的漏极、第三输入NMOS管M14的栅极与第四交点P4相连;第二负载PMOS管M7的漏极、第四负载NMOS管M9的漏极、第四输入NMOS管M15的栅极与第五交点P5相连;第三负载NMOS管M8的栅极、第四负载NMOS管M9的栅极与第四偏置电压端VB4相连;第三负载NMOS管M8的源极、第四尾电流NMOS管M10的漏极、第三共模反馈NMOS管M24的漏极与第六交点P6相连;第四负载NMOS管M9的源极、第五尾电流NMOS管M11的漏极、第四共模反馈NMOS管M25的漏极与第七交点P7相连;第四尾电流NMOS管M10的栅极、第五尾电流NMOS管M11的栅极与第五偏置电压端VB5相连;第六尾电流PMOS管M12的漏极、第三输入NMOS管M14的漏极、第一共模反馈输入PMOS管M18的栅极、第一差分输出端OUT1与第八交点P8相连;第七尾电流PMOS管M13的漏极、第四输入NMOS管M15的漏极、第四共模反馈输入PMOS管M21的栅极、第二差分输出端OUT2与第九交点P9相连;第八尾电流PMOS管M16的栅极、第九尾电流PMOS管M17的栅极与第六偏置电压端VB6相连;第八尾电流PMOS管M16的漏极、第一共模反馈输入PMOS管M18的源极、第二共模反馈输入PMOS管M19的源极与第十交点P10相连;第九尾电流PMOS管M17的漏极、第三共模反馈输入PMOS管M20的源极、第四共模反馈输入PMOS管M21的源极与第十一交点P11相连;第二共模反馈输入PMOS管M19的栅极、第三共模反馈输入PMOS管M20的栅极与共模参考电压端VCMFB相连;第一共模反馈NMOS管M22的栅极和漏级、第三共模反馈NMOS管M24的栅极、第一共模反馈输入PMOS管M18的漏极、第四共模反馈输入PMOS管M21的漏极与第十二交点P12相连;第二共模反馈NMOS管M23的栅极和漏极、第二共模反馈输入PMOS管M19的漏极、第三共模反馈输入PMOS管M20的漏极与第十三交点P13相连;第二尾电流PMOS管M4的源极、第三尾电流PMOS管M5的源极、第六尾电流PMOS管M12的源极、第七尾电流PMOS管M13的源极、第八尾电流PMOS管M16的源极、第九尾电流PMOS管M17的源极与电源VDD相连;第一尾电流NMOS管M3的源极、第四尾电流NMOS管M10的源极、第五尾电流NMOS管M11的源极、第三共模反馈NMOS管M24的源极、四共模反馈NMOS管M25的源极、第三输入NMOS管M14的源极、第四输入NMOS管M15的源极、第一共模反馈NMOS管M22的源极、第二共模反馈NMOS管M23的源极与地相连;第一密勒补偿电容C1与第一调零电阻R1串联后接在第四交点P4与第八交点P8之间,第二密勒补偿电容C2与第二调零电阻R2串联后接在第五交点P5与第九交点P9之间。
开关电阻阵列B1,B2及B3是含模拟开关的电阻网络,每个电阻网络各包含一个输入端IN,一个输出端OUT,八个电阻,八个NMOS开关和八个开关控制端,分别为第一电阻R1,第二电阻R2,第三电阻R3,第四电阻R4,第五电阻R5,第六电阻R6,第七电阻R7,第八电阻R8,第一开关管M1,第二开关管M2,第三开关管M3,第四开关管M4,第五开关管M6,第六开关管M6,第七开关管M7,第八开关管M8,第一开关控制端CON1,第二开关控制端CON2,第三开关控制端CON3,第四开关控制端CON4,第五开关控制端CON5,第六开关控制端CON6,第七开关控制端CON7,第八开关控制端CON8,其中:第一开关管M1的源极,第二开关管M2的源极,第三开关管M3的源极,第四开关管M4的源极,第五开关管M5的源极,第六开关管M6的源极,第七开关管M7的源极,第八开关管M8的源极与输入端IN相连,第一开关管M1的栅极与第一开关控制端CON1相连,第二开关管M2的栅极与第二开关控制端CON2相连,第三开关管M3的栅极与第三开关控制端CON3相连,第四开关管M4的栅极与第四开关控制端CON4相连,第五开关管M5的栅极与第五开关控制端CON5相连,第六开关管M6的栅极与第六开关控制端CON6相连,第七开关管M7的栅极与第七开关控制端CON7相连,第八开关管M8的栅极与第八开关控制端CON8相连,第一开关管M1的漏极与第一电阻R1的一端相连,第二开关管M2的漏极与第二电阻R2的一端相连,第三开关管M3的漏极与第三电阻R3的一端相连,第四开关管M4的漏极与第四电阻R4的一端相连,第五开关管M5的漏极与第五电阻R5的一端相连,第六开关管M6的漏极与第六电阻R6的一端相连,第七开关管M7的漏极与第七电阻R7的一端相连,第八开关管M8的漏极与第八电阻R8的一端相连,八个电阻的另一端与输出端OUT相连。
所述译码器C是一个三-8译码电路,含有三个输入端,八个输出端,分别为第一输入端A1,第二输入端A2,第三输入端A3,第一输出端D1,第二输出端D2,第三输出端D3,第四输出端D4,第五输出端D5,第六输出端D6,第七输出端D7,第八输出端D8。
自动频率校准电路D用于检测和补偿RC时间常数漂移,由误差放大器Da,比较器Db,开关电容阵列Dc,计数器Dd,第一电流镜PMOS管M1,第二电流镜PMOS管M2,第三电流镜PMOS管M3,第四电流镜PMOS管M4,第一开关NMOS管M5,第二开关NMOS管M6,第三开关NMOS管M7和参考电阻De组成并含有输入参考电压端Vref,三个钟控信号输入端S1、S2及S3,其中:误差放大器Da包括正向输入端IN1,负向输入端IN2和输出端OUT6;开关电容阵列Dc包括输入端IN5,输出端OUT7和五个开关控制端;比较器Db包括正向输入端IN3,负向输入端IN4和输出端OUT8;计数器Dd包括数字信号输入端IN6,时钟信号输入端clk,五个数字信号输出端OUT1、OUT2、OUT3、OUT4及OUT5;具体连接方式:误差放大器Da的正向输入端IN1、第三电流镜PMOS管M3的漏极与参考电阻De的一端相连;误差放大器Da负向输入端IN2、比较器Db的负向输入端IN4与输入参考电压端Vref相连;误差放大器Da的输出端OUT6、第一电流镜PMOS管M1的栅极与第二电流镜PMOS管M2的栅极相连;第一电流镜PMOS管M1的源极、第二电流镜PMOS管M2的源极与电源VDD相连;第一电流镜PMOS管M1的漏极与第三电流镜PMOS管M3的源极相连;第二电流镜PMOS管M2的漏极与第四电流镜PMOS管M4的源极相连;第三电流镜PMOS管M3的栅极、第四电流镜PMOS管M4的栅极、参考电阻De的另一端与地相连;第四电流镜PMOS管M4的漏极与第五电流镜NMOS管M5的漏极相连;第一开关NMOS管M5的栅极与第一钟控信号输入端S1相连;第一开关NMOS管M5的源极、开关电容阵列Dc的输入端IN5、第二开关NMOS管M6的漏极与第三开关NMOS管M7的漏极相连;开关电容阵列Dc的输出端OUT7、第三开关NMOS管M7的源极与地相连;第二开关NMOS管M6的源极与比较器Db的正向输入端IN3相连;第二开关NMOS管M6的栅极与第二钟控信号输入端S2相连;第三开关NMOS管M7的栅极与第三钟控信号输入端S3相连;比较器Db的输出端OUT8与计数器Dd的数字信号输入端IN6相连;计数器的五个数字信号输出端与开关电容阵列Dc的五个开关控制端相连。
本发明通过译码器数字输入信号的八种组合,其截止频率可覆盖八个频段,实现不同信道间的切换;通过自动频率校正电路的反馈,使截止频率的误差小于3%。
与现有技术相比,本发明具有以下积极效果:
(1)、本发明可应用于多频多模无线收发器,支持八种不同频段,降低了***实现成本,提高了***集成度。
(2)、本发明的自动频率校准电路能够实现截止频率的精确可调,误差在3%以内。
附图说明
图1为传统的单一频段低通滤波器简图
图2为本发明结构框图
图3为本发明全差分运算放大器电路图
图4为本发明开关电阻阵列图
图5为本发明开关电容阵列图
图6为本发明自动频率校准电路图
具体实施方式
本发明的信道选择滤波器,其截止频率的调节是这样实现的,译码器C的三个数字信号输入端A1、A2及A3一共有八种输入信号的组合,分别为000,001,010,011,100,101,110,111,对应的输出分别为00000001,00000010,00000100,00001000,00010000,00100000,01000000,10000000,输入信号经译码电路输出为8bit的数字信号并分别送入三个开关电阻阵列B1,B2及B3的开关控制位CON1、CON2、CON3、CON4、CON5、CON6、CON7及CON8,若开关控制位为高电平,则与之串联的电阻导通,否则电阻关断,实现了开关电阻阵列等效阻抗的可调,开关电容阵列基于同样的原理,而滤波器的截止频率等于其中RB2为第二开关电阻阵列B2等效阻抗,RB3为第三开关电阻阵列B3等效阻抗,CF为电容F的值,CE为开关电容阵列E的等效电容值,因此,通过改变译码器的输入端信号便可改变滤波器的截止频率。
所述的自动频率校准电路D的工作原理如下:输入参考电压Vref送入由全差分运算放大器A,第一电流镜PMOS管M1,第三电流镜PMOS管M3,参考电阻De构成的跨导级,产生跨导电流Vref/RDe,这个跨导电流被第二电流镜PMOS管M2,第四电流镜PMOS管M4镜像复制之后送入开关电容阵列Dc对其充电,比较器Db的正向输入端IN3的电压Vcap即等于
Figure BSA00000311842800062
若Vref大于Vcap,比较器Db输出为高电平,计数器Counter加1并将5bit数字输出信号反馈到电容阵列Dc的开关控制端以减小电容阵列Dc的等效电容值,直至Vref小于等于Vcap;若Vref小于Vcap,比较器Db输出为低电平,计数器减1并将5bit数字输出信号反馈到电容阵列Dc的开关控制端以增加电容阵列Dc的等效电容值,直至Vref大于等于Vcap。这组5bit数字信号同时反馈到滤波器的第一开关电容阵列E1和第二开关电容阵列E2来实现对截止频率的校准,对于5bit的控制***其精度约为3%,对于更高的位数其精度更高。

Claims (1)

1.一种多频多模无线收发器的自动频率校准信道选择滤波器,其特征在于该滤波器包括全差分运算放大器(A)、开关电阻阵列(B1,B2,B3)、译码器(C),自动频率校准电路(D)、开关电容阵列(E1,E2)和电容(F),其中:第一开关电阻阵列(B1)的第一输出端、第二开关电阻阵列(B2)的第一输入端、第一开关电容阵列(E1)的输入端与第三开关电阻阵列(B3)的第一输入端连接在一起;第一开关电阻阵列(B1)的第二输出端、第二开关电阻阵列(B2)的第二输入端、第二开关电容阵列(E2)的输入端与第三开关电阻阵列(B3)的第二输入端连接在一起;第二开关电阻阵列(B2)的第一输出端、电容(F)的一端与全差分运算放大器(A)的第一差分输入端相连;第二开关电阻阵列(B2)的第二输出端、电容(F)的另一端与全差分运算放大器(A)的第二差分输入端相连;第一开关电容阵列(E1)的输出端、第三开关电阻阵列(B3)的第一输出端与全差分运算放大器(A)的第一差分输出端连接;第二开关电容阵列(E2)的输出端、第三开关电阻阵列(B3)的第二输出端与全差分运算放大器(A)的第二差分输出端连接;三个开关电阻阵列(B1,B2,B3)有八个开关控制位、分别对应连接译码器(C)的八个输出端;两个开关电容阵列(E1,E2)有五个开关控制位、分别对应连接自动频率校正电路(D)的五个数字信号输出端;
所述全差分运算放大器(A)是一个两级密勒补偿运算放大器,第一级为折叠式共源共栅放大器,第二级为共源放大器,有两个差分输入端,两个差分输出端以及七个偏置电压端,依次是第一差分输入端(IN1),第二差分输入端(IN2),第一差分输出端(OUT1),第二差分输入端(OUT2),第一偏置电压端(VB1),第二偏置电压端(VB2),第三偏置电压端(VB3),第四偏置电压端(VB4),第五偏置电压端(VB5),第六偏置电压端(VB6),共模参考电压端(VCMFB),该放大器包括第一输入NMOS管(M1),第二输入NMOS管(M2),第一尾电流NMOS管(M3),第二尾电流PMOS管(M4),第三尾电流PMOS管(M5),第一负载PMOS管(M6),第二负载PMOS管(M7),第三负载NMOS管(M8),第四负载NMOS管(M9),第四尾电流NMOS管(M10),第五尾电流NMOS管(M11),第六尾电流PMOS管(M12),第七尾电流PMOS管(M13),第三输入NMOS管(M14),第四输入管NMOS(M15),第八尾电流PMOS管(M16),第九尾电流PMOS管(M17),第一共模反馈输入PMOS管(M18),第二共模反馈输入PMOS管(M19),第三共模反馈输入PMOS管(M20),第四共模反馈输入PMOS管(M21),第一共模反馈NMOS管(M22),第二共模反馈NMOS管(M23),第三共模反馈NMOS管(M24),第四共模反馈NMOS管(M25),第一密勒补偿电容(C1),第二密勒补偿电容(C2),第一调零电阻(R1),第二调零电阻(R2),器件之间的连接点分别为第一交点(P1),第二交点(P2),第三交点(P3),第四交点(P4),第五交点(P5),第六交点(P6),第七交点(P7),第八交点(P8),第九交点(P9),第十交点(P10),第十一交点(P11),第十二交点(P12),第十三交点(P13),第十四交点(P14);第一输入NMOS管(M1)源极、第二输入NMOS管(M2)源极、第一尾电流NMOS管(M3)漏极与第一交点(P1)相连,第一输入NMOS管(M1)的栅级和第一差分输入端(IN1)连接;第二输入NMOS管(M2)的栅极与第二差分输入端(IN2)连接;第一尾电流NMOS管(M3)栅极连第一偏置电压端(VB1),第二尾电流PMOS管(M4)的漏极、第一负载PMOS管(M6)的源极与第二交点(P2)相连;第三尾电流PMOS管(M5)的漏极、第二负载PMOS管(M7)的源极与第三交点(P3)相连;第二尾电流PMOS管(M4)的栅极、第三尾电流PMOS管(M5)的栅极与第二偏置电压端(VB2)相连;第一负载PMOS管(M6)的栅极、第二负载PMOS管(M7)的栅极、第六尾电流PMOS管(M12)的栅极、第七尾电流PMOS管(M13)的栅极与第三偏置电压端(VB3)相连;第一负载PMOS管(M6)的漏极、第三负载NMOS管(M8)的漏极、第三输入NMOS管(M14)的栅极与第四交点(P4)相连;第二负载PMOS管(M7)的漏极、第四负载NMOS管(M9)的漏极、第四输入NMOS管(M15)的栅极与第五交点(P5)相连;第三负载NMOS管(M8)的栅极、第四负载NMOS管(M9)的栅极与第四偏置电压端(VB4)相连;第三负载NMOS管(M8)的源极、第四尾电流NMOS管(M10)的漏极、第三共模反馈NMOS管(M24)的漏极与第六交点(P6)相连;第四负载NMOS管(M9)的源极、第五尾电流NMOS管(M11)的漏极、第四共模反馈NMOS管(M25)的漏极与第七交点(P7)相连;第四尾电流NMOS管(M10)的栅极、第五尾电流NMOS管(M11)的栅极与第五偏置电压端(VB5)相连;第六尾电流PMOS管(M12)的漏极、第三输入NMOS管(M14)的漏极、第一共模反馈输入PMOS管(M18)的栅极、第一差分输出端(OUT1)与第八交点(P8)相连;第七尾电流PMOS管(M13)的漏极、第四输入NMOS管(M15)的漏极、第四共模反馈输入PMOS管(M21)的栅极、第二差分输出端(OUT2)与第九交点(P9)相连;第八尾电流PMOS管(M16)的栅极、第九尾电流PMOS管(M17)的栅极与第六偏置电压端(VB6)相连;第八尾电流PMOS管(M16)的漏极、第一共模反馈输入PMOS管(M18)的源极、第二共模反馈输入PMOS管(M19)的源极与第十交点(P10)相连;第九尾电流PMOS管(M17)的漏极、第三共模反馈输入PMOS管(M20)的源极、第四共模反馈输入PMOS管(M21)的源极与第十一交点(P11)相连;第二共模反馈输入PMOS管(M19)的栅极、第三共模反馈输入PMOS管(M20)的栅极与共模参考电压端(VCMFB)相连;第一共模反馈NMOS管(M22)的栅极和漏级、第三共模反馈NMOS管(M24)的栅极、第一共模反馈输入PMOS管(M18)的漏极、第四共模反馈输入PMOS管(M21)的漏极与第十二交点(P12)相连;第二共模反馈NMOS管(M23)的栅极和漏极、第二共模反馈输入PMOS管(M19)的漏极、第三共模反馈输入PMOS管(M20)的漏极与第十三交点(P13)相连;第二尾电流PMOS管(M4)的源极、第三尾电流PMOS管(M5)的源极、第六尾电流PMOS管(M12)的源极、第七尾电流PMOS管(M13)的源极、第八尾电流PMOS管(M16)的源极、第九尾电流PMOS管(M17)的源极与电源(VDD)相连;第一尾电流NMOS管(M3)的源极、第四尾电流NMOS管(M10)的源极、第五尾电流NMOS管(M11)的源极、第三共模反馈NMOS管(M24)的源极、四共模反馈NMOS管(M25)的源极、第三输入NMOS管(M14)的源极、第四输入NMOS管(M15)的源极、第一共模反馈NMOS管(M22)的源极、第二共模反馈NMOS管(M23)的源极与地相连;第一密勒补偿电容(C1)与第一调零电阻(R1)串联后接在第四交点(P4)与第八交点(P8)之间,第二密勒补偿电容(C2)与第二调零电阻(R2)串联后接在第五交点(P5)与第九交点(P9)之间;
所述开关电阻阵列(B1,B2,B3)是含模拟开关的电阻网络,每个电阻网络各包含一个输入端(IN),一个输出端(OUT),八个电阻,八个NMOS开关和八个开关控制端,分别为第一电阻(R1),第二电阻(R2),第三电阻(R3),第四电阻(R4),第五电阻(R5),第六电阻(R6),第七电阻(R7),第八电阻(R8),第一开关管(M1),第二开关管(M2),第三开关管(M3),第四开关管(M4),第五开关管(M6),第六开关管(M6),第七开关管(M7),第八开关管(M8),第一开关控制端(CON1),第二开关控制端(CON2),第三开关控制端(CON3),第四开关控制端(CON4),第五开关控制端(CON5),第六开关控制端(CON6),第七开关控制端(CON7),第八开关控制端(CON8),其中:第一开关管(M1)的源极,第二开关管(M2)的源极,第三开关管(M3)的源极,第四开关管(M4)的源极,第五开关管(M5)的源极,第六开关管(M6)的源极,第七开关管(M7)的源极,第八开关管(M8)的源极与输入端(IN)相连,第一开关管(M1)的栅极与第一开关控制端(CON1)相连,第二开关管(M2)的栅极与第二开关控制端(CON2)相连,第三开关管(M3)的栅极与第三开关控制端(CON3)相连,第四开关管(M4)的栅极与第四开关控制端(CON4)相连,第五开关管(M5)的栅极与第五开关控制端(CON5)相连,第六开关管(M6)的栅极与第六开关控制端(CON6)相连,第七开关管(M7)的栅极与第七开关控制端(CON7)相连,第八开关管(M8)的栅极与第八开关控制端(CON8)相连,第一开关管(M1)的漏极与第一电阻(R1)的一端相连,第二开关管(M2)的漏极与第二电阻(R2)的一端相连,第三开关管(M3)的漏极与第三电阻(R3)的一端相连,第四开关管(M4)的漏极与第四电阻(R4)的一端相连,第五开关管(M5)的漏极与第五电阻(R5)的一端相连,第六开关管(M6)的漏极与第六电阻(R6)的一端相连,第七开关管(M7)的漏极与第七电阻(R7)的一端相连,第八开关管(M8)的漏极与第八电阻(R8)的一端相连,八个电阻的另一端与输出端(OUT)相连;
所述译码器(C)是一个三-8译码电路,包含三个输入端,八个输出端,分别为第一输入端(A1),第二输入端(A2),第三输入端(A3),第一输出端(D1),第二输出端(D2),第三输出端(D3),第四输出端(D4),第五输出端(D5),第六输出端(D6),第七输出端(D7),第八输出端(D8);
自动频率校准电路(D)用于检测和补偿RC时间常数漂移,由误差放大器(Da),比较器(Db),开关电容阵列(Dc),计数器(Dd),第一电流镜PMOS管(M1),第二电流镜PMOS管(M2),第三电流镜PMOS管(M3),第四电流镜PMOS管(M4),第一开关NMOS管(M5),第二开关NMOS管(M6),第三开关NMOS管(M7)和参考电阻(De)组成并包含输入参考电压端(Vref),三个钟控信号输入端(S1,S2,S3),其中:误差放大器(Da)包括正向输入端(IN1),负向输入端(IN2)和输出端(OUT6);开关电容阵列(Dc)包括输入端(IN5),输出端(OUT7)和五个开关控制端;比较器(Db)包括正向输入端(IN3),负向输入端(IN4)和输出端(OUT8);计数器(Dd)包括数字信号输入端(IN6),时钟信号输入端(clk),五个数字信号输出端(OUT1,OUT2,OUT3,OUT4,OUT5);具体连接方式:误差放大器(Da)的正向输入端(IN1)、第三电流镜PMOS管(M3)的漏极与参考电阻(De)的一端相连;误差放大器(Da)负向输入端(IN2)、比较器(Db)的负向输入端(IN4)与输入参考电压端(Vref)相连;误差放大器(Da)的输出端(OUT6)、第一电流镜PMOS管(M1)的栅极与第二电流镜PMOS管(M2)的栅极相连;第一电流镜PMOS管(M1)的源极、第二电流镜PMOS管(M2)的源极与电源(VDD)相连;第一电流镜PMOS管(M1)的漏极与第三电流镜PMOS管(M3)的源极相连;第二电流镜PMOS管(M2)的漏极与第四电流镜PMOS管(M4)的源极相连;第三电流镜PMOS管(M3)的栅极、第四电流镜PMOS管(M4)的栅极、参考电阻(De)的另一端与地相连;第四电流镜PMOS管(M4)的漏极与第五电流镜NMOS管(M5)的漏极相连;第一开关NMOS管(M5)的栅极与第一钟控信号输入端(S1)相连;第一开关NMOS管(M5)的源极、开关电容阵列(Dc)的输入端(IN5)、第二开关NMOS管(M6)的漏极与第三开关NMOS管(M7)的漏极相连;开关电容阵列(Dc)的输出端(OUT7)、第三开关NMOS管(M7)的源极与地相连;第二开关NMOS管(M6)的源极与比较器(Db)的正向输入端(IN3)相连;第二开关NMOS管(M6)的栅极与第二钟控信号输入端(S2)相连;第三开关NMOS管(M7)的栅极与第三钟控信号输入端(S3)相连;比较器(Db)的输出端(OUT8)与计数器(Dd)的数字信号输入端(IN6)相连;计数器的五个数字信号输出端与开关电容阵列(Dc)的五个开关控制端相连。
CN2010105135350A 2010-10-21 2010-10-21 一种多频多模无线收发器的自动频率校准信道选择滤波器 Pending CN102006095A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105135350A CN102006095A (zh) 2010-10-21 2010-10-21 一种多频多模无线收发器的自动频率校准信道选择滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105135350A CN102006095A (zh) 2010-10-21 2010-10-21 一种多频多模无线收发器的自动频率校准信道选择滤波器

Publications (1)

Publication Number Publication Date
CN102006095A true CN102006095A (zh) 2011-04-06

Family

ID=43813207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105135350A Pending CN102006095A (zh) 2010-10-21 2010-10-21 一种多频多模无线收发器的自动频率校准信道选择滤波器

Country Status (1)

Country Link
CN (1) CN102006095A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386874A (zh) * 2011-07-22 2012-03-21 复旦大学 一种宽带可重构负载网络
CN103647557A (zh) * 2013-11-25 2014-03-19 华为技术有限公司 Adc电路、电能计量电路和电能计量***
CN104113334A (zh) * 2013-04-17 2014-10-22 苏州芯通微电子有限公司 多模时钟参考源实现装置
CN104660216A (zh) * 2015-03-02 2015-05-27 东南大学 一种用于Gm-C滤波器的高精度频率校准电路
CN105099485A (zh) * 2014-05-05 2015-11-25 英特尔公司 用于收发器的动态偏置电路
CN106067781A (zh) * 2016-05-24 2016-11-02 庞爱华 一种可调带宽有源滤波器
CN106471380A (zh) * 2014-04-25 2017-03-01 三洋电机株式会社 具备电压检测部的电源装置
CN106533387A (zh) * 2016-12-21 2017-03-22 广西师范大学 差分米勒带通滤波器及信号滤波方法
CN106872851A (zh) * 2017-04-13 2017-06-20 国家电网公司 新型继电保护电源插件的健康状态检测装置及检测方法
CN107787554A (zh) * 2015-07-07 2018-03-09 马维尔国际贸易有限公司 放大电路和补偿输入的电压偏移的方法
CN107918438A (zh) * 2016-10-08 2018-04-17 深圳指瑞威科技有限公司 全差分可编程的基准电压产生电路
CN110266407A (zh) * 2019-06-27 2019-09-20 郑州工程技术学院 一种基于云计算的数据安全保护***
CN112803895A (zh) * 2020-12-31 2021-05-14 上海交通大学 一种基于开关电容的伪电阻矫正电路
CN113644896A (zh) * 2021-08-11 2021-11-12 东南大学 一种基于切比雪夫i型的带宽可调谐有源rc低通滤波器
CN113765519A (zh) * 2021-07-29 2021-12-07 华东师范大学 一种低功耗高精度动态比较器校准电路
CN114337600A (zh) * 2022-03-11 2022-04-12 华南理工大学 一种片上差分有源rc滤波器的校准和调谐方法
CN115664354A (zh) * 2022-12-28 2023-01-31 广州慧智微电子股份有限公司 一种差分放大电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201096883Y (zh) * 2007-10-31 2008-08-06 武汉大学 高频段的数字调谐lc滤波器
CN101242161A (zh) * 2008-03-14 2008-08-13 华东师范大学 可编程增益放大器
CN101656519A (zh) * 2009-08-13 2010-02-24 捷顶微电子(上海)有限公司 Rc滤波器的校准电路及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201096883Y (zh) * 2007-10-31 2008-08-06 武汉大学 高频段的数字调谐lc滤波器
CN101242161A (zh) * 2008-03-14 2008-08-13 华东师范大学 可编程增益放大器
CN101656519A (zh) * 2009-08-13 2010-02-24 捷顶微电子(上海)有限公司 Rc滤波器的校准电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邹亮: "《射频接收机中模拟信道滤波器设计》", 31 December 2009, 中国优秀硕士学位论文全文数据库 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386874A (zh) * 2011-07-22 2012-03-21 复旦大学 一种宽带可重构负载网络
CN104113334A (zh) * 2013-04-17 2014-10-22 苏州芯通微电子有限公司 多模时钟参考源实现装置
CN104113334B (zh) * 2013-04-17 2018-03-30 苏州芯通微电子有限公司 多模时钟参考源实现装置
CN103647557A (zh) * 2013-11-25 2014-03-19 华为技术有限公司 Adc电路、电能计量电路和电能计量***
CN103647557B (zh) * 2013-11-25 2017-12-22 华为技术有限公司 Adc电路、电能计量电路和电能计量***
CN106471380A (zh) * 2014-04-25 2017-03-01 三洋电机株式会社 具备电压检测部的电源装置
CN106471380B (zh) * 2014-04-25 2019-02-26 三洋电机株式会社 具备电压检测部的电源装置
CN105099485B (zh) * 2014-05-05 2018-10-19 英特尔公司 用于收发器的动态偏置电路
CN105099485A (zh) * 2014-05-05 2015-11-25 英特尔公司 用于收发器的动态偏置电路
CN104660216B (zh) * 2015-03-02 2017-05-10 东南大学 一种用于Gm‑C滤波器的高精度频率校准电路
WO2016138807A1 (zh) * 2015-03-02 2016-09-09 东南大学 一种用于Gm-C滤波器的高精度频率校准电路
CN104660216A (zh) * 2015-03-02 2015-05-27 东南大学 一种用于Gm-C滤波器的高精度频率校准电路
CN107787554B (zh) * 2015-07-07 2021-06-04 马维尔国际贸易有限公司 放大电路和补偿输入的电压偏移的方法
CN107787554A (zh) * 2015-07-07 2018-03-09 马维尔国际贸易有限公司 放大电路和补偿输入的电压偏移的方法
CN106067781A (zh) * 2016-05-24 2016-11-02 庞爱华 一种可调带宽有源滤波器
CN107918438A (zh) * 2016-10-08 2018-04-17 深圳指瑞威科技有限公司 全差分可编程的基准电压产生电路
CN106533387B (zh) * 2016-12-21 2023-05-02 广西师范大学 差分米勒带通滤波器及信号滤波方法
CN106533387A (zh) * 2016-12-21 2017-03-22 广西师范大学 差分米勒带通滤波器及信号滤波方法
CN106872851A (zh) * 2017-04-13 2017-06-20 国家电网公司 新型继电保护电源插件的健康状态检测装置及检测方法
CN110266407A (zh) * 2019-06-27 2019-09-20 郑州工程技术学院 一种基于云计算的数据安全保护***
CN110266407B (zh) * 2019-06-27 2021-01-15 郑州工程技术学院 一种基于云计算的数据安全保护***
CN112803895B (zh) * 2020-12-31 2022-09-02 上海交通大学 一种基于开关电容的伪电阻矫正电路
CN112803895A (zh) * 2020-12-31 2021-05-14 上海交通大学 一种基于开关电容的伪电阻矫正电路
CN113765519A (zh) * 2021-07-29 2021-12-07 华东师范大学 一种低功耗高精度动态比较器校准电路
CN113765519B (zh) * 2021-07-29 2023-07-25 华东师范大学 一种低功耗高精度动态比较器校准电路
CN113644896A (zh) * 2021-08-11 2021-11-12 东南大学 一种基于切比雪夫i型的带宽可调谐有源rc低通滤波器
CN114337600A (zh) * 2022-03-11 2022-04-12 华南理工大学 一种片上差分有源rc滤波器的校准和调谐方法
CN114337600B (zh) * 2022-03-11 2022-06-03 华南理工大学 一种片上差分有源rc滤波器的校准和调谐方法
CN115664354A (zh) * 2022-12-28 2023-01-31 广州慧智微电子股份有限公司 一种差分放大电路
CN115664354B (zh) * 2022-12-28 2023-04-21 广州慧智微电子股份有限公司 一种差分放大电路

Similar Documents

Publication Publication Date Title
CN102006095A (zh) 一种多频多模无线收发器的自动频率校准信道选择滤波器
CN102096079B (zh) 一种多模式多频段卫星导航接收机射频前端构成方法及其模块
CN102624348B (zh) 半导体集成电路及其操作方法
US7129784B2 (en) Multilevel power amplifier architecture using multi-tap transformer
CN101807890B (zh) Rf功率放大电路和使用该电路的rf功率模块
US8693961B2 (en) System and method for improving power efficiency of a transmitter
CN102075145A (zh) 一种高线性度折叠镜像混频器
CN101420204A (zh) 低噪声放大器电路
JP2016058871A (ja) 半導体装置
CN103516371A (zh) 可配置无线发射机
US8463206B2 (en) System and method for preserving input impedance of a current-mode circuit
CN102868377A (zh) 一种基于可控有源电感的全3g cmos差分低噪声放大器
CN101909025B (zh) 实现本振抑制校准的方法、装置及***
US8441313B2 (en) Current-mode analog baseband apparatus
US10454487B1 (en) Segmented resistor architecture for digital-to-analog converters
CN104242830A (zh) 基于有源电感的可重配置超宽带低噪声放大器
CN111711424A (zh) 一种cmos功率放大器及其射频模块
US20020149418A1 (en) Logarithmic if amplifier with dynamic large signal bias circuit
CN104135243B (zh) 一种可编程增益放大器
CN106385239A (zh) 一种增益可调的cmos宽带低噪声放大器
CN112491371B (zh) 一种高线性度可编程ab-c类混合跨导的低噪声跨导放大器
CN104333386A (zh) 一种连续时间Sigma Delta调制器及其多模式配置方法
CN101841342B (zh) 实现低功耗发射信号的方法、装置及***
US8447246B2 (en) System and method for a multi-band transmitter
US8494460B2 (en) System and method for a dual-path transmitter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110406