CN101916800B - Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell - Google Patents

Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell Download PDF

Info

Publication number
CN101916800B
CN101916800B CN201010252974.0A CN201010252974A CN101916800B CN 101916800 B CN101916800 B CN 101916800B CN 201010252974 A CN201010252974 A CN 201010252974A CN 101916800 B CN101916800 B CN 101916800B
Authority
CN
China
Prior art keywords
solar cell
indium gallium
copper indium
gallium selenium
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010252974.0A
Other languages
Chinese (zh)
Other versions
CN101916800A (en
Inventor
任宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Shangyue Optoelectronics Technology Co Ltd
Original Assignee
Zhejiang Shangyue Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shangyue Optoelectronics Technology Co Ltd filed Critical Zhejiang Shangyue Optoelectronics Technology Co Ltd
Priority to CN201010252974.0A priority Critical patent/CN101916800B/en
Publication of CN101916800A publication Critical patent/CN101916800A/en
Application granted granted Critical
Publication of CN101916800B publication Critical patent/CN101916800B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a method and a structure for improving the photoelectric conversion efficiency of a copper indium gallium selenium solar cell, which are characterized in that: a diffraction grating is formed between a transparent conductive film layer and a light absorption layer on the top of the copper indium gallium selenium solar cell to change the propagation direction of incident photons and prolong the effective propagation path of the photons in the light absorption layer, so that the thickness of the absorption layer is effectively reduced and the photoelectric conversion efficiency of the copper indium gallium selenium solar cell is improved. Through the method, the copper indium gallium selenium solar cell can improve the photoelectric conversion efficiency by over 25 percent maximally on the basis of the conventional copper indium gallium selenium solar cell and the thickness of the light absorption layer can be reduced to one quarter of that of the conventional cell.

Description

A kind of method and structure that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell
Technical field
The present invention relates to a kind of method and structure that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell, belong to solar energy generation technology field.
Background technology
CIGS thin-film solar cell have production cost low, pollute little, do not fail, the feature such as low light level performance is good, photoelectric conversion efficiency occupies first of various thin-film solar cells, approach crystal-silicon solar cell, cost is 1/3rd of crystal silicon cell, is called in the world " very promising novel thin film solar cell of next epoch ".In addition, this battery has soft, uniform appearance of black, is to the have higher requirements ideal chose in place of outward appearance, as glass curtain wall of building etc., has very big market in fields such as modernization skyscrapers.Copper-indium-galliun-selenium film solar cell generally includes substrate, lower electrode layer (Mo), light absorbing zone (CIGS), resilient coating (ZnS or CdS), transparent conductive film layer and antireflecting layer, if the patent No. is 200810187542 disclosed solar cell devices.But due to the characteristic of the propagation of light, when sunlight enters after the body of battery pond, can only pass through light absorbing zone along the refractive direction of small inclination.Therefore, further improve indium gallium Se solar cell electricity conversion, can manage to allow incident light to pass through light absorbing zone compared with high inclination-angle, to extend effective propagation path of photon in the body of battery pond.
Summary of the invention
The object of the invention is to, a kind of method and structure that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell is provided.It can change the direction of propagation of incident photon to extend the effective propagation path of photon in the body of battery pond, thereby effectively reduces the thickness of light absorbing zone and the electricity conversion of raising copper-indium-galliun-selenium film solar cell.
Technical scheme of the present invention: a kind of method that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell, it is characterized in that: at transparent conductive film layer and a diffraction grating of the middle formation of light absorption at copper indium gallium selenium solar cell top, change the direction of propagation of incident photon to extend the effective propagation path of photon in light absorbing zone, thereby effectively reduce the thickness of absorbed layer and the electricity conversion of raising copper-indium-galliun-selenium film solar cell.
In the method for aforesaid raising photoelectric conversion efficiency of copper indium gallium selenium solar cell, described diffraction grating is periodic modulation structure.
In the method for aforesaid raising photoelectric conversion efficiency of copper indium gallium selenium solar cell, the diffraction grating of described periodic modulation structure is sinusoidal wave shape grating and the wavy grating of rectangle.
In the method for aforesaid raising photoelectric conversion efficiency of copper indium gallium selenium solar cell, the repetition period of described grating and the degree of depth are according to selected lambda1-wavelength scope, determine by rigorous couple-wave analysis (RCWA) method, extend the effective propagation path of photon in light absorbing zone with the first-order diffraction light that suppresses its zero order diffracted light the larger inclination angle of enhancing.
A kind of structure that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell that realizes said method, is characterized in that: between the transparent conductive film layer of copper indium gallium selenium solar cell, light absorbing zone, be provided with the diffraction grating structure being made up of the contact-making surface of resilient coating and transparent conductive film layer.
In the structure of the aforementioned raising photoelectric conversion efficiency of copper indium gallium selenium solar cell of stating, described diffraction grating is periodic modulation structure.
In the structure of aforesaid raising photoelectric conversion efficiency of copper indium gallium selenium solar cell, the diffraction grating of described periodic modulation structure is sinusoidal wave shape grating and the wavy grating of rectangle.
In the structure of aforesaid raising photoelectric conversion efficiency of copper indium gallium selenium solar cell, the repetition period P of described diffraction grating is between 10 nanometers and 2 microns, and depth D is between 10 nanometers and 1 micron.
Preferred version of the present invention is: repetition period P is 300 nanometer ± 50%, and depth D is 200 nanometer ± 30%.
Compared with prior art, the present invention arranges grating by the top at copper indium gallium selenium solar cell, and grating is made up of the material of solar cell own, grating can produce diffraction, the direction of propagation of incident photon is changed (inclination angle of diffraction light is larger), and extend the effective propagation path of photon in the body of battery pond, thereby effectively reduce the thickness of light absorbing zone and the electricity conversion of raising copper-indium-galliun-selenium film solar cell.The present invention both can be used in non-direct gap semiconductor photovoltaic material, can effectively be used in again the direct band gap copper indium gallium selenium solar cell of high-absorbility.Use the copper indium gallium selenium solar cell of the inventive method, on the basis of traditional copper indium gallium selenium solar cell, maximum can improve electricity conversion more than 25%, and the thickness of light absorbing zone can be reduced to original 1/4th.
Brief description of the drawings
Fig. 1 is the structural representation of square wave form diffraction grating of the present invention;
Fig. 2 is the structural representation of the sinusoidal wave form diffraction grating of the present invention.
Fig. 3 is the effect contrast figure of the embodiment of the present invention.
Mark in accompanying drawing: 1-antireflecting layer, 2-transparent conductive film layer, 3-resilient coating, 4-light absorbing zone, 5-lower electrode layer, 6-substrate.
Embodiment
Below in conjunction with drawings and Examples, the present invention is further illustrated, but not as the foundation to the present invention's restriction.
Embodiment.A kind of method that improves photoelectric conversion efficiency of copper indium gallium selenium solar cell, it is characterized in that: at transparent conductive film layer and a diffraction grating of the middle formation of light absorption at copper indium gallium selenium solar cell top, change the direction of propagation of incident photon to extend the effective propagation path of photon in light absorbing zone, thereby effectively reduce the thickness of absorbed layer and the electricity conversion of raising copper-indium-galliun-selenium film solar cell.Described diffraction grating is periodic modulation structure.The diffraction grating of described periodic modulation structure is sinusoidal wave shape grating and the wavy grating of rectangle.The repetition period of described grating and the degree of depth are according to selected lambda1-wavelength scope, determine by rigorous couple-wave analysis (RCWA) method, extend the effective propagation path of photon in light absorbing zone with the first-order diffraction light that suppresses its zero order diffracted light the larger inclination angle of enhancing.
Realize a kind of two kinds of structures that improve photoelectric conversion efficiency of copper indium gallium selenium solar cell of said method:
1, the wavy optical grating construction of rectangle (as shown in Figure 1).
Copper indium gallium selenium solar cell is upwards followed successively by substrate 6, lower electrode layer 5 (Mo), light absorbing zone 4 (CIGS), resilient coating 3 (ZnS or CdS), transparent conductive film layer 2 and antireflecting layer 1 by bottom, and the present invention is provided with the diffraction grating structure being made up of the contact-making surface of resilient coating (3) and transparent conductive film layer (2) between the transparent conductive film layer (2) of copper indium gallium selenium solar cell, light absorbing zone (4).Diffraction grating structure is that rectangle is wavy.The repetition period of the wavy optical grating construction of rectangle and the degree of depth can be carried out optimal design according to selected lambda1-wavelength scope, and repetition period P can be between 10 nanometers and 2 microns, and depth D is between 10 nanometers and 1 micron.
Preferred version is: the repetition period P of diffraction grating is 300 nanometer ± 50%, and depth D is 200 nanometer ± 30%.
2, sinusoidal wave shape optical grating construction (as shown in Figure 2).
Copper indium gallium selenium solar cell is upwards followed successively by substrate 6, lower electrode layer 5 (Mo), light absorbing zone 4 (CIGS), resilient coating 3 (ZnS or CdS), transparent conductive film layer 2 and antireflecting layer 1 by bottom, and the present invention is provided with the diffraction grating structure being made up of the contact-making surface of resilient coating (3) and transparent conductive film layer (2) between the transparent conductive film layer (2) of copper indium gallium selenium solar cell, light absorbing zone (4).Diffraction grating structure is sinusoidal wave shape.The repetition period of sinusoidal wave shape optical grating construction and the degree of depth can be carried out optimal design according to selected lambda1-wavelength scope, and repetition period P can be between 10 nanometers and 2 microns, and depth D is between 10 nanometers and 1 micron.
Preferred version is: the repetition period P of diffraction grating is 300 nanometer ± 50%, and depth D is 200 nanometer ± 30%.
Use repetition periods 110 nanometer, the degree of depth is the diffraction grating of 400 nanometers, incident light is natural daylight (comprising full wave sunlight), concrete grating result of use as shown in Figure 3: the copper indium gallium selenium solar cell that uses optical grating construction of the present invention just almost can saturated absorption in the time that light absorbing zone is 500 nanometer; And in the time using different light absorbing zone thickness, its optoelectronic transformation efficiency is generally high than not using the copper indium gallium selenium solar cell of optical grating construction of the present invention.This effect is particularly evident in the time of glimmer absorbed layer.

Claims (2)

1. one kind is improved the method for photoelectric conversion efficiency of copper indium gallium selenium solar cell, it is characterized in that: at transparent conductive film layer and a resilient coating of the middle formation of light absorbing zone at copper indium gallium selenium solar cell top, form diffraction grating by the shape that changes resilient coating, change the direction of propagation of incident photon to extend the effective propagation path of photon in light absorbing zone, thereby effectively reduce the thickness of absorbed layer and the electricity conversion of raising copper-indium-galliun-selenium film solar cell; And the upper surface of described transparent conductive film layer is a plane; The upper surface of described transparent conductive film layer is provided with antireflecting layer, and transparent conductive film layer directly contacts with antireflecting layer; Described diffraction grating is the wavy grating of the rectangle of periodic modulation structure.
2. the method for raising photoelectric conversion efficiency of copper indium gallium selenium solar cell according to claim 1, it is characterized in that: the repetition period of described diffraction grating and the degree of depth are according to selected lambda1-wavelength scope, determine by rigorous couple-wave analysis method, extend the effective propagation path of photon in light absorbing zone with the first-order diffraction light that suppresses its zero order diffracted light the larger inclination angle of enhancing.
CN201010252974.0A 2010-08-13 2010-08-13 Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell Active CN101916800B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010252974.0A CN101916800B (en) 2010-08-13 2010-08-13 Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010252974.0A CN101916800B (en) 2010-08-13 2010-08-13 Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell

Publications (2)

Publication Number Publication Date
CN101916800A CN101916800A (en) 2010-12-15
CN101916800B true CN101916800B (en) 2014-06-25

Family

ID=43324254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010252974.0A Active CN101916800B (en) 2010-08-13 2010-08-13 Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell

Country Status (1)

Country Link
CN (1) CN101916800B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108568A (en) * 2015-10-30 2018-10-04 트로피글라스 테크놀로지스 엘티디 Panel structure for receiving light and generating electricity
CN106783667A (en) * 2017-02-23 2017-05-31 浙江尚越新能源开发有限公司 Ensure the production system and its manufacture method of uniformity and the alkali doped of stability in flexible copper indium gallium selenide thin-film solar cell
CN109962122A (en) * 2017-12-22 2019-07-02 北京铂阳顶荣光伏科技有限公司 Thin-film solar cells and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147783A (en) * 1985-12-23 1987-07-01 Hitachi Ltd Solar cell
US6858462B2 (en) * 2000-04-11 2005-02-22 Gratings, Inc. Enhanced light absorption of solar cells and photodetectors by diffraction
WO2006078319A1 (en) * 2005-01-19 2006-07-27 Massachusetts Institute Of Technology Light trapping in thin film solar cells using textured photonic crystal
JP2008147230A (en) * 2006-12-06 2008-06-26 Toppan Printing Co Ltd Substrate for solar cell, solar cell module and solar cell device
JP2011515018A (en) * 2008-02-12 2011-05-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Two-layer thin film holographic solar collector and solar concentrator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP昭62-147783A 1987.07.01
JP特开2008-147230A 2008.06.26

Also Published As

Publication number Publication date
CN101916800A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN102184995B (en) Long-range plasmon waveguide array synergy unit for solar cell
CN102184975A (en) Thin film solar cell with improved photoelectric conversion efficiency and manufacturing method thereof
CN217280797U (en) Solar cell
Ghosh et al. Recent progress in Si hetero-junction solar cell: A comprehensive review
CN103178156A (en) Preparation method and application of thin-film solar cell light trapping structured glass
CN101257055A (en) Silicon thin-film photocell with light trapping structure
Tao et al. High absorption perovskite solar cell with optical coupling structure
CN101916800B (en) Method and structure for improving photoelectric conversion efficiency of copper indium gallium selenium solar cell
CN202094161U (en) Long-range plasma excimer waveguide array synergy unit for solar cell
KR101103894B1 (en) Solar cell and method of fabricating the same
CN201829508U (en) Solar battery
JP2013509707A (en) Solar cell and manufacturing method thereof
CN102368538A (en) Organic film solar battery capable of enhancing light absorption efficiency
CN103681932A (en) Cadmium telluride thin-film solar cell and manufacturing method thereof
CN101055899A (en) Crystal silicon solar battery with multi-hole silicon layer structure
CN106876513B (en) It is a kind of equal from the lateral heterogeneous integrated solar cell of polariton
CN112652720B (en) Perovskite solar cell based on two-dimensional photonic crystal structure
KR20100066928A (en) Solar cell and method of fabricating the same
KR20100109309A (en) Solar cell and method of fabricating the same
RU202307U1 (en) PHOTOELECTRIC CONVERTER
TWI470814B (en) Solar cell
CN102185037A (en) Silicon nanocolumn solar cell capable of improving photoelectric conversion efficiency and manufacturing method thereof
KR20110068508A (en) Solar cells having structure with transparent conduction oxide layer/metal thin film and methods of fabricating the same
CN107134499B (en) Composite curved surface light trapping structure and preparation method thereof
KR101856212B1 (en) Solar cell apparatus and mentod of fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant