CN101899701A - Method for preparing composite material of copper sulfide and titanium dioxide nano-tube - Google Patents

Method for preparing composite material of copper sulfide and titanium dioxide nano-tube Download PDF

Info

Publication number
CN101899701A
CN101899701A CN2010102296420A CN201010229642A CN101899701A CN 101899701 A CN101899701 A CN 101899701A CN 2010102296420 A CN2010102296420 A CN 2010102296420A CN 201010229642 A CN201010229642 A CN 201010229642A CN 101899701 A CN101899701 A CN 101899701A
Authority
CN
China
Prior art keywords
titanium sheet
titanium
preparation
titanium dioxide
titania nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102296420A
Other languages
Chinese (zh)
Other versions
CN101899701B (en
Inventor
柯川
杨峰
赵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN2010102296420A priority Critical patent/CN101899701B/en
Publication of CN101899701A publication Critical patent/CN101899701A/en
Application granted granted Critical
Publication of CN101899701B publication Critical patent/CN101899701B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention provides a method for preparing a composite material of a copper sulfide and titanium dioxide nano-tube. The method comprises the following steps of putting a sanded titanium plate in acetone or absolute ethanol for ultrasonic cleaning, and is rinsed and aired with deionized water; anodizing a platinum plate serving as a cathode and the treated titanium plate serving as an anode in ethylene glycol solution with 0.25 weight percent of ammonium fluoride, namely a titanium dioxide nano-tube array grows on the surface of the titanium plate; putting the titanium plate growing the titanium dioxide nano-tube array in mixed solution filled with copper chloride and sodium thiosulfate, wherein molar concentrations of the copper chloride and the sodium thiosulfate in the mixed solution are the same, and are between 0.0025 and 0.01mol/L; and sealing the solution with an autoclave, heating the autoclave to the temperature of between 60 and 120 DEG C, and preserving the temperature for 12 to 24 hours. The nano composite material prepared by the method has high sunlight absorbing and utilizing capability, has good application prospect in the field of solar cells, and has simple manufacture process, low equipment requirement and low preparation cost.

Description

The preparation method of a kind of cupric sulfide and titania nanotube matrix material
Technical field
The present invention relates to the preparation method of a kind of cupric sulfide and titania nanotube matrix material.
Background technology
Utilize the TiO of anonizing preparation 2Nanotube has high-sequential, used as the dye sensitization solar battery negative electrode, compares with the sun power sensitization battery electrode that nano particle constitutes, and the electronics of its generation has the more long lifetime, and TiO 2The pipeline of nanotube provides better approach for electron transport is provided.But because existing titania nanotube is simple N-type semiconductor material, only photoabsorption can be arranged near UV-light, and can not absorb visible light, the absorption of sunlight is still waiting to improve with utilizing ability.Quantum dot sensitized solar cell based on titania nanotube was studied out in 2008, and it replaces dyestuff with semiconductor-quantum-point, had device architecture, the relative characteristic of simple of quantum dot sensitized process.
Summary of the invention
The present invention is the preparation method of a kind of cupric sulfide and titania nanotube composite nano materials.The nano composite material of this method preparation to the absorption of sunlight with utilize the ability height, have good utilization prospect in area of solar cell.And its manufacture craft is simple, equipment requirements is low, and preparation cost is low.
The present invention is for realizing its goal of the invention, and the technical scheme that is adopted and the concrete practice are:
The preparation method of a kind of cupric sulfide and titania nanotube composite nano materials, its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity more than 99.0%, with sand paper with its surface be milled to light seamless after, put into acetone or dehydrated alcohol 20-40 minute ultrasonic cleaning, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt Neutral ammonium fluoride, voltage is 50-60v, oxidization time 5-20 hour, promptly grow Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration range is 0.0025-0.01mol/L; After sealing with autoclave, put into stove and heat, the time is 12-24 hour, and temperature is 60-120 ℃.
Compared with prior art, the invention has the beneficial effects as follows:
Adopt the electrochemical production titania nanotube, again Nano tube array of titanium dioxide is put into the mixing solutions of cupric chloride and Sulfothiorine, under 60-120 ℃ temperature condition, the nano level cupric sulfide that produces in the mixing solutions is adsorbed on the titania nanotube surface, and forms the nanotube-shaped matrix material of cupric sulfide and titania nanotube.This composite material nanometer pipeline is similarly electron transport approach preferably is provided, and titania nanotube wherein is the N-type semiconductor material, can absorb UV-light, produce photovoltage, and nano-copper sulfide wherein is the P-type semiconductor material, can absorb visible light, produces photovoltage; Make matrix material integral body can absorb UV-light and can absorb visible light again, produce photovoltage, to the absorption of sunlight with utilize ability to improve greatly.Thereby has good utilization prospect in area of solar cell.
Adopt the matrix material of Hydrothermal Preparation cupric sulfide and titania nanotube, temperature is low in the process, and save energy need not task equipment, and technology is simple, and preparation cost is low.
In the titanium sheet pre-treatment in above-mentioned a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 5-15 minute electrochemical etching, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the glacial acetic acid of 99.8% the vitriol oil, 40% hydrofluoric acid and purity 99.8%; Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 11-15V as anode to the titanium sheet of handling.
Polished finish makes titanium plate surface more smooth, makes the matrix material that makes more smooth, and pattern is good, and is better with contacting of battery electrode, and is higher with the battery useful output of its preparation.
Below in conjunction with the drawings and specific embodiments the present invention is further described.
Description of drawings
Fig. 1 is the X ray diffracting spectrum that the inventive method is prepared into matrix material.Among the figure, ordinate zou is diffracted intensity (Intensity), arbitrary unit (a.u.), and X-coordinate is diffraction angle 2 θ, and unit is degree (deg.).
Fig. 2 is the sem photograph with the titania nanotube of the inventive method before composite sulfuration copper.
Fig. 3 is the sem photograph of the inventive method prepared product.
Fig. 4 is the titania nanotube before the composite sulfuration copper and the material behind the composite sulfuration copper in the inventive method, under same light source, and the I-V graphic representation of opto-electronic conversion output, among the figure, ordinate zou is current density degree, unit, and X-coordinate is a voltage, and unit is V.Fig. 4 illustrates the material behind the composite sulfuration copper, and its short-circuit current density is 1.7 for mA/cm 2, and the short-circuit current density of simple titania nanotube is almost nil.As seen the nano composite material of present method preparation to the absorption of sunlight with utilize ability height, useful output height.
Embodiment
Embodiment one
One embodiment of the present invention are, the preparation method of a kind of cupric sulfide and titania nanotube matrix material, and its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity 99.9%, with sand paper with its surface be milled to light seamless after, put into the ultrasonic cleaning in 30 minutes of acetone or dehydrated alcohol, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt (being that weight percent is 0.25%) Neutral ammonium fluoride, voltage is 55v, oxidization time 13 hours promptly grows Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration is 0.005mol/L; After sealing with autoclave, put into stove and heat, the time is 17 hours, and temperature is 100 ℃.
In the titanium sheet pre-treatment in this routine a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 10 minutes electrochemical etchings, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the hydrofluoric acid of 99.8% (weight percent concentration) vitriol oil, 40% (weight percent concentration) and the glacial acetic acid of purity 99.8% (the ice shape crystal of anhydrous acetic acid); Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 11V as anode to the titanium sheet of handling.
Embodiment two
One embodiment of the present invention are, the preparation method of a kind of cupric sulfide and titania nanotube matrix material, and its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity 99.9%, with sand paper with its surface be milled to light seamless after, put into the ultrasonic cleaning in 20 minutes of acetone or dehydrated alcohol, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt Neutral ammonium fluoride, voltage is 50v, oxidization time 5 hours promptly grows Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration is 0.0025mol/L; After sealing with autoclave, put into stove and heat, the time is 12 hours, and temperature is 60 ℃.
In the titanium sheet pre-treatment in this routine a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 5 minutes electrochemical etchings, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the hydrofluoric acid of the vitriol oil, 40% (weight percent concentration) of 99.8% (weight percent concentration) and the glacial acetic acid of purity 99.8% (the ice shape crystal of anhydrous acetic acid); Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 12V as anode to the titanium sheet of handling.
Embodiment three
One embodiment of the present invention are, the preparation method of a kind of cupric sulfide and titania nanotube matrix material, and its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity 99.0%, with sand paper with its surface be milled to light seamless after, put into the ultrasonic cleaning in 40 minutes of acetone or dehydrated alcohol, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt Neutral ammonium fluoride, voltage is 60v, oxidization time 20 hours promptly grows Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration is 0.01mol/L; After sealing with autoclave, put into stove and heat, the time is 24 hours, and temperature is 120 ℃.
In the titanium sheet pre-treatment in this routine a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 15 minutes electrochemical etchings, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the glacial acetic acid of 99.8% the vitriol oil, 40% hydrofluoric acid and purity 99.8%; Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 15V as anode to the titanium sheet of handling.
Embodiment four
One embodiment of the present invention are, the preparation method of a kind of cupric sulfide and titania nanotube matrix material, and its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity 99.0%, with sand paper with its surface be milled to light seamless after, put into the ultrasonic cleaning in 25 minutes of acetone or dehydrated alcohol, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt Neutral ammonium fluoride, voltage is 57v, oxidization time 15 hours promptly grows Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration is 0.008mol/L; After sealing with autoclave, put into stove and heat, the time is 22 hours, and temperature is 80 ℃.
In the titanium sheet pre-treatment in this routine a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 15 minutes electrochemical etchings, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the glacial acetic acid of 99.8% the vitriol oil, 40% hydrofluoric acid and purity 99.8%; Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 15V as anode to the titanium sheet of handling.
Fig. 1 is the X ray diffracting spectrum that the inventive method is prepared into matrix material.Among the figure, ordinate zou is diffracted intensity (Intensity), arbitrary unit (a.u.), and X-coordinate is diffraction angle 2 θ, and unit is degree (deg.).Fig. 1 illustrates that the matrix material of present method preparation is the matrix material that cupric sulfide and titanium dioxide constitute really;
Fig. 2 is the sem photograph with the titania nanotube of the inventive method before composite sulfuration copper.Fig. 3 is the sem photograph of the inventive method prepared product.
The prepared product that Fig. 2, Fig. 3 illustrate the inventive method really is the compound matrix material of nano copper sulfate particle on titania nanotube.
Fig. 4 is the titania nanotube before the composite sulfuration copper and the material behind the composite sulfuration copper in the inventive method, and under same light source, the I-V graphic representation of opto-electronic conversion output wherein is labeled as TiO 2Almost the curve of level is the I-V graphic representation of the titania nanotube before the composite sulfuration copper, and another is labeled as CuS-TiO 2Curve be material I-V graphic representation behind the composite sulfuration copper; Among the figure, ordinate zou is current density degree, unit, and X-coordinate is a voltage, and unit is V.Fig. 4 illustrates the material behind the composite sulfuration copper, and its short-circuit current density is 1.7 for mA/cm 2, and the short-circuit current density of simple titania nanotube is almost nil.As seen the nano composite material of present method preparation to the absorption of sunlight with utilize ability height, useful output height.

Claims (2)

1. the preparation method of cupric sulfide and titania nanotube matrix material, its concrete practice is:
A. titanium sheet pre-treatment: with the titanium sheet of purity more than 99.0%, with sand paper with its surface be milled to light seamless after, put into acetone or dehydrated alcohol 20-40 minute ultrasonic cleaning, again with deionized water rinsing and air-dry;
B. electrochemical preparation titania nanotube: the titanium sheet of platinized platinum after as negative electrode, a step process carried out anodic oxidation as anode in the ethylene glycol solution of 0.25%wt Neutral ammonium fluoride, voltage is 50-60v, oxidization time 5-20 hour, promptly grow Nano tube array of titanium dioxide at titanium plate surface;
C. the preparation of matrix material: have the titanium sheet of Nano tube array of titanium dioxide to put into the mixing solutions that cupric chloride and Sulfothiorine are housed the growth of b step, the cupric chloride of mixing solutions is identical with the volumetric molar concentration of Sulfothiorine, and concentration range is 0.0025-0.01mol/L; After sealing with autoclave, put into stove and heat, the time is 12-24 hour, and temperature is 60-120 ℃.
2. the preparation method of a kind of cupric sulfide according to claim 1 and titania nanotube matrix material, it is characterized in that: in the titanium sheet pre-treatment in described a step, the titanium sheet with coated abrasive working after, also put it into polishing fluid and carry out 5-15 minute electrochemical etching, carry out ultrasonic cleaning again; Described polishing fluid is formulated by 3: 2: 5 volume ratio by the glacial acetic acid of 99.8% the vitriol oil, 40% hydrofluoric acid and purity 99.8%; Getting a titanium sheet during polishing in addition is negative electrode, and the titanium sheet of handling carries out the constant voltage electrochemical etching of 11-15V as anode to the titanium sheet of handling.
CN2010102296420A 2010-07-19 2010-07-19 Method for preparing composite material of copper sulfide and titanium dioxide nano-tube Expired - Fee Related CN101899701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102296420A CN101899701B (en) 2010-07-19 2010-07-19 Method for preparing composite material of copper sulfide and titanium dioxide nano-tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102296420A CN101899701B (en) 2010-07-19 2010-07-19 Method for preparing composite material of copper sulfide and titanium dioxide nano-tube

Publications (2)

Publication Number Publication Date
CN101899701A true CN101899701A (en) 2010-12-01
CN101899701B CN101899701B (en) 2012-07-11

Family

ID=43225602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102296420A Expired - Fee Related CN101899701B (en) 2010-07-19 2010-07-19 Method for preparing composite material of copper sulfide and titanium dioxide nano-tube

Country Status (1)

Country Link
CN (1) CN101899701B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115903A (en) * 2011-01-22 2011-07-06 西北大学 Method for preparing titanium dioxide nano-ring through anodic oxidation
CN102544182A (en) * 2012-01-05 2012-07-04 西北工业大学 Surface plasmon resonance rectenna and preparation method therefor
CN102534726A (en) * 2012-01-12 2012-07-04 天津大学 Titanium dioxide (TiO2) nanotube composite material and method for depositing SnSe/Ag nanoparticles
CN102618905A (en) * 2012-03-22 2012-08-01 河北工业大学 Method and device for manufacturing strengthened titanium heat-transferring element
CN102776513A (en) * 2012-07-13 2012-11-14 西南交通大学 Preparation process of TiO2 nanotube/PbS/CuS nanocomposite
CN102776544A (en) * 2012-07-13 2012-11-14 西南交通大学 Preparation technology for semi-wall type titanium dioxide nanotube array
CN102810462A (en) * 2012-06-18 2012-12-05 西南交通大学 Preparation method for semiconductor rectifying device with high breakdown voltage
WO2013004560A1 (en) * 2011-07-06 2013-01-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for producing p-type semiconducting tio2 nanotubes
CN104250828A (en) * 2014-09-04 2014-12-31 东北电力大学 Preparation method for CuS titanium dioxide nanotube composite membrane electrode capable of degrading phosphor-series scale inhibitors
CN104475129A (en) * 2014-11-25 2015-04-01 辽宁石油化工大学 Low-temperature preparation method of copper sulfide/titanium oxide hetero-junction photocatalyst
CN105506710A (en) * 2015-12-15 2016-04-20 天津理工大学 Method for preparing titanium dioxide nanotube arrays with CuS nanoparticles sensitized
CN105908241A (en) * 2016-07-04 2016-08-31 太原理工大学 Preparing method of TiO2 nanotube array in controllable three-dimensional shape
CN107051545A (en) * 2017-05-08 2017-08-18 浙江理工大学 A kind of nano titanium oxide/copper sulfide nano nano composite material
CN107670673A (en) * 2017-09-27 2018-02-09 湖北工业大学 A kind of TiO2The preparation method of/CuS composite Nano array photoelectrics pole material
CN110359074A (en) * 2019-07-19 2019-10-22 中原工学院 A kind of medical metallic titanium or titanium alloy surface composite anti-corrosive coating and preparation method
CN111380818A (en) * 2018-12-28 2020-07-07 Tcl集团股份有限公司 Thin film and preparation method thereof and detection method of free cadmium ions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358240A (en) * 1999-06-25 2002-07-10 欧洲核研究组织 Bath composition for electropolishing of titanium and method for using same
CN101545129A (en) * 2009-04-02 2009-09-30 桂林工学院 A process for synthesizing crystalline titanic oxide nano-tubes
CN101625930A (en) * 2009-06-19 2010-01-13 东南大学 Ordered nano-tube array structure electrode material, preparation method and stored energy application
CN101733161A (en) * 2009-12-15 2010-06-16 华南师范大学 Photochemical preparation method of chitosan loaded metal sulfide photocatalyst
CN101768771A (en) * 2008-12-31 2010-07-07 北京大学 Cylindrical and barrel-shaped titanium dioxide nanotube arrays and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358240A (en) * 1999-06-25 2002-07-10 欧洲核研究组织 Bath composition for electropolishing of titanium and method for using same
CN101768771A (en) * 2008-12-31 2010-07-07 北京大学 Cylindrical and barrel-shaped titanium dioxide nanotube arrays and preparation method and application thereof
CN101545129A (en) * 2009-04-02 2009-09-30 桂林工学院 A process for synthesizing crystalline titanic oxide nano-tubes
CN101625930A (en) * 2009-06-19 2010-01-13 东南大学 Ordered nano-tube array structure electrode material, preparation method and stored energy application
CN101733161A (en) * 2009-12-15 2010-06-16 华南师范大学 Photochemical preparation method of chitosan loaded metal sulfide photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《科学通报》 20081231 张建灵 等 CdS 修饰TiO2纳米管阵列制备及其光电催化产氢性能 1471-1474 1-2 第53卷, 第12期 2 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115903B (en) * 2011-01-22 2012-08-08 西北大学 Method for preparing titanium dioxide nano-ring through anodic oxidation
CN102115903A (en) * 2011-01-22 2011-07-06 西北大学 Method for preparing titanium dioxide nano-ring through anodic oxidation
WO2013004560A1 (en) * 2011-07-06 2013-01-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for producing p-type semiconducting tio2 nanotubes
CN102544182A (en) * 2012-01-05 2012-07-04 西北工业大学 Surface plasmon resonance rectenna and preparation method therefor
CN102544182B (en) * 2012-01-05 2014-07-16 西北工业大学 Surface plasmon resonance rectenna and preparation method therefor
CN102534726A (en) * 2012-01-12 2012-07-04 天津大学 Titanium dioxide (TiO2) nanotube composite material and method for depositing SnSe/Ag nanoparticles
CN102618905A (en) * 2012-03-22 2012-08-01 河北工业大学 Method and device for manufacturing strengthened titanium heat-transferring element
CN102810462A (en) * 2012-06-18 2012-12-05 西南交通大学 Preparation method for semiconductor rectifying device with high breakdown voltage
CN102776513B (en) * 2012-07-13 2014-11-12 西南交通大学 Preparation process of TiO2 nanotube/PbS/CuS nanocomposite
CN102776544A (en) * 2012-07-13 2012-11-14 西南交通大学 Preparation technology for semi-wall type titanium dioxide nanotube array
CN102776513A (en) * 2012-07-13 2012-11-14 西南交通大学 Preparation process of TiO2 nanotube/PbS/CuS nanocomposite
CN102776544B (en) * 2012-07-13 2015-06-03 西南交通大学 Preparation technology for semi-wall type titanium dioxide nanotube array
CN104250828A (en) * 2014-09-04 2014-12-31 东北电力大学 Preparation method for CuS titanium dioxide nanotube composite membrane electrode capable of degrading phosphor-series scale inhibitors
CN104475129A (en) * 2014-11-25 2015-04-01 辽宁石油化工大学 Low-temperature preparation method of copper sulfide/titanium oxide hetero-junction photocatalyst
CN104475129B (en) * 2014-11-25 2017-01-18 辽宁石油化工大学 Low-temperature preparation method of copper sulfide/titanium oxide hetero-junction photocatalyst
CN105506710A (en) * 2015-12-15 2016-04-20 天津理工大学 Method for preparing titanium dioxide nanotube arrays with CuS nanoparticles sensitized
CN105908241A (en) * 2016-07-04 2016-08-31 太原理工大学 Preparing method of TiO2 nanotube array in controllable three-dimensional shape
CN107051545A (en) * 2017-05-08 2017-08-18 浙江理工大学 A kind of nano titanium oxide/copper sulfide nano nano composite material
CN107670673A (en) * 2017-09-27 2018-02-09 湖北工业大学 A kind of TiO2The preparation method of/CuS composite Nano array photoelectrics pole material
CN111380818A (en) * 2018-12-28 2020-07-07 Tcl集团股份有限公司 Thin film and preparation method thereof and detection method of free cadmium ions
CN110359074A (en) * 2019-07-19 2019-10-22 中原工学院 A kind of medical metallic titanium or titanium alloy surface composite anti-corrosive coating and preparation method

Also Published As

Publication number Publication date
CN101899701B (en) 2012-07-11

Similar Documents

Publication Publication Date Title
CN101899701B (en) Method for preparing composite material of copper sulfide and titanium dioxide nano-tube
CN100517772C (en) An electrode of quantum dot sensitization solar battery and the corresponding preparation method
CN103708559A (en) Tungsten trioxide nano-film with photocatalytic performance, and preparation method thereof
CN103361689A (en) Method for preparing titanium dioxide nanotube array photoelectrode
CN102623195A (en) Method for preparing solar cell through quantum dot and dye synergistic sensitization of TiO2 nanorod array
CN110004459B (en) Heterojunction photo-anode for driving carbon dioxide reduction and preparation method and application thereof
Feng et al. Fabrication of layered (CdS-Mn/MoS2/CdTe)-promoted TiO2 nanotube arrays with superior photocatalytic properties
CN104475073B (en) A kind of nano-wire array film of titanium dioxide and its preparation and application
CN102776513B (en) Preparation process of TiO2 nanotube/PbS/CuS nanocomposite
CN103489651A (en) Preparing method for embellish titanium dioxide nanotube array electrode material embellished by cadmium selenide nano-particles
CN105568313A (en) 3D branch semiconductor nano heterojunction photoelectrode material and preparing method thereof
CN106328381B (en) All solid state quantum dot sensitized solar cell of one kind and preparation method thereof
CN104310794A (en) Porous TiO2 nanocrystalline thin film having three-dimensional nanorod floral structure as well as preparation method and application of porous TiO2 nanocrystalline thin film
CN106086922B (en) It is a kind of to utilize solar energy low cost production hydrogen peroxide and the electrolytic method of hydrogen
CN102965711B (en) The anodic oxidation two-step preparation method of cuprous nano flaky powder material
Shilpa et al. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review
CN103871745B (en) A kind of dendroid ZnO nanowire array structural material and its preparation method and application
CN104233433A (en) Method for preparing cuprous oxide thin film
CN103050287B (en) A kind ofly to shift and titanium dioxide nano-pipe array thin film to the conductive glass surface that bonds prepares the method for light anode
Li et al. Improved performance of quantum dot-sensitized solar cells by full-spectrum utilization
Yang et al. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells
CN107268020A (en) A kind of Ta3N5The preparation method and Ta of film3N5The application of film
CN104851942B (en) The preparation method of ZnO/I doping ZnO core/shell structure nano-wire array
CN104934230B (en) A kind of preparation method of wide light intensity scope of application Nano tube array of titanium dioxide complex light anode
CN102768904B (en) Method for preparing working electrode of TiO2 nanotube array

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120711

Termination date: 20150719

EXPY Termination of patent right or utility model