CN101950419B - 同时存在平移和旋转情况下的快速图像配准方法 - Google Patents

同时存在平移和旋转情况下的快速图像配准方法 Download PDF

Info

Publication number
CN101950419B
CN101950419B CN2010102641967A CN201010264196A CN101950419B CN 101950419 B CN101950419 B CN 101950419B CN 2010102641967 A CN2010102641967 A CN 2010102641967A CN 201010264196 A CN201010264196 A CN 201010264196A CN 101950419 B CN101950419 B CN 101950419B
Authority
CN
China
Prior art keywords
mrow
image
msub
theta
rho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102641967A
Other languages
English (en)
Other versions
CN101950419A (zh
Inventor
朱虹
刘薇
王栋
邢楠
姚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN2010102641967A priority Critical patent/CN101950419B/zh
Publication of CN101950419A publication Critical patent/CN101950419A/zh
Application granted granted Critical
Publication of CN101950419B publication Critical patent/CN101950419B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种同时存在平移和旋转情况下的快速图像配准方法,将另一幅寻找与参考图像关系的图像称为待配准图像;采用圆形模板匹配方法来确定平移量,确定圆形模板的半径后,以参考图像的中心处构造作圆形参考模板,在待配准图像的一定搜索范围内搜索与参考模板为最佳匹配的图块,其两者间的圆心坐标的差值即为待配准图像相对于参考图像的平移量;另一方面将圆形参考模板和该匹配块分别进行对数极坐标变换,将相应的参考模板以及待配准图像的匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度,将图像按照该角度进行旋转,即完成对图像的快速配准。本发明方法实现了同时存在平移和旋转情况下的快速图像配准。

Description

同时存在平移和旋转情况下的快速图像配准方法
技术领域
本发明属于数字图像处理技术领域,涉及一种同时存在平移和旋转情况下的快速图像配准方法。
背景技术
两幅图像的配准,在图像拼接、图像超分辨率重建、印鉴真伪鉴别等处理过程中,是关键的一个环节,当一幅图像需要进行平移及旋转操作后,才能够配准。在两幅具有局部内容相同的图像间进行配准时,如果平移量不为0,则会影响旋转参数的确定,同样地,旋转参数不为0,也无法准确地确定平移量。如果先平移,则旋转角度的存在会影响平移参数的确定,如果先旋转,则平移的存在会影响到旋转参数的确定,最终导致配准的失败。
发明内容
本发明的目的是提供一种同时存在平移和旋转情况下的快速图像配准方法,将块匹配法和对数极坐标灰度投影法相结合,快速确定两幅图像具有相同内容部分的平移旋转参数,来实现快速图像的配准。
本发明所采用的技术方案是,一种同时存在平移和旋转情况下的快速图像配准方法,将两幅图像中的一幅图像称为参考图像[fr(i,j)]m×n,将另一幅寻找与参考图像关系的图像称为待配准图像[fc(i,j)]m×n;采用圆形模板匹配方法来确定平移量,确定圆形模板的半径后,以参考图像的中心处构造作圆形参考模板,在待配准图像的一定搜索范围内搜索与参考模板为最佳匹配的图块,其两者间的圆心坐标的差值即为待配准图像相对于参考图像的平移量;另一方面将圆形参考模板和该匹配块分别进行对数极坐标变换,将相应的参考模板以及待配准图像的匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度,将图像按照该角度进行旋转,即完成对图像的快速配准,具体按照以下步骤实施:
步骤1、在参考图像中确定圆形参考模板:
对于旋转角度小于±57.8°的待配准图像,根据模板半径大小与旋转角度的对应关系,确定圆形参考模板的半径大小,在参考图像上,按照选定的半径确定参考模板;对于旋转角度大于±57.8°的待配准图像,先旋转一次或多次±90°后,使得待配准图像与标准图像的角度偏移量在±57.8°的范围内,再根据模板半径大小与旋转角度的对应关系,确定圆形参考模板的半径大小,在参考图像上,按照选定的半径确定参考模板;
步骤2、确定平移量,将待配准图像进行平移:
首先,在上步确定参考模板大小和模板匹配搜索范围的基础上,确定等间隔的步长step;以step为步长,在待配准图像上遍历搜索范围内的所有与参考模板相同大小的圆形子块,找到最佳匹配块,获得粗匹配平移量(Δx1,Δy1);
其次,在粗匹配位置的范围内进行精确匹配,搜索范围与step的关系为range=[-step,step],获得精确匹配的平移量(Δx2,Δy2);
最后,根据粗匹配平移量(Δx1,Δy1)和精确匹配的平移量(Δx2,Δy2),确定最终的平移量为(Δx,Δy)=(Δx1+Δx2,Δy1+Δy2),将待配准图像平移(Δx,Δy),得到平移后的结果图像[fcd(i,j)]m×n,表达式为:
fcd(i,j)=fc(i+Δx,j+Δy),i=1,2,...,m,j=1,2,...,n    (1)
其中,fcd(i,j)为[fcd(i,j)]m×n的像素值,fc(i,j)为[fc(i,j)]m×n的像素值;
步骤3、对上步平移后的结果图像[fcd(i,j)]m×n以及参考图像[fr(i,j)]m×n分别进行对数极坐标转换:
设平移后的结果图像[fcd(i,j)]m×n中的任一像素的位置既能用笛卡尔坐标fcd(x,y)来表示,又能用极坐标fcd(ρ,θ)来表示,这样,平移后的结果图像[fcd(i,j)]m×n在笛卡尔坐标系的像素值fcd(x,y)到极坐标系的像素值fcd(ρ,θ)之间的对数极坐标变换定义为:
ρ = log ( x - x 0 ) 2 + ( y - y 0 ) 2 θ = arctan ( y - y 0 x - x 0 ) - - - ( 2 )
式中,(ρ,θ)分别为对数极坐标系的极径和极角,(x0,y0)为选定的坐标原点,
如果取由步骤2得到的平移后的结果图像[fcd(i,j)]m×n的最佳平移匹配圆块的中心点为笛卡尔坐标原点为(0,0),则对数极坐标的转换公式变为:
ρ = log x 2 + y 2 θ = arctan ( y x ) - - - ( 3 )
同理,根据式(3),对参考图像[fr(i,j)]m×n,取其模板的圆心作为笛卡尔坐标系的原点进行极坐标转换,得到fr(ρ,θ);
步骤4、对于平移后的结果图像的对数极坐标转换结果fcd(ρ,θ)及参考图像的对数极坐标转换结果fr(ρ,θ),将相应的参考模板以及待配准图像的最佳平移匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度Δθ;
步骤5、根据上步获得的待配准图像的旋转角度Δθ,对经过步骤2平移后的图像[fcd(i,j)]m×n旋转Δθ,即完成对图像的配准。
本发明方法的有益效果是,能够快速地确定图像间出现的较大的平移量和旋转量参数,据此完成图像间的配准,广泛用于超分辨率重建、图像拼接、印鉴真伪鉴别等方面。
附图说明
图1是本发明中的参考图像示意图;
图2是本发明中的待配准图像示意图;
图3是图像中的像素点在笛卡尔坐标系下的角度关系示意图;
图4是图像中的像素点在极坐标系下的角度关系示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明方法中,两幅图像进行配准的前提条件是,该两幅图像间存在着部分相同内容,而相同内容部分存在着一定的平移与旋转关系。为了便于说明,在以下描述中将两幅图像中的一幅图像称为参考图像[fr(i,j)]m×n,将另一幅寻找与参考图像关系的图像称为待配准图像[fc(i,j)]m×n
为了抵抗旋转角度对平移量寻找时的影响,本发明提出了构造模板匹配的方法来完成,选择模板时,保证旋转对其的影响在亚像素范围内。
为了方便说明,假设参考图像的中心位置周围的内容与待配准图像的部分内容相同,取参考图像[fr(i,j)]m×n中心的r×r圆形局部子块(图1中的A块)作为参考模板,然后在待配准图像[fc(i,j)]m×n中的一定搜索范围内(图2中的虚线框内区域),寻找与参考模板的差值最小的圆块,如图2中的差值最小的圆块Bn块,此时Bn块的中心坐标与A块中心坐标之间的差值,就是待配准图像相对于参考图像的平移量,如图2中所示的(Δx,Δy)。
本发明的方法,按照以下的具体步骤实施:
步骤1、确定参考模板的大小:
为了保证参考模板的大小在确定平移量时,旋转角度的影响在亚像素的范围内,对于旋转角度小于±57.8°的待配准图像,根据模板半径大小与旋转角度的对应关系,通过查询表1,确定圆形参考模板的半径大小,并在参考图像上,按照选定的半径确定参考模板;对于旋转角度大于±57.8°的待配准图像,则先旋转一次或多次±90°后,使得待配准图像与参考图像的角度偏移量在±57.8°的范围内,因为对于图像旋转±90°的操作,只是将图像的行、列互换,不存在旋转误差,所以旋转一次或多次±90°不影响图像的配准精度,再根据模板半径大小与旋转角度的对应关系,查询表1获得参考模板的半径大小。
表1模板半径大小与旋转角度的对应关系表
Figure BSA00000245164700051
步骤2、确定平移量,将待配准图像进行平移:
按照全局、局部搜索的两步法进行实施,
首先,根据上步确定的参考模板大小,在模板匹配搜索范围内,确定等间隔的步长step,step的大小优选为搜索区域的1/4;以step为步长,在待配准图像上遍历搜索范围内的所有与参考模板相同大小的圆形子块,找到最佳匹配块,获得粗匹配平移量(Δx1,Δy1);
其次,在粗匹配位置的范围内进行精确匹配,搜索范围与step的关系为range=[-step,step],获得精确匹配的平移量(Δx2,Δy2);
最后,根据粗匹配平移量(Δx1,Δy1)和精确匹配的平移量(Δx2,Δy2),确定最终的平移量为(Δx,Δy)=(Δx1+Δx2,Δy1+Δy2),将待配准图像平移(Δx,Δy),得到平移后的结果图像[fcd(i,j)]m×n,表达式为:
fcd(i,j)=fc(i+Δx,j+Δy),i=1,2,...,m,j=1,2,...,n    (1)
其中,fcd(i,j)为[fcd(i,j)]m×n的像素值,fc(i,j)为[fc(i,j)]m×n的像素值。
步骤3、对上步平移后的结果图像[fcd(i,j)]m×n以及参考图像[fr(i,j)]m×n分别进行对数极坐标转换:
笛卡尔坐标与对数极坐标之间的变换关系如图3、图4所示。
设平移后的结果图像[fcd(i,j)]m×n中的任一像素的位置既能用笛卡尔坐标fcd(x,y)来表示,又能用极坐标fcd(ρ,θ)来表示,这样,平移后的结果图像[fcd(i,j)]m×n在笛卡尔坐标系的像素值fcd(x,y)到极坐标系的像素值fcd(ρ,θ)之间的对数极坐标变换定义为:
ρ = log ( x - x 0 ) 2 + ( y - y 0 ) 2 θ = arctan ( y - y 0 x - x 0 ) - - - ( 2 )
式中,(ρ,θ)分别为对数极坐标系的极径和极角,(x0,y0)为选定的坐标原点。
如果取由步骤2得到的平移后的结果图像[fcd(i,j)]m×n的最佳平移匹配圆块的中心点为笛卡尔坐标原点为(0,0),则对数极坐标的转换公式变为:
ρ = log x 2 + y 2 θ = arctan ( y x ) - - - ( 3 )
同理,根据式(3),对参考图像[fr(i,j)]m×n,取其模板的圆心作为笛卡尔坐标系的原点进行极坐标转换,得到fr(ρ,θ);
步骤4、对于平移后的结果图像的对数极坐标转换结果fcd(ρ,θ)及参考图像的对数极坐标转换结果fr(ρ,θ),将相应的参考模板以及待配准图像的最佳平移匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度Δθ:
灰度投影是将二维图像的灰度信息映射为两个独立的一维波形,具体包括图像映射和相关性计算步骤:
4.1)图像映射:这里定义图像映射是将图像F(ρ,θ)的灰度值分别进行行、列投影,图像F(ρ,θ)的含义是一个泛化的含义,可以是标准图像,也可以是待配准图像,
即: F ρ ( θ ) = Σ ρ F ( ρ , θ ) F θ ( ρ ) = Σ θ F ( ρ , θ ) - - - ( 4 )
其中,Fρ(θ)为图像的灰度行投影值,Fθ(ρ)为图像的灰度列投影值,分别令F(ρ,θ)=fr(ρ,θ),F(ρ,θ)=fcd(ρ,θ),代入式(4),分别得到两者的投影曲线,即:平移后的结果图像[fcd(i,j)]m×n在对数极坐标系中的像素值fcd(ρ,θ)的行、列投影为
F ρ cd ( θ ) = Σ ρ f cd ( ρ , θ ) F θ cd ( ρ ) = Σ θ f cd ( ρ , θ ) - - - ( 5 )
其中,
Figure BSA00000245164700073
是fcd(ρ,θ)的行投影,是fcd(ρ,θ)的列投影;参考图像[fr(i,j)]m×n在对数极坐标系中的像素值fr(ρ,θ)的行、列投影为
F ρ r ( θ ) = Σ ρ f r ( ρ , θ ) F θ r ( ρ ) = Σ θ f r ( ρ , θ ) - - - ( 6 )
其中,是fr(ρ,θ)的行投影,是fr(ρ,θ)的列投影。
4.2)相关性计算:将上步得到的平移后的结果图像的列灰度投影曲线与参考图像的列灰度投影曲线按下式做互相关运算:
C ( w ) = Σ ρ = 1 N [ F θ r ( ρ + w ) - F θ cd ( m + ρ ) ] 2 , 1 ≤ w ≤ 2 m + 1 - - - ( 7 )
其中,
Figure BSA00000245164700083
分别是fr(ρ+w,θ)和fcd(m+ρ,θ)的列灰度投影值,N为列的个数,m为位移矢量相对于参考图像在一侧的搜索宽度,设wmin为C(w)最小值时的w值,得到平移后的结果图像相对于参考图像的旋转角度Δθ:
Δθ=m+1-wmin                            (8)
步骤5、根据上步获得的平移后的结果图像的旋转角度Δθ,对经过步骤2平移后的结果图像[fcd(i,j)]m×n旋转Δθ,即完成对图像的配准。
综上所述,本发明的快速图像配准方法,一方面是采用圆形模板匹配技术确定平移量,查询预先设置的确定平移量时,可保证旋转角度的影响为亚像素级的参数表,确定圆形模板的半径后,以参考图像的中心处构造作参考圆形模板,在待配准图像的一定搜索范围内搜索与参考模板为最佳平移匹配的图块,其两者间的圆心坐标的差值即为待配准图像相对于参考图像的平移量;另一方面是将圆形参考模板和该最佳平移匹配块分别进行对数极坐标变换,并通过灰度投影法检测其位移角度分量的平移量后,再转换为笛卡尔坐标系下的旋转角度,将图像按照该角度进行旋转,即完成对图像的快速配准。

Claims (4)

1.一种同时存在平移和旋转情况下的快速图像配准方法,将两幅图像中的一幅图像称为参考图像[fr(i,j)]m×n,将另一幅寻找与参考图像关系的图像称为待配准图像[fc(i,j)]m×n;采用圆形模板匹配方法来确定平移量,确定圆形模板的半径后,以参考图像的中心处构造作圆形参考模板,在待配准图像的一定搜索范围内搜索与参考模板为最佳匹配的图块,其两者间的圆心坐标的差值即为待配准图像相对于参考图像的平移量;另一方面将圆形参考模板和该匹配块分别进行对数极坐标变换,将相应的参考模板以及待配准图像的匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度,将图像按照该角度进行旋转,即完成对图像的快速配准,其特征是,按照以下步骤具体实施:
步骤1、在参考图像中确定圆形参考模板:
对于旋转角度小于±57.8°的待配准图像,根据模板半径大小与旋转角度的对应关系,确定圆形参考模板的半径大小,在参考图像上,按照选定的半径确定参考模板;对于旋转角度大于±57.8°的待配准图像,先旋转一次或多次±90°后,使得待配准图像与标准图像的角度偏移量在±57.8°的范围内,再根据模板半径大小与旋转角度的对应关系,确定圆形参考模板的半径大小,在参考图像上,按照选定的半径确定参考模板;
步骤2、确定平移量,将待配准图像进行平移:
首先,在上步确定参考模板大小和模板匹配搜索范围的基础上,确定等间隔的步长step;以step为步长,在待配准图像上遍历搜索范围内的所有与参考模板相同大小的圆形子块,找到最佳匹配块,获得粗匹配平移量(Δx1,Δy1);
其次,在粗匹配位置的范围内进行精确匹配,搜索范围与step的关系为range=[-step,step],获得精确匹配的平移量(Δx2,Δy2);
最后,根据粗匹配平移量(Δx1,Δy1)和精确匹配的平移量(Δx2,Δy2),确定最终的平移量为(Δx,Δy)=(Δx1+Δx2,Δy1+Δy2),将待配准图像平移(Δx,Δy),得到平移后的结果图像[fcd(i,j)]m×n表达式为:
fcd(i,j)=fc(i+Δx,j+Δy),i=1,2,...,m,j=1,2,...,n    (1)
其中,fcd(i,j)为[fcd(i,j)]m×n的像素值,fc(i,j)为[fc(i,j)]m×n的像素值;
步骤3、对上步平移后的结果图像[fcd(i,j)]m×n以及参考图像[fr(i,j)]m×n分别进行对数极坐标转换:
设平移后的结果图像[fcd(i,j)]m×n中的任一像素的位置既能用笛卡尔坐标fcd(x,y)来表示,又能用极坐标fcd(ρ,θ)来表示,这样,平移后的结果图像[fcd(i,j)]m×n在笛卡尔坐标系的像素值fcd(x,y)到极坐标系的像素值fcd(ρ,θ)之间的对数极坐标变换定义为:
ρ = log ( x - x 0 ) 2 + ( y - y 0 ) 2 θ = arctan ( y - y 0 x - x 0 ) - - - ( 2 )
式中,(ρ,θ)分别为对数极坐标系的极径和极角,(x0,y0)为选定的坐标原点,
如果取由步骤2得到的平移后的结果图像[fcd(i,j)]m×n的最佳平移匹配圆块的中心点为笛卡尔坐标原点为(0,0),则对数极坐标的转换公式变为:
ρ = log x 2 + y 2 θ = arctan ( y x ) - - - ( 3 )
同理,根据式(3),对参考图像[fr(i,j)]m×n,取其模板的圆心作为笛卡尔坐标系的原点进行极坐标转换,得到fr(ρ,θ);
步骤4、对于平移后的结果图像的对数极坐标转换结果fcd(ρ,θ)及参考图像的对数极坐标转换结果fr(ρ,θ),将相应的参考模板以及待配准图像的最佳平移匹配子块进行灰度投影,确定待配准图像相对于参考图像的旋转角度Δθ;
步骤5、根据上步获得的待配准图像的旋转角度Δθ,对经过步骤2平移后的图像[fcd(i,j)]m×n旋转Δθ,即完成对图像的配准。
2.根据权利要求1所述的同时存在平移和旋转情况下的快速图像配准方法,其特征在于,所述的步骤1中的模板半径大小与旋转角度的对应关系是:
Figure FSB00000694862900031
3.根据权利要求1所述的同时存在平移和旋转情况下的快速图像配准方法,其特征在于,所述的步骤2中,step的大小优选为搜索区域的1/4。
4.根据权利要求1所述的同时存在平移和旋转情况下的快速图像配准方法,其特征在于,所述的步骤4中具体包括以下两个步骤:
4.1)图像映射:定义图像映射是将图像F(ρ,θ)的灰度值分别进行行、列投影,F(ρ,θ)是一个泛化的含义,指的是标准图像或者是待配准图像,
即: F ρ ( θ ) = Σ ρ F ( ρ , θ ) F θ ( ρ ) = Σ θ F ( ρ , θ ) - - - ( 4 )
其中,Fρ(θ)为图像的灰度行投影值,Fθ(ρ)为图像的灰度列投影值,分别令F(ρ,θ)=fr(ρ,θ),F(ρ,θ)=fcd(ρ,θ),代入式(4),分别得到两者的投影曲线,即:平移后的结果图像[fcd(i,j)]m×n在对数极坐标系中的像素值fcd(ρ,θ)的行、列投影为
F ρ cd ( θ ) = Σ ρ f cd ( ρ , θ ) F θ cd ( ρ ) = Σ θ f cd ( ρ , θ ) - - - ( 5 )
其中,
Figure FSB00000694862900042
是fcd(ρ,θ)的行投影,
Figure FSB00000694862900043
是fcd(ρ,θ)的列投影;参考图像[fr(i,j)]m×n在对数极坐标系中的像素值fr(ρ,θ)的行、列投影为
F ρ r ( θ ) = Σ ρ f r ( ρ , θ ) F θ r ( ρ ) = Σ θ f r ( ρ , θ ) - - - ( 6 )
其中,
Figure FSB00000694862900045
是fr(ρ,θ)的行投影,
Figure FSB00000694862900046
是fr(ρ,θ)的列投影;
4.2)相关性计算:将上步得到的平移后的结果图像的列灰度投影曲线与参考图像的列灰度投影曲线按下式做互相关运算:
C ( w ) = Σ ρ = 1 N [ F θ r ( ρ + w ) - F θ cd ( m + ρ ) ] 2 , 1 ≤ w ≤ 2 m + 1 - - - ( 7 )
其中,
Figure FSB00000694862900048
分别是fr(ρ+w,θ)和fcd(m+ρ,θ)的列灰度投影值,N为列的个数,m为位移矢量相对于参考图像在一侧的搜索宽度,设wmin为C(w)最小值时的w值,得到平移后的结果图像相对于参考图像的旋转角度Δθ:
Δθ=m+1-wmin。                               (8)
CN2010102641967A 2010-08-26 2010-08-26 同时存在平移和旋转情况下的快速图像配准方法 Expired - Fee Related CN101950419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102641967A CN101950419B (zh) 2010-08-26 2010-08-26 同时存在平移和旋转情况下的快速图像配准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102641967A CN101950419B (zh) 2010-08-26 2010-08-26 同时存在平移和旋转情况下的快速图像配准方法

Publications (2)

Publication Number Publication Date
CN101950419A CN101950419A (zh) 2011-01-19
CN101950419B true CN101950419B (zh) 2012-09-05

Family

ID=43453906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102641967A Expired - Fee Related CN101950419B (zh) 2010-08-26 2010-08-26 同时存在平移和旋转情况下的快速图像配准方法

Country Status (1)

Country Link
CN (1) CN101950419B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215304A (zh) * 2020-11-05 2021-01-12 珠海大横琴科技发展有限公司 一种用于地理影像拼接的灰度影像匹配方法及装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799865B (zh) * 2012-07-03 2015-04-01 天津大学 基于图像边界极坐标化离散序列的角度识别方法
CN103076003A (zh) * 2012-12-25 2013-05-01 中国科学院长春光学精密机械与物理研究所 一种基于电子图像处理器的图像序列位移矢量测量装置
CN103198465A (zh) * 2013-04-19 2013-07-10 中国石油大学(华东) 一种ct扫描图像旋转误差校正方法
CN103593838B (zh) * 2013-08-01 2016-04-13 华中科技大学 一种快速互相关灰度图像匹配方法与装置
CN103940344B (zh) * 2014-04-11 2017-08-11 西安敏文电子科技有限公司 一种高精度远程位移传感器
CN108093627B (zh) * 2015-05-11 2020-06-09 Dp极点有限公司 用于将可流动材料施加到可围绕转动轴线转动的底座上的设备和方法
CN106327503B (zh) * 2016-09-13 2019-03-15 微鲸科技有限公司 一种图像配准的方法和设备
CN107093179A (zh) * 2017-03-07 2017-08-25 北京环境特性研究所 针对广域空间的双波段火灾搜索定位方法
CN107274441B (zh) * 2017-06-14 2020-07-03 中国科学院遥感与数字地球研究所 一种高光谱图像的波段校准方法和***
CN107493403B (zh) * 2017-08-11 2019-09-24 宁波江丰生物信息技术有限公司 一种数字病理切片扫描***
CN107563440B (zh) * 2017-09-01 2020-07-28 京东方科技集团股份有限公司 一种图像处理方法及装置
CN108682014A (zh) * 2018-07-18 2018-10-19 上海晨光文具股份有限公司 图像配准方法、装置、存储介质和图像印刷流水线设备
WO2020037573A1 (zh) 2018-08-22 2020-02-27 深圳市真迈生物科技有限公司 检测图像上的亮斑的方法、装置和计算机程序产品
US12008775B2 (en) 2018-08-22 2024-06-11 Genemind Biosciences Company Limited Method and device for image registration, and computer program product
EP3843033B1 (en) 2018-08-22 2024-05-22 GeneMind Biosciences Company Limited Method for constructing sequencing template based on image, and base recognition method and device
CN109239388B (zh) * 2018-09-10 2020-09-25 清华大学深圳研究生院 一种电子皮肤的触觉动态感知方法
CN109738163B (zh) * 2019-01-16 2020-11-17 中国科学院光电技术研究所 一种应用于光电跟踪设备中消像旋脱靶量获取方法
CN110310309B (zh) * 2019-07-09 2021-08-31 中国电子科技集团公司第十三研究所 一种图像配准方法、图像配准装置及终端
CN110310312B (zh) * 2019-07-09 2021-08-31 中国电子科技集团公司第十三研究所 一种图像配准方法、图像配准装置及终端
CN110264490B (zh) * 2019-08-15 2019-12-10 成都新西旺自动化科技有限公司 一种应用于机器视觉***中的亚像素精度边缘提取方法
CN112215942B (zh) * 2020-09-14 2024-01-12 中国科学院计算技术研究所 一种冷冻电镜局部断层三维图像重构方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763633A (zh) * 2009-07-15 2010-06-30 中国科学院自动化研究所 基于显著性区域的可见光图像配准方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763633A (zh) * 2009-07-15 2010-06-30 中国科学院自动化研究所 基于显著性区域的可见光图像配准方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李中科.《针对旋转和平移运动的一种图像配准方法》.《应用科学学报》.2005,第23卷(第3期),282-286. *
许俊泽.《对数极坐标变换域下互信息图像配准方法》.《信息与电子工程》.2009,第7卷(第4期), *
雷凯.《基于特征点的对数极坐标变换图像配准算法》.《光学技术》.2007,第32卷(第3期), *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215304A (zh) * 2020-11-05 2021-01-12 珠海大横琴科技发展有限公司 一种用于地理影像拼接的灰度影像匹配方法及装置

Also Published As

Publication number Publication date
CN101950419A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101950419B (zh) 同时存在平移和旋转情况下的快速图像配准方法
CN103886593B (zh) 一种基于三维点云曲面圆孔检测方法
WO2016101643A1 (zh) 一种仪表数据读取方法及***
CN101251926B (zh) 一种基于局部轮廓协方差矩阵的遥感图像配准方法
CN102034101B (zh) 一种pcb视觉检测中快速圆形标志定位方法
CN104200461B (zh) 基于互信息图像选块和sift特征的遥感图像配准方法
CN109685855B (zh) 一种道路云监控平台下的摄像机标定优化方法
CN103824080B (zh) 动态稀疏环境下机器人slam物体状态检测方法
CN104154911B (zh) 一种具有旋转不变性的海底地形二维匹配辅助导航方法
CN103292701A (zh) 基于机器视觉的精密器件在线尺寸测量方法
CN104834923B (zh) 基于全局信息的指纹图像配准方法
CN104036480A (zh) 基于surf算法的快速消除误匹配点方法
CN112013788B (zh) 基于叶片局部前缘曲线特征标定转动中心的方法
CN110009680B (zh) 基于圆特征及异面特征点的单目图像位置、姿态测量方法
CN103425988A (zh) 一种具有圆弧几何基元的实时定位与匹配方法
CN101556694B (zh) 一种旋转图像的匹配方法
CN103593838A (zh) 一种快速互相关灰度图像匹配方法与装置
JPH08136220A (ja) 物品の位置検出方法およびその装置
CN102096920B (zh) 基于标靶图像的亚像素配准方法
CN104754323A (zh) 摄像头光轴检测设备的标定方法
CN108229560B (zh) 基于轮廓曲线匹配算法实现数控***工件定位匹配的方法
CN103886600A (zh) 一种连续相位板加工误差识别方法
JP4694624B2 (ja) 画像補正装置及び方法、並びにコンピュータプログラム
WO2022078301A1 (zh) 一种数据处理的方法和装置
CN103714550A (zh) 一种基于匹配曲线特征评估的图像配准自动优化算法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20140826

EXPY Termination of patent right or utility model