CN101927065B - 用于癌症治疗和研究的紧凑型微束放疗***及方法 - Google Patents

用于癌症治疗和研究的紧凑型微束放疗***及方法 Download PDF

Info

Publication number
CN101927065B
CN101927065B CN201010142047.3A CN201010142047A CN101927065B CN 101927065 B CN101927065 B CN 101927065B CN 201010142047 A CN201010142047 A CN 201010142047A CN 101927065 B CN101927065 B CN 101927065B
Authority
CN
China
Prior art keywords
ray
ray source
radiation
microbeam
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010142047.3A
Other languages
English (en)
Other versions
CN101927065A (zh
Inventor
O·Z.·周
S·X.·常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of North Carolina at Chapel Hill
University of North Carolina System
Original Assignee
University of North Carolina at Chapel Hill
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of North Carolina at Chapel Hill filed Critical University of North Carolina at Chapel Hill
Publication of CN101927065A publication Critical patent/CN101927065A/zh
Application granted granted Critical
Publication of CN101927065B publication Critical patent/CN101927065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/508Clinical applications for non-human patients

Abstract

当前主旨涉及基于碳纳米管分布式X射线源阵列技术的用于癌症研究和治疗的紧凑型非同步微束放疗(MPT)***和方法。所述***和方法能够以每秒10Gy或更高的峰值剂量率传输显微离散型X射线辐射。所述X射线辐射可以由空间分布式X射线源阵列提供。举例而非限制性的,所述技术可用于人类癌症治疗、术中放疗以及动物癌症模型上的潜伏期癌症研究。

Description

用于癌症治疗和研究的紧凑型微束放疗***及方法
相关申请
当前公开的主旨要求2009年1月16日提交的61/205,240的优先权,其公开的内容在此全部引入作为参考。
政府利益
当前公开的主旨按照国家癌症中心授予的合同U54CA119343和1R21CA118351-01,由美国政府资助完成。因此,美国政府对当前公开的主旨具有一定的权利。
技术领域
在此公开的主旨一般涉及放疗***和方法。更特别地,在此公开的主旨涉及癌症治疗和研究的微束放疗***及方法。微束放疗(MRT)辐射可以由它的显微离散空间辐射分布(束宽小于1毫米且束间距为几毫米)以及超高剂量率(10Gy/s或更高)来表征。
背景技术
放疗的根本挑战是有效且安全地治疗癌症患者。当前的放疗***和方法为具有早期癌症且对放射敏感的癌症的患者提供了极好的益处,但对于具有抗辐射肿瘤(例如,脑或胰腺癌)的患者以及具有晚期肿瘤的患者,这些益处就减少了。对于这些患者,消除肿瘤所需的辐射会引起无法忍受的或致命的放射损伤。特别是对于儿科患者,其快速生长的正常组织经常比他们的肿瘤对放射更敏感,并且因此其不能忍受对患有同样疾病的成人来说是有效的放疗。因此,在当前的放疗中,正常组织附带的损伤是个主要的局限,妨碍了对年轻癌症患者、具有中枢神经***癌症、抗辐射癌症以及具有巨大肿瘤的晚期癌症的患者的有效放疗。这些癌症患者目前有不良的预后。
微束放疗(MRT)是一种单一形式的放射线,其在众多的动物研究中显示了消除肿瘤同时不伤害正常组织的非凡能力。MRT利用多重窄的但充分分散的X射线平面光束(即“微束”)并以非常高的剂量率传输放射线。MRT放射线在两个方面不同于传统的放疗射线:剂量空间离散性和剂量时间率。在传统治疗中,剂量率为大约低100倍且剂量分布在空间上是显微连续的。当前的解决方案,并非经常有效,以2Gy每次治疗地进行多次治疗。相反的,动物研究已经显示数百Gy(例如,大约102Gy或更高)的剂量水平的单次治疗可消除肿瘤同时不伤害正常组织,包括中枢神经***中生长中的组织。
目前存在关于MRT可用来提供消除肿瘤同时不伤害正常组织的两种假设机理。首先,认为肿瘤微脉管***不会自我修复而正常组织会。其次,显现出旁观者效应,其中,未经照射的肿瘤细胞通过细胞-细胞间发送信号随经照射的肿瘤细胞一同死亡(例如,参见D.Slatkin et al.,Proc.Natl.Acac.Sci.USA,Vol 92,pp8783-8787,1995)。然而,MRT的基础机理仍然难以理解。虽然如此,MRT对人类应用来说非常有吸引力,因为放疗的关键挑战已经变成如何消除肿瘤并将对宿主正常组织的相关损伤减到最小。
然而,不幸地是,MRT要求在瞬间用具有非常高剂量率(例如,类似于100Gy/s或更高等级)的X射线照射组织以确保由于靶移动引起的显微磨片的最小宽展。这个剂量率比通常用来做传统放疗的高几个数量等级。
如今现有的X射线管工艺不能提供MRT剂量分布和剂量率,因为MRT剂量率可以是当前放疗机器(~5Gy/分)的数千倍。高剂量率被认为对将在照射活性对象期间所需的十几微米宽的微束的宽展(由对象运动引起)最小化是重要的。传统的X射线管包括金属丝(阴极),其在电阻加热到超过1000℃时发射电子,以及金属靶(阳极),其在被加速电子轰击时发射X射线。X射线源的空间分辨率由焦点的大小决定,所述焦斑为X射线阳极上接收电子束的区域。由于高运行温度和能量消耗,基本上当前所有商业的X射线管为单象元装置,其中,从阳极上的单个焦点发射X射线射线。阳极的热负荷限制了X射线管的最大X射线通量。为了使用当前的X射线技术以超高剂量率产生小的MRT光束大小,要求超越实际可能性的超高电子束密度和热负荷。例如,当前的高能X射线管在~100kW下只能传输大约1~10cGy/s到源对象的距离为~0.6m的患者。
结果,由于这个高剂量率的要求,因而使用同步加速辐射专门地研究MRT,例如在美国的国家同步加速器光源(NSLS)以及在法国格勒诺布尔的欧洲同步加速器放射设备(ESRF)。因此,为了加速可能推进有前途的癌症治疗研究用于潜在的人类应用,需要紧凑型的、非同步辐射源MRT***及其相关的方法,其能够广泛适用于癌症中心用于潜伏期的研究和临床应用。
发明内容
依照本公开文本,提供一种用于微束放疗的紧凑型、非同步加速器放射源的MRT***及方法。一方面,提供一种微束放疗的方法。所述方法可包括围绕要照射的靶放置分布式X射线源阵列,所述X射线源阵列包括多个碳纳米管场发射X射线源;以及同时从多个带微束准直器的碳纳米管场发射X射线源产生多个X射线微束。
另一方面,提供一种微束放疗***。该***可包括分布式的X射线源阵列,其包括多个碳纳米管场发射X射线源,将每个X射线源放置为引导X射线辐射朝向共同的焦点;微束阵列准直;用于将靶靶与多个X射线微束对准的定位装置;以及控制***,其与分布式的X射线源阵列中的多个X射线源的每一个通信用于同时从多个X射线源产生多个X射线微束。
尽管在上文已经说明了本公开主旨的一些方面,并且通过当前公开的主旨全部或部分地实现了这些方面,但随着结合下文作最佳描述的附图所继续进行的描述,其它的方面将变得明显。
附图说明
从以下的应当结合附图阅读的详细描述,将很容易理解当前主旨的特性和优点,这些附图只是作为示范性的和非限制性的例子给出,其中:
图1A是对象内靶的微束放疗的侧视图;
图1B是横切图1A的X射线微束的剂量率分布的图示;
图2是采用微束放疗的方法照射的大白鼠后脑的水平组织切片的图像;
图3是根据当前公开主旨的实施例的与微束放疗***一同使用的场发射X射线源的示意图;
图4是根据当前公开主旨的另一实施例的与微束放疗***一同使用的场发射X射线源的示意图;
图5是根据当前公开主旨的实施例的微束放疗***的俯视图;
图6是根据当前公开主旨的实施例的布置在环形阵列中的微束放疗***的俯视图;
图7是根据当前公开主旨的实施例的布置在多边形阵列中的微束放疗***的俯视图;
图8是根据当前公开主旨的实施例的对象内靶的微束放疗的侧视图;以及
图9是根据当前公开主旨的实施例的微束放疗方法的流程图。
具体实施方式
传统的X射线源从接收电子的X射线阳极(“焦斑”)上的一小块区域产生X射线辐射。在它被高能电子轰击时阳极上的局部温度可达到超过1500℃。最大的X射线剂量可由阳极所能承受的热负荷限定,其还与焦斑的尺寸相关。例如,临床的线性加速器(LINAC)只能传输大约5Gy/分的剂量。相反的,当前主旨提供的紧凑型、非同步辐射源MRT装置、***以及方法能够利用多个分离的、狭窄的X射线平面或线束以相当高的剂量率传输辐射。例如,MRT装置、***以及方法可用来为具有脑瘤的人治疗癌症以及术中放疗。还可以想象在此公开的MRT装置、***和方法可用作动物模型的癌症研究。
如上所述,MRT在剂量空间离散性和剂量时间率上区别于传统的放疗技术。特别地,参考图1A和1B,而非在整个束宽上提供单一束宽的基本连续的剂量分布,MRT装置、***和方法产生多个X射线微束MB,其每一个都具有类似于大约1mm或更小级别的束宽。如图2所能看到的,用MRT方法辐射的样品可以被多个明显的X射线束路径所识别。这多个微束MB能够被引导朝向包含在对象O中的靶T(例如,肿瘤)。
MRT区别于传统放疗的第二个特性是相当高的时间剂量率。先前公开的MRT***和方法使用高能同步加速器或传统X射线管源产生X射线,但如上所述这些选择的每一个都具有重大的缺陷。相反的,当前公开的主旨提供相当高的足够用于MRT的空间剂量率,其可采用由多个围绕对象O放置的单独X射线源组成的空间分布式X射线源阵列实现。
在当前公开主旨的一个方面,空间分布式X射线源阵列能够基于碳纳米管(CNT)分布式X射线源阵列技术。例如,在名为“Large-Area Individually AddressableMulti-Beam X-Ray System and Method of Forming Same”的美国专利6,876,724;名为“X-Ray Generating Mechanism Usmg Electron Field Emission Cathode”的美国专利6,850,595以及名为“X-Ray Generating Mechanism Using Electron Field EmissionCathode”的美国专利6,553,096中公开的CNT场发射器,其内容在此全部引入作为参考。
图3和4中示出场发射X射线源的示范性结构。在显示的示范性结构中,场发射X射线源100可包括场发射阴极结构110,诸如象在导电底层上的纳米结构或碳纳米管薄膜。阳极110上可放置门电极120(例如,高熔化温度的金属栅格)从而在阳极110和门电极120之间施加电压能够引起从阴极110场发射的电子,例如作为电子束EB引导朝向用于产生X射线束的阳极130。X射线源100还可包括用于在其到达阳极130之前聚焦电子束EB的聚焦电极140,从而减少了在阳极130上焦斑的尺寸。
如图3所示,该***还可包括微束准直器150,其可放置在发射的X射线束路径中以只允许选定的具有固定束厚d的X射线微束MB传输,从而定义辐射区域。例如,在图5所示的一个实施例中,准直器150能够产生具有狭窄束宽(例如,具有大约在0.01mm和1mm之间的束宽)的扇束X射线辐射。结果,靶T的薄片能够被X射线微束MB照射。为了将对正常组织的损伤最小化,还可以校准该扇束的角度θ(即该扇束的伸展生)从而X射线辐射基本覆盖靶T占领的区域。此外,该***还可包括放置在每个X射线源100和靶T之间的放射性铬薄膜(例如,Gafchromic XR-QA)。在这个结构中,可以产生具有比在临床治疗使用的剂量率明显高的剂量率的X射线微束MB。如图4所示,在另一配置中,该***可包括多缝微束准直器或多个准直器150,其同样地可放置在所发射的X射线束路径中。这个配置能造成从每个X射线源100发射出多个不重叠(例如,平行)的X射线微束MB。
为获得MRT所需的高剂量率,如图5所示,多个X射线源100可装配成分布式X射线阵列200。每个X射线源100可以是带独立阴极110和阳极130的独特元件,其可以是独立地运行或与其它多个X射线源100联合起来运行。可选地,X射线源阵列200可包括在真空容器中的阳极环和相对的阴极环。在这个可选的配置中,阴极环和阳极环可共同地运行以从阳极环产生X射线辐射并照射到对象O中的靶T。
在任一个配置中,X射线源阵列200具有分布式X射线源的功能。代替使用从一个方向传输辐射的一个平行的X射线束或两个互相垂直的光束阵列(即,如在同步加速器源运行的试验所作的那样),X射线源阵列200围绕要被照射的靶T。这样,可以将X射线辐射从多个方向传输到共同焦点以增加在靶T接收的辐射量而不增加对象O的除靶T之外的任何居间部分接收的辐射量。此外,该多个X射线源100的每一个能够被布置使得从一个X射线源100发出的X射线微束MB照射靶T的第一部分,从第二个X射线源100发出的X射线束MB照射靶T的不同于第一部分的第二部分,以此类推。例如,参考图8,X射线微束MB的第一集合能够沿着多个平行的辐射平面照射靶T,而在图8中以MB’标出的不同的X射线微束集合能够沿着正交于X射线微束MB第一集合辐射平面的辐射平面照射靶T。这样,尽管每个单独的X射线微束没有具有基本连续的剂量分布,但在靶T的X射线辐射具有。
结果,通过跨越围绕靶T的大区域分配X射线能量,X射线源阵列200可产生微平面X射线束,其所具有的剂量率在靶T对MRT来说是足够的。例如,X射线源阵列200可产生类似于大约0.1到100Gy/秒级别的剂量率,或其能够产生更高的类似于500Gy/秒的剂量率。同时,对象O的靶T外的部分只从单一的X射线微束MB(或微束组)接收X射线辐射而不是在共同焦点接收组合辐射,从而可以大大降低这些居间部分的剂量率。
X射线源阵列200可配置为多种几何图形的任意一种,诸如环形、弓形、多边形或线性阵列。例如,在图6所示的一个配置中,X射线源阵列200可具有环形结构。对象O可放置在该环形结构中,靶T位于多个X射线源100的焦点,且因此多个X射线微束能够从多个位置沿着该环形的圆周朝着靶T发射。在图7所示的另一配置中,X射线源阵列200可具有带多个分段的多边形结构,每个分段本质上作为线性X射线源阵列运行。尽管图中显示的环形阵列和多边形阵列结构只在X射线源阵列200的一部分上具有X射线源100,本领域技术人员应当理解X射线源100可在X射线源阵列200的整个范围放置以更充分地分配发射的X射线微束MB到靶T。
因此,相比于传统的X射线管通常从X射线阳极上的一小块区域产生X射线,X射线源阵列200在较大的区域和/或到X射线阳极上的多个焦点分配能量,从而能够获得高剂量率。主要因为X射线阳极热负荷的限制,目前商业的热离子X射线管能够在大约100kW、有效焦斑尺寸为1×1mm(反射后)下运行。这对MRT所需的剂量率来说是不足的。特别地,先前的MRT研究表明大约100Gy/秒的剂量率是有效的,但先前只有使用同步加速器源才有可能达到这样的剂量率。然而,在本***和方法中,X射线微束MB可以围绕环形或多边形阳极结构的周边产生并被引导朝向靶T。通过在大的区域上分配能量,可以获得更高的X射线剂量而不会在任何一个X射线阳极产生过量的热负荷。此外,通过使用基于碳纳米管的场发射X射线源100,相比于先前技术的装置X射线焦斑的尺寸可以减小(即小于1×1mm)。
此外,微束放疗***可包括能够设置治疗参数的控制器210,该治疗参数包括传输的剂量、驻留时间、X射线辐射平面的宽度以及相邻辐射平面间的间距。另外,该***还可包括用于支持进行放疗的患者(即对象O)的病床和能够将靶T对准辐射场的定位装置220。例如,X射线源阵列200的对准可以使用与定位装置220连接的X射线计算机断层摄影(CT)扫描仪222(例如,动态微型CT)来执行。CT扫描仪222可识别靶T的位置,以及对象O的任何***结构(例如,围绕肿瘤的正常组织),并且然后定位装置220可用来将靶T对准微束MB的焦点。
在本公开主旨的另一方面,提供一种微束放疗的方法。该方法包括围绕要被照射的靶T(例如,医疗患者体内的肿瘤)放置分布式X射线源阵列200,X射线源阵列200包括多个碳纳米管场发射X射线源100,以及同时从多个碳纳米管场发射X射线源100产生多个X射线微束MB。X射线源阵列200可构造为使得能够从位于X射线源阵列200不同位置上的多个场发射X射线源100产生X射线微束MB。X射线源100可以切换以在短时间内向靶T上的一个或几个平行辐射平面传输X射线微束。可以用治疗计划程序来确定辐射剂量、X射线束的宽度、X射线辐射平面间的间隔、以及曝光时间,这些的每一个能够由与X射线源阵列200通信的控制器220控制。
为了产生多重且平行的照射平面,包含靶T的对象O或X射线源阵列200可以在每次曝光后在很小的时间间隔内平移到顺序位置,且在每次平移之后可以运行X射线源阵列200以照射靶T。可重复该过程直到整个靶T的区域被照射。这样,X射线源阵列200能够以在交替的高低剂量平面中分配剂量的形式将X射线辐射传输给靶T。
图9示出依照这个方法的示范性过程的步骤。特别地,微束放疗的方法可包括识别照射的感兴趣区域(ROI)(例如,靶T),以及将该ROI与辐射场对准。例如,对准该ROI可包括在病床上定位对象O以及将要被照射的对象O的感兴趣区域,诸如肿瘤(即靶T)与X射线微束MB的焦点对准。例如,上述的定位装置220可用来将靶T与辐射场对准。这个对准可以通过首先定位对象O内的靶T来促进。如上所述,这个定位可使用诸如X射线计算机断层摄影扫描仪222的成像装置来完成。该扫描仪还能够在治疗期间有利于监测靶T的位置。例如,通常能监测对象O或特别是对象T的生理运动,并且X射线源阵列200的运行能够与这种运动同步,其能够将运动引起的辐射场的模糊最小化。一旦已经对准ROI,该方法还可包括确定由X射线源阵列200产生的辐射平面的剂量、宽度以及间隔,以及照射该ROI。如上所述,对象O或X射线源阵列200可平移一预定的距离,并且能重复该照射过程直到整个ROI被照射。
概括来说,公开的紧凑型***和方法能够产生空间离散性的X射线微束用于微束治疗,所述X射线微束具有含高剂量率的平面或其它几何结构。这种微束放疗***和方法可提供用于诸如人类外部光速放疗、术中放疗、短距离放疗的癌症治疗以及在动物癌症模型上的潜伏期癌症研究。
当前的主旨能够表现为其它的形式而不脱离它的精神和本质特征。因此描述的各实施例被认为是在所有方面为示意性的而非限制性的。尽管已经在某些优选实施例方面对当前的主旨作了描述,对本领域技术人员来说是显然的其它实施例同样在当前主旨的范围内。

Claims (15)

1.一种紧凑型微束放疗***,包括:
包括多个碳纳米管场发射X射线源的分布式X射线源阵列,所述X射线源定位在要被照射的对象周围并产生引导为朝向靶的X射线辐射;
定位在每个X射线源和要被照射的所述对象之间的准直***,其中,所述准直***将来自所述分布式X射线源阵列的所述X射线辐射准直为多个平行的平面束,其中,每个平面束具有小于1毫米的宽度,并且其中,所述多个平行的平面束的相邻的平面束之间的间距小于1毫米;
用于将所述靶与所述多个平行的平面束对准的精确定位装置;以及
控制***,其与所述多个X射线源中的每个通信,用于同时从所述多个X射线源以预定的X射线剂量和剂量率产生所述多个平行的平面束。
2.根据权利要求1所述的***,其中,所述X射线源包括环形阵列,其中,所述X射线源被定位在沿着所述环形阵列的周界的多个位置上。
3.根据权利要求1所述的***,其中,所述X射线源包括多边形阵列,其中,所述X射线源被定位在沿着所述多边形阵列的周界的多个位置上。
4.根据权利要求1所述的***,其中,递送到所述靶的剂量率高于10Gy/秒且所述多个平行的平面束中的每个的宽度小于1mm。
5.根据权利要求1所述的***,其中,所述分布式X射线源阵列包括发射电子的基于碳纳米管的场发射阴极,所述电子通过聚焦电极被聚集到X射线阳极的狭窄聚焦轨迹上以产生引导为朝向所述靶的X射线辐射。
6.根据权利要求1所述的***,其中,所述分布式X射线源阵列包括多个沿着所述源阵列的周界定位的基于碳纳米管的场发射阴极,其中,每个场发射阴极发射电子到X射线阳极上的线聚焦轨迹的相应部分以产生引导为朝向所述靶的X射线辐射。
7.根据权利要求1所述的***,其中,所述X射线源阵列还包括将场发射电子聚焦到X射线阳极上的狭窄聚焦轨迹的电子聚焦元件,其中,所述聚焦轨迹的有效宽度相当于或小于来自所述准直***的所述多个平行的平面束之一的宽度。
8.根据权利要求1所述的***,其中,所述X射线源阵列包括多个平行的碳纳米管场发射阴极阵列,其中,来自每个阴极阵列的场发射电子束被聚焦到X射线阳极上的狭窄线聚焦轨迹,其中,每个线聚焦轨迹的有效宽度小于1毫米,且相邻聚焦轨迹间的有效间隔小于1毫米。
9.根据权利要求8所述的***,其中,每个聚焦轨迹的有效宽度在10微米到1mm的范围内。
10.根据权利要求1所述的***,还包括能够在垂直于微束平面的方向上平移所述X射线源阵列或所述要被照射的对象的平移***,从而使得所述靶能够被多重曝光照射,其中,在每次曝光中所述微束覆盖所述靶的部分。
11.根据权利要求1所述的***,其中,所述场发射X射线源每个均包括具有小于1×1mm的有效X射线焦斑尺寸的微聚焦X射线源。
12.根据权利要求1所述的***,其中,所述准直***包括定位在所述多个场发射X射线源中的每个和共同焦点之间的一个或多个准直器。
13.根据权利要求1所述的***,还包括定位来用于识别所述靶的位置的X射线断层成像***。
14.根据权利要求13所述的***,其中,所述X射线断层成像***包括计算机断层扫描器。
15.根据权利要求13所述的***,其中,所述X射线断层成像***包括层析X射线摄影合成***。
CN201010142047.3A 2009-01-16 2010-01-18 用于癌症治疗和研究的紧凑型微束放疗***及方法 Active CN101927065B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20524009P 2009-01-16 2009-01-16
US61/205,240 2009-01-16

Publications (2)

Publication Number Publication Date
CN101927065A CN101927065A (zh) 2010-12-29
CN101927065B true CN101927065B (zh) 2014-12-17

Family

ID=43366658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010142047.3A Active CN101927065B (zh) 2009-01-16 2010-01-18 用于癌症治疗和研究的紧凑型微束放疗***及方法

Country Status (2)

Country Link
US (2) US8600003B2 (zh)
CN (1) CN101927065B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883687B2 (en) 2020-09-08 2024-01-30 Shanghai United Imaging Healthcare Co., Ltd. X-ray imaging system for radiation therapy

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155262B2 (en) 2005-04-25 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
US8189893B2 (en) 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
EP2664360B1 (en) 2010-02-24 2015-09-09 Accuray Incorporated Gantry image guided radiotherapy system and related tracking methods
WO2011156526A2 (en) 2010-06-08 2011-12-15 Accuray, Inc. Imaging methods and target tracking for image-guided radiation treatment
US9125570B2 (en) * 2010-07-16 2015-09-08 The Board Of Trustees Of The Leland Stanford Junior University Real-time tomosynthesis guidance for radiation therapy
US8358739B2 (en) 2010-09-03 2013-01-22 The University Of North Carolina At Chapel Hill Systems and methods for temporal multiplexing X-ray imaging
US9555264B1 (en) * 2011-02-15 2017-01-31 Velayudhan Sahadevan MEMS based parallel microbeam radiosurgery without adaptive resistance to radiation
US8915833B1 (en) * 2011-02-15 2014-12-23 Velayudhan Sahadevan Image guided intraoperative simultaneous several ports microbeam radiation therapy with microfocus X-ray tubes
WO2013058841A1 (en) * 2011-10-21 2013-04-25 Accuray, Inc. Apparatus for generating multi-energy x-ray images and methods of using the same
CN103907402A (zh) * 2011-11-02 2014-07-02 富士胶片株式会社 放射线照射装置、放射线照射方法及程序存储介质
US9227086B2 (en) * 2012-06-08 2016-01-05 Varian Medical Systems, Inc. High energy microbeam radiosurgery
US9233260B2 (en) 2013-03-29 2016-01-12 Microbeam Therapy, Llc. Magnetic confinement for microbeam radiation damage area
US9649298B2 (en) 2013-06-04 2017-05-16 Fumedica Ag Cytotoxic substance for use in combination with radiotherapy in cancer treatment
WO2015102680A2 (en) * 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
FR3013225B1 (fr) 2013-11-20 2018-09-14 Pmb Dispositif d'irradiation a rayonnement ionisant, notamment pour la radiotherapie et/ou la radiobiologie
CN104434165A (zh) * 2014-12-19 2015-03-25 深圳先进技术研究院 X射线成像设备
CN108348768B (zh) * 2015-11-17 2020-07-28 株式会社日立制作所 治疗计划装置及放射线治疗***
US9855445B2 (en) 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
EP3598473A1 (en) 2016-06-17 2020-01-22 The Institute of Cancer Research: Royal Cancer Hospital X-ray micro-beam production and high brilliance x-ray production
CN106783484B (zh) * 2016-12-15 2018-10-16 清华大学 光阴极分布式x射线发生装置及具有该装置的ct设备
CN106409639B (zh) * 2016-12-15 2019-03-01 清华大学 薄膜光阴极分布式x射线发生装置及具有该装置的ct设备
WO2018222839A1 (en) 2017-06-01 2018-12-06 Radiabeam Technologies, Llc Split structure particle accelerators
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
CN111479571A (zh) * 2017-07-21 2020-07-31 瓦里安医疗***公司 超高剂量率辐射和治疗剂的使用方法
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
EP3710111B1 (en) 2017-11-16 2021-12-29 Varian Medical Systems, Inc. Increased beam output and dynamic field shaping for radiotherapy system
US11511136B2 (en) 2017-11-17 2022-11-29 The Research Foundation For The State University Of New York Method for treating damaged peripheral nerves using x-ray microbeam irradiation
WO2019166702A1 (fr) * 2018-02-28 2019-09-06 Hagalife Utilisation d'un procédé d'irradiation flash pour augmenter la longévité et/ou pour retarder les effets du vieillissement chez les mammifères
WO2020018904A1 (en) * 2018-07-19 2020-01-23 Varian Medical Systems, Inc. Methods of use of ultra-high dose rate radiation and therapeutic agents
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
WO2020029148A1 (zh) 2018-08-08 2020-02-13 西安大医集团有限公司 一种放疗设备准直器校正方法及装置
WO2020051915A1 (zh) * 2018-09-14 2020-03-19 西安大医集团有限公司 一种放疗设备及其控制方法和装置
US11612049B2 (en) 2018-09-21 2023-03-21 Radiabeam Technologies, Llc Modified split structure particle accelerators
CN109846507A (zh) * 2019-02-18 2019-06-07 麦默真空技术无锡有限公司 一种用于ct探测的***
US11116995B2 (en) 2019-03-06 2021-09-14 Varian Medical Systems, Inc. Radiation treatment planning based on dose rate
US10814144B2 (en) 2019-03-06 2020-10-27 Varian Medical Systems, Inc. Radiation treatment based on dose rate
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
US11090508B2 (en) 2019-03-08 2021-08-17 Varian Medical Systems Particle Therapy Gmbh & Co. Kg System and method for biological treatment planning and decision support
WO2020227719A1 (en) * 2019-05-09 2020-11-12 The Regents Of The University Of Michigan Combined radiation acoustics and ultrasound for radiotherapy guidance and cancer targeting
US10918886B2 (en) 2019-06-10 2021-02-16 Varian Medical Systems, Inc. Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping
US11291859B2 (en) 2019-10-03 2022-04-05 Varian Medical Systems, Inc. Radiation treatment planning for delivering high dose rates to spots in a target
US20240090112A1 (en) * 2019-12-06 2024-03-14 Radiabeam Technologies, Llc Linear accelerator for generating high x-ray doses
US11865361B2 (en) 2020-04-03 2024-01-09 Varian Medical Systems, Inc. System and method for scanning pattern optimization for flash therapy treatment planning
US11541252B2 (en) 2020-06-23 2023-01-03 Varian Medical Systems, Inc. Defining dose rate for pencil beam scanning
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
US11957934B2 (en) 2020-07-01 2024-04-16 Siemens Healthineers International Ag Methods and systems using modeling of crystalline materials for spot placement for radiation therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2440535Y (zh) * 2000-09-26 2001-08-01 官爱平 X射线微波刀的复合聚焦装置
WO2001058525A1 (en) * 2000-02-11 2001-08-16 Photoelectron Corporation Apparatus for local radiation therapy
CN1316279A (zh) * 2000-05-08 2001-10-10 董森 合并放化疗缩小瘤体以进行pdt所用x光磁治癌机及其药物

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB679617A (en) 1947-09-27 1952-09-24 Westinghouse Electric Int Co Improvements in or relating to x-ray apparatus
US2842706A (en) * 1956-03-01 1958-07-08 Dobischek Dietrich Cold cathode vacuum tube
US3617285A (en) 1969-10-21 1971-11-02 William Joseph Staudenmayer Light intensifying screens
US3733484A (en) * 1969-10-29 1973-05-15 Walter C Mc Crone Associates I Control for electron microprobe
US3753020A (en) * 1971-11-26 1973-08-14 Philips Electronics And Pharm Multi-anode x-ray tube
US3783288A (en) * 1972-06-26 1974-01-01 Field Emission Corp Pulsed vacuum arc operation of field emission x-ray tube without anode melting
US3932756A (en) * 1974-06-24 1976-01-13 Sybron Corporation X-ray detector for a panoramic X-ray device
US3921022A (en) 1974-09-03 1975-11-18 Rca Corp Field emitting device and method of making same
US4012656A (en) * 1974-12-09 1977-03-15 Norman Ralph L X-ray tube
DE2646118A1 (de) * 1976-10-13 1978-04-20 Philips Patentverwaltung Anordnung zur erzeugung zwei- und/oder dreidimensionaler bilder dreidimensionaler gegenstaende
JPS53103392A (en) 1977-02-21 1978-09-08 Shimadzu Corp Tomograph
US4289969A (en) 1978-07-10 1981-09-15 Butler Greenwich Inc. Radiation imaging apparatus
US4382184A (en) * 1978-11-24 1983-05-03 Cardiac Imaging Limited Partnership Apparatus and method for simultaneously displaying relative displacements of a fluctuating biological object
US4253221A (en) * 1979-06-14 1981-03-03 Georgia Tech Research Institute Method of producing low voltage field emission cathode structure
JPS57162431U (zh) 1981-04-07 1982-10-13
US4958365A (en) 1981-10-21 1990-09-18 Elscint Ltd. Medical imaging device using triggered plasma cathode flash X-ray source
JPS60254615A (ja) 1984-05-30 1985-12-16 Toshiba Mach Co Ltd 電子ビーム露光における温度測定方法
DE3532822A1 (de) 1985-09-13 1987-03-26 Siemens Ag Stereoroentgenroehre
US4809308A (en) * 1986-02-20 1989-02-28 Irt Corporation Method and apparatus for performing automated circuit board solder quality inspections
US4891829A (en) 1986-11-19 1990-01-02 Exxon Research And Engineering Company Method and apparatus for utilizing an electro-optic detector in a microtomography system
US4780612A (en) 1987-01-30 1988-10-25 Hughes Aircraft Company Method and apparatus for multiplexing signals from electromagnetic radiation detectors
US4926452A (en) * 1987-10-30 1990-05-15 Four Pi Systems Corporation Automated laminography system for inspection of electronics
US5396418A (en) 1988-10-20 1995-03-07 Picker International, Inc. Four dimensional spiral volume imaging using fast retrace
US5245648A (en) 1991-04-05 1993-09-14 The United States Of America As Represented By The United States Department Of Energy X-ray tomographic image magnification process, system and apparatus therefor
US5557105A (en) 1991-06-10 1996-09-17 Fujitsu Limited Pattern inspection apparatus and electron beam apparatus
US5129850A (en) * 1991-08-20 1992-07-14 Motorola, Inc. Method of making a molded field emission electron emitter employing a diamond coating
US5138237A (en) * 1991-08-20 1992-08-11 Motorola, Inc. Field emission electron device employing a modulatable diamond semiconductor emitter
DE4139150C1 (en) 1991-11-28 1993-06-24 Siemens Ag, 8000 Muenchen, De Computer tomograph with part ring formed X=ray source and detector - has double ring system without complementary interpolation
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
US5305363A (en) * 1992-01-06 1994-04-19 Picker International, Inc. Computerized tomographic scanner having a toroidal x-ray tube with a stationary annular anode and a rotating cathode assembly
JP3730263B2 (ja) 1992-05-27 2005-12-21 ケーエルエー・インストルメンツ・コーポレーション 荷電粒子ビームを用いた自動基板検査の装置及び方法
JPH06163381A (ja) 1992-11-16 1994-06-10 Fujitsu Ltd 電子線露光装置
US5412703A (en) * 1993-02-04 1995-05-02 Institute For Radiological Image Science, Inc. Reduced partial volume artifacts in image reconstruction, with application to X-ray computed tomography
US5424054A (en) * 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5390112A (en) * 1993-10-04 1995-02-14 General Electric Company Three-dimensional computerized tomography scanning method and system for imaging large objects with smaller area detectors
US5448607A (en) 1994-02-08 1995-09-05 Analogic Corporation X-ray tomography system with gantry pivot and translation control
DE4405768A1 (de) * 1994-02-23 1995-08-24 Till Keesmann Feldemissionskathodeneinrichtung und Verfahren zu ihrer Herstellung
US5623180A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material
US5637950A (en) * 1994-10-31 1997-06-10 Lucent Technologies Inc. Field emission devices employing enhanced diamond field emitters
US5594770A (en) * 1994-11-18 1997-01-14 Thermospectra Corporation Method and apparatus for imaging obscured areas of a test object
US5616368A (en) * 1995-01-31 1997-04-01 Lucent Technologies Inc. Field emission devices employing activated diamond particle emitters and methods for making same
USRE38561E1 (en) * 1995-02-22 2004-08-03 Till Keesmann Field emission cathode
DE19510048C2 (de) * 1995-03-20 1998-05-14 Siemens Ag Röntgenröhre
JPH08264139A (ja) 1995-03-22 1996-10-11 Hamamatsu Photonics Kk X線発生装置
DE19532965C2 (de) 1995-09-07 1998-07-16 Heimann Systems Gmbh & Co Röntgenprüfanlage für großvolumige Güter
US5648699A (en) * 1995-11-09 1997-07-15 Lucent Technologies Inc. Field emission devices employing improved emitters on metal foil and methods for making such devices
US5872422A (en) 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
JP3439590B2 (ja) 1995-12-22 2003-08-25 株式会社荏原製作所 X線源
US5764683B1 (en) * 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
JP2873930B2 (ja) * 1996-02-13 1999-03-24 工業技術院長 カーボンナノチューブを有する炭素質固体構造体、炭素質固体構造体からなる電子線源素子用電子放出体、及び炭素質固体構造体の製造方法
DE69738276T2 (de) 1996-03-04 2008-04-03 Canon K.K. Elektronenstrahl-Belichtungsgerät, Belichtungsverfahren und Verfahren zur Erzeugung eines Objekts
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
US5754437A (en) * 1996-09-10 1998-05-19 Tektronix, Inc. Phase measurement apparatus and method
US6057637A (en) * 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US5976444A (en) 1996-09-24 1999-11-02 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass replica membranes
DE19700992C2 (de) 1997-01-14 1999-10-07 Siemens Ag Röntgenröhre
US6498349B1 (en) 1997-02-05 2002-12-24 Ut-Battelle Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy
KR100520337B1 (ko) * 1997-04-02 2005-10-11 이 아이 듀폰 디 네모아 앤드 캄파니 금속-산소-탄소 전계 방출 전자 이미터 조성물, 이를 포함하는 전계 방출 음극 및 전계 방출 음극의 제조 방법
FR2764731A1 (fr) * 1997-06-13 1998-12-18 Commissariat Energie Atomique Tube a rayons x comportant une source d'electrons a micropointes et des moyens de focalisations magnetique
DE19835450A1 (de) * 1997-08-18 1999-02-25 Siemens Ag Verfahren zur Steuerung des Elektronenstroms in einer Röntgenröhre, sowie Röntgeneinrichtung zur Durchführung des Verfahrens
US5844963A (en) 1997-08-28 1998-12-01 Varian Associates, Inc. Electron beam superimposition method and apparatus
JP3792859B2 (ja) 1997-10-03 2006-07-05 株式会社ノリタケカンパニーリミテド 電子銃
CN2336381Y (zh) 1997-10-24 1999-09-01 西北核技术研究所 便携式脉冲数字化x射线成像装置
KR19990043770A (ko) * 1997-11-29 1999-06-15 정선종 탄소 나노튜브를 이용한 전계 방출 소자의 제조 방법
US6087765A (en) * 1997-12-03 2000-07-11 Motorola, Inc. Electron emissive film
JP3828270B2 (ja) 1998-03-05 2006-10-04 株式会社ノリタケカンパニーリミテド 電子放出装置
US6097788A (en) * 1998-04-14 2000-08-01 Siemens Aktiengesellschaft Method and apparatus for multi-planar radiation emission for imaging
FI981431A (fi) * 1998-06-22 1999-12-23 Nokia Mobile Phones Ltd Mittausmenetelmä
US6028911A (en) * 1998-08-03 2000-02-22 Rigaku Industrial Corporation X-ray analyzing apparatus with enhanced radiation intensity
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
US6125167A (en) 1998-11-25 2000-09-26 Picker International, Inc. Rotating anode x-ray tube with multiple simultaneously emitting focal spots
EP1135700B1 (en) * 1998-11-30 2005-03-02 American Science & Engineering, Inc. Fan and pencil beams from a common source for x-ray inspection
JP3939452B2 (ja) 1999-01-12 2007-07-04 喜萬 中山 電子放出素子及びその製造方法
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
JP3544884B2 (ja) 1999-02-25 2004-07-21 株式会社東芝 荷電粒子ビーム照射装置
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
US6271923B1 (en) * 1999-05-05 2001-08-07 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US6370217B1 (en) 1999-05-07 2002-04-09 General Electric Company Volumetric computed tomography system for cardiac imaging
KR20000074609A (ko) * 1999-05-24 2000-12-15 김순택 카본 나노 튜브를 이용한 전계 방출 어레이 및 그 제조방법
US6277318B1 (en) * 1999-08-18 2001-08-21 Agere Systems Guardian Corp. Method for fabrication of patterned carbon nanotube films
JP3483526B2 (ja) * 1999-10-21 2004-01-06 シャープ株式会社 画像形成装置
TW439303B (en) * 1999-11-22 2001-06-07 Nat Science Council Manufacturing method of field emission device
DE19957083B4 (de) * 1999-11-28 2004-11-18 Siemens Ag Verfahren zur Untersuchung eines eine periodische Bewegung ausführenden Körperbereichs
JP3929217B2 (ja) 2000-01-12 2007-06-13 学校法人日本大学 X線ct撮影方法及びその装置
US6445122B1 (en) 2000-02-22 2002-09-03 Industrial Technology Research Institute Field emission display panel having cathode and anode on the same panel substrate
US6456691B2 (en) 2000-03-06 2002-09-24 Rigaku Corporation X-ray generator
JP2001250496A (ja) 2000-03-06 2001-09-14 Rigaku Corp X線発生装置
US6333968B1 (en) 2000-05-05 2001-12-25 The United States Of America As Represented By The Secretary Of The Navy Transmission cathode for X-ray production
DE10027140A1 (de) * 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
US6334939B1 (en) * 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
GB0015928D0 (en) 2000-06-30 2000-08-23 Printable Field Emitters Limit Field emitters
US6297592B1 (en) 2000-08-04 2001-10-02 Lucent Technologies Inc. Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
CN1316279C (zh) 2000-08-11 2007-05-16 株式会社索佳 安装在测量装置上面用的自动聚焦机构
US20030002627A1 (en) * 2000-09-28 2003-01-02 Oxford Instruments, Inc. Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
US6980627B2 (en) * 2000-10-06 2005-12-27 Xintek, Inc. Devices and methods for producing multiple x-ray beams from multiple locations
US20040240616A1 (en) 2003-05-30 2004-12-02 Applied Nanotechnologies, Inc. Devices and methods for producing multiple X-ray beams from multiple locations
US7082182B2 (en) * 2000-10-06 2006-07-25 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US7085351B2 (en) 2000-10-06 2006-08-01 University Of North Carolina At Chapel Hill Method and apparatus for controlling electron beam current
US6553096B1 (en) * 2000-10-06 2003-04-22 The University Of North Carolina Chapel Hill X-ray generating mechanism using electron field emission cathode
US7227924B2 (en) * 2000-10-06 2007-06-05 The University Of North Carolina At Chapel Hill Computed tomography scanning system and method using a field emission x-ray source
US20040213378A1 (en) 2003-04-24 2004-10-28 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US6876724B2 (en) * 2000-10-06 2005-04-05 The University Of North Carolina - Chapel Hill Large-area individually addressable multi-beam x-ray system and method of forming same
US6885022B2 (en) * 2000-12-08 2005-04-26 Si Diamond Technology, Inc. Low work function material
US6459767B1 (en) 2000-12-12 2002-10-01 Oxford Instruments, Inc. Portable x-ray fluorescence spectrometer
US6385292B1 (en) 2000-12-29 2002-05-07 Ge Medical Systems Global Technology Company, Llc Solid-state CT system and method
US20020085674A1 (en) * 2000-12-29 2002-07-04 Price John Scott Radiography device with flat panel X-ray source
US6470068B2 (en) 2001-01-19 2002-10-22 Cheng Chin-An X-ray computer tomography scanning system
US6650730B2 (en) 2001-01-23 2003-11-18 Fartech, Inc. Filter assembly for X-ray filter system for medical imaging contrast enhancement
US6965199B2 (en) 2001-03-27 2005-11-15 The University Of North Carolina At Chapel Hill Coated electrode with enhanced electron emission and ignition characteristics
US6949877B2 (en) 2001-03-27 2005-09-27 General Electric Company Electron emitter including carbon nanotubes and its application in gas discharge devices
FR2823969B1 (fr) 2001-04-30 2003-12-26 Ge Med Sys Global Tech Co Llc Procede de prelevement d'un tissu au cours d'un examen par rayons x et dispositif de mise en oeuvre
TW502282B (en) * 2001-06-01 2002-09-11 Delta Optoelectronics Inc Manufacture method of emitter of field emission display
US6674837B1 (en) * 2001-06-15 2004-01-06 Nan Crystal Imaging Corporation X-ray imaging system incorporating pixelated X-ray source and synchronized detector
US6787122B2 (en) 2001-06-18 2004-09-07 The University Of North Carolina At Chapel Hill Method of making nanotube-based material with enhanced electron field emission properties
US20030002628A1 (en) 2001-06-27 2003-01-02 Wilson Colin R. Method and system for generating an electron beam in x-ray generating devices
US6510195B1 (en) * 2001-07-18 2003-01-21 Koninklijke Philips Electronics, N.V. Solid state x-radiation detector modules and mosaics thereof, and an imaging method and apparatus employing the same
US6661876B2 (en) 2001-07-30 2003-12-09 Moxtek, Inc. Mobile miniature X-ray source
US6914959B2 (en) * 2001-08-09 2005-07-05 Analogic Corporation Combined radiation therapy and imaging system and method
US6621887B2 (en) 2001-10-15 2003-09-16 General Electric Company Method and apparatus for processing a fluoroscopic image
US7076023B2 (en) * 2001-10-26 2006-07-11 Siemens Medical Solutions Usa, Inc. X-ray therapy electronic portal imaging system and method for artifact reduction
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US6879715B2 (en) * 2001-12-05 2005-04-12 General Electric Company Iterative X-ray scatter correction method and apparatus
US7147894B2 (en) 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
JP2003303564A (ja) * 2002-04-10 2003-10-24 Seiko Instruments Inc 走査型荷電粒子顕微鏡における自動焦点システム
WO2003088315A2 (en) 2002-04-11 2003-10-23 Honeywell International Inc. Thermally conductive coating compositions, methods of production and uses thereof
US6760407B2 (en) * 2002-04-17 2004-07-06 Ge Medical Global Technology Company, Llc X-ray source and method having cathode with curved emission surface
US6529575B1 (en) * 2002-04-29 2003-03-04 Ge Medical Systems Global Technology Company, Llc Adaptive projection filtering scheme for noise reduction
US6754300B2 (en) * 2002-06-20 2004-06-22 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for operating a radiation source
CN1998061B (zh) * 2002-07-03 2010-08-04 新泰科有限公司 毫微结构复合材料场致发射阴极的制造和激活方法
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
US6917664B2 (en) * 2002-10-03 2005-07-12 Koninklijke Philips Electronics N.V. Symmetrical multiple-slice computed tomography data management system
EP1583984A1 (en) 2003-01-06 2005-10-12 Koninklijke Philips Electronics N.V. Constant radius single photon emission tomography
GB0309383D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US8262555B2 (en) * 2003-06-18 2012-09-11 Xoft, Inc. Method for adaptive radiation treatment of breast tissue surrounding a cancer resection cavity of arbitrary shape
US20040256975A1 (en) 2003-06-19 2004-12-23 Applied Nanotechnologies, Inc. Electrode and associated devices and methods
US6950493B2 (en) 2003-06-25 2005-09-27 Besson Guy M Dynamic multi-spectral CT imaging
US7433507B2 (en) 2003-07-03 2008-10-07 Ge Medical Systems Global Technology Co. Imaging chain for digital tomosynthesis on a flat panel detector
US7649981B2 (en) * 2003-10-15 2010-01-19 Varian Medical Systems, Inc. Multi-energy x-ray source
US6950495B2 (en) * 2003-12-01 2005-09-27 The Boeing Company Backscatter imaging using Hadamard transform masking
US7192031B2 (en) 2004-02-05 2007-03-20 General Electric Company Emitter array configurations for a stationary CT system
US7330529B2 (en) 2004-04-06 2008-02-12 General Electric Company Stationary tomographic mammography system
WO2005109346A1 (en) * 2004-05-06 2005-11-17 UNIVERSITé LAVAL 3d localization of objects from tomography data
US7129513B2 (en) 2004-06-02 2006-10-31 Xintek, Inc. Field emission ion source based on nanostructure-containing material
CN101041989A (zh) 2004-08-05 2007-09-26 邱则有 一种钢筋砼立体承力结构楼盖
US7220971B1 (en) * 2004-12-29 2007-05-22 The University Of North Carolina At Chapel Hill Multi-pixel electron microbeam irradiator systems and methods for selectively irradiating predetermined locations
US7158607B2 (en) * 2005-02-10 2007-01-02 Brookhaven Science Associates, Llc Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams
US7046757B1 (en) * 2005-04-18 2006-05-16 Siemens Medical Solutions Usa, Inc. X-ray scatter elimination by frequency shifting
US8155262B2 (en) * 2005-04-25 2012-04-10 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for multiplexing computed tomography
CN101296658B (zh) * 2005-04-25 2011-01-12 北卡罗来纳大学查珀尔希尔分校 使用时间数字信号处理的x射线成像
US7486772B2 (en) 2005-11-17 2009-02-03 Xintek, Inc. Systems and methods for x-ray imaging and scanning of objects
US7902530B1 (en) * 2006-04-06 2011-03-08 Velayudhan Sahadevan Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy
US8189893B2 (en) * 2006-05-19 2012-05-29 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for binary multiplexing x-ray radiography
US7609810B2 (en) * 2006-12-14 2009-10-27 Byong Yong Yi Treatment-speed regulated tumor-tracking
JP5248031B2 (ja) 2007-04-23 2013-07-31 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
WO2009012453A1 (en) * 2007-07-19 2009-01-22 The University Of North Carolina At Chapel Hill Stationary x-ray digital breast tomosynthesis systems and related methods
US7643610B2 (en) * 2007-10-04 2010-01-05 Brookhaven Science Associates, Llc Method and devices for performing stereotactic microbeam radiation therapy
US7835492B1 (en) 2007-11-27 2010-11-16 Velayudhan Sahadevan Lethal and sublethal damage repair inhibiting image guided simultaneous all field divergent and pencil beam photon and electron radiation therapy and radiosurgery
US7697658B2 (en) * 2008-02-01 2010-04-13 Virginia Tech Intellectual Properties, Inc. Interior tomography and instant tomography by reconstruction from truncated limited-angle projection data
US7567647B1 (en) * 2008-04-11 2009-07-28 Siemens Medical Solutions Usa, Inc. Source array translation for digital tomosynthesis
US7741624B1 (en) * 2008-05-03 2010-06-22 Velayudhan Sahadevan Single session interactive ultra-short duration super-high biological dose rate radiation therapy and radiosurgery
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8358739B2 (en) 2010-09-03 2013-01-22 The University Of North Carolina At Chapel Hill Systems and methods for temporal multiplexing X-ray imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058525A1 (en) * 2000-02-11 2001-08-16 Photoelectron Corporation Apparatus for local radiation therapy
CN1316279A (zh) * 2000-05-08 2001-10-10 董森 合并放化疗缩小瘤体以进行pdt所用x光磁治癌机及其药物
CN2440535Y (zh) * 2000-09-26 2001-08-01 官爱平 X射线微波刀的复合聚焦装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883687B2 (en) 2020-09-08 2024-01-30 Shanghai United Imaging Healthcare Co., Ltd. X-ray imaging system for radiation therapy

Also Published As

Publication number Publication date
US20100329413A1 (en) 2010-12-30
US20140119496A1 (en) 2014-05-01
CN101927065A (zh) 2010-12-29
US8600003B2 (en) 2013-12-03
US8995608B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
CN101927065B (zh) 用于癌症治疗和研究的紧凑型微束放疗***及方法
RU2491019C2 (ru) Квазистатическая установка с распределенными источниками для рентгеновской визуализации с высокой разрешающей способностью
CN108245787B (zh) 一种多用途放射治疗***
US7580500B2 (en) Computer tomography system having a ring-shaped stationary X-ray source enclosing a measuring field
US9339243B2 (en) Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
US5008907A (en) Therapy x-ray scanner
US9044604B2 (en) Radiotherapy system
US20080049897A1 (en) System and Method for Temporally Precise Intensity Modulated Radiation Therapy (Imrt)
US10675484B2 (en) Imaging method using radiation source, shielding body, treatment head, and treatment device
JP5238242B2 (ja) 放射線治療用線量分布測定装置及び放射線治療用線量分布測定プログラム
US20140177807A1 (en) Bremstrahlung target for intensity modulated x-ray radiation therapy and stereotactic x-ray therapy
CN102988073A (zh) 扫描狭槽锥形束计算机断层摄影以及扫描聚焦光斑锥形束计算机断层摄影
US20130003930A1 (en) Combined imaging and radiation therapy
Schreiber et al. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology
Hadsell et al. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro‐CT scanner
CN109758682A (zh) 一种放射治疗中的原位ct装置
Sprenger et al. Distributed source x-ray tube technology for tomosynthesis imaging
CN203074716U (zh) 融合pet-ct功能的放射治疗***
CN109806512A (zh) 一种集成到固定粒子束放疗室的原位ct装置
CN108066901B (zh) 基于医学影像的辐射屏蔽装置及方法
CN111068186B (zh) Ct成像和图像引导放射治疗装置
CN208756803U (zh) 一种x射线的聚焦装置及放疗设备
CN214762920U (zh) 一种钴60伽马射线放射治疗装置
US9545526B1 (en) System and method for projection image tracking of tumors during radiotherapy
Tan et al. Simulation study of a novel small animal FLASH irradiator (SAFI) with integrated inverse-geometry CT based on circularly distributed kV X-ray sources

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant