CN101710744A - 一种纳米发电机 - Google Patents

一种纳米发电机 Download PDF

Info

Publication number
CN101710744A
CN101710744A CN200910188057A CN200910188057A CN101710744A CN 101710744 A CN101710744 A CN 101710744A CN 200910188057 A CN200910188057 A CN 200910188057A CN 200910188057 A CN200910188057 A CN 200910188057A CN 101710744 A CN101710744 A CN 101710744A
Authority
CN
China
Prior art keywords
nano
array
semiconductor
nanowires
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910188057A
Other languages
English (en)
Inventor
李梦轲
张竞
姜春华
冯秋菊
刘玲玲
张欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN200910188057A priority Critical patent/CN101710744A/zh
Publication of CN101710744A publication Critical patent/CN101710744A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种由ZnO、Ga2O3或SnO2等具有逆压电和电极化特性的半导体纳米棒、线或带的阵列构建的新型纳米发电机,***包括两个纳米阵列A和B,其端部彼此相互接触且相对放置,纳米阵列A由具有逆压电和电极化特性的半导体纳米线组成,纳米阵列B由与纳米阵列A接触时具有肖特基接触特性的金属纳米线或涂覆金属膜的半导体纳米线组成。本发明利用空间中的各种高频交变电磁信号和电磁微波辐射信号使纳米阵列中的每根纳米线产生逆压电和电极化现象,在纳米线表面形成一定的正负电荷积累,从而将空间中的各种高频交变电磁信号和电磁微波辐射能直接转换成电能以电子流的形式输出,以此驱动或控制外部纳米器件或微机电***等负载。

Description

一种纳米发电机
技术领域
本发明涉及纳米发电和电源技术领域,特别涉及一种由ZnO等具有逆压电和电极化特性的半导体纳米棒、线或带的阵列构建的纳米发电机。
背景技术
目前发电***的发电方式主要是水力发电、火力发电、太阳能发电、化学能发电、核燃料发电等,这些发电方式不但会消耗大量的自然资源、造成大量的污染,也会因发电资源和电流在运输过程中存在大量损失,增加发电和用电成本。随着当代微电子、纳电子产品的逐渐普及和小型化,电子产品的尺度和功耗也越来越低,电池的设计尺度也越来越小。为了解决即将到来的微电子、纳电子产品所需的新型长寿命电源问题,世界各国科学家都在积极开发各种新型发电方式并努力研发各种新型长寿命电源。据英国《科学》杂志报道,美国佐治亚理工学院的王中林教授研究组成功地利用ZnO纳米半导体材料的压电特性,在纳米尺度范围内将机械能转换成电能,制成了可将机械振动能、流体振动能等转化为电能的纳米发电机,该发明为即将到来的纳电子时代各种微型***的电源设计和制造奠定了重要的研究基础。中国专利200710097875.8《交流纳米发电机及升压方法》也公开了这样一种纳米发电机。此种纳米发电机通过***中纳米半导体阵列和对应放置的纳米金属针尖阵列产生的相对振动,使纳米半导体阵列中的纳米棒、线或带发生形变,并利用ZnO纳米半导体材料的正压电特性将各种机械振动能转化为电能。但这类纳米发电机的发明说明书和权利要求书中只涉及到如何利用ZnO纳米半导体材料的正压电特性将自然界中存在的各种机械振动能转化为电能,这些机械能形式仅局限在运动、振动、流体流动等能量形式范畴,同时,此类纳米发电机运行条件比较苛刻,阵列中的纳米棒、线或带在不均匀机械外力或振动的长时间作用下,也会造成纳米半导体棒、线或带的机械损伤,这必然会大大缩短此类发电机的工作寿命。
信息时代的最显著特点就是电磁微波辐射形成的能量辐射弥漫空间,各种微纳机电***在工作中不断地接收、发射各种频段的电磁波,其对人体的危害也越来越受到关注,如何减少、利用电磁微波辐射,化害为利,造福人类也是当今科学家面临的一个重要课题。
发明内容
为解决现有纳米发电机技术中存在的运行条件苛刻、电机工作寿命短、工艺组装要求高等问题,本发明提出了一种运行环境较宽松、电机持续寿命较长、工艺实现相对简单且可利用空间电磁波的辐射能量进行发电的纳米发电机。
为了实现上述目的,本发明的技术方案如下:一种纳米发电机包括两个纳米线端部彼此相互接触且相对放置的纳米阵列A和纳米阵列B、两个金属支撑基片A和金属支撑基片B、约束纳米阵列的外壳和外接电路;所述的纳米阵列A由具有逆压电和电极化特性的半导体纳米线组成,通过化学、物理生长工艺直接生长在金属支撑基片A上;所述的纳米阵列B由与纳米阵列A接触时具有肖特基接触特性的金属纳米线组成,通过化学、物理生长工艺直接生长或安置在金属支撑基片B上;所述的纳米阵列A和纳米阵列B固定在特定的外壳中,所述的外接电路分别固定在金属支撑基片A和金属支撑基片B上,并与外部用电装置连接。
本发明所述的纳米阵列B可由金属纳米线组成,也可由与纳米阵列A相同的半导体纳米线组成,但半导体纳米线表面必须通过镀膜工艺涂覆一层与纳米阵列A接触时具有肖特基接触特性的金属膜层。
本发明所述的半导体纳米线可用半导体纳米带或半导体纳米棒代替。
本发明所述的半导体纳米线由ZnO或Ga2O3或SnO2等具有逆压电和电极化特性的半导体纳米阵列材料制成。
本发明所述的金属膜层或金属纳米线的金属为金或铂等能与ZnO或Ga2O3或SnO2等N型半导体纳米线形成肖特基接触特性的金属材料。
本发明所述的纳米阵列A由具有逆压电和电极化特性的半导体纳米线组成,可直接生长或通过后续再加工技术安装在金属支撑基片A上。
与现有技术相比,本发明具有以下有益效果:
1、本发明利用一个具有逆压电和电极化特性的半导体纳米阵列A,并在其对面放置另一个与之相接触的半导体纳米阵列B,纳米阵列B的每根纳米线可为金属纳米线或为镀有特定金属膜层的半导体纳米线,在交变的微波或其他高频电磁信号作用下,每根具有逆压电和电极化特性的半导体纳米线晶体结构中将产生逆压电和电极化效应,纳米线的表面将产生电荷积累,且此积累电荷的符号也将随微波或其他高频电磁信号极化方向的改变而改变。依照半导体与金属间的接触理论,对镀有特定金属膜层的半导体纳米线或金属纳米线来说,当此种金属材料的功函数大于N型半导体材料功函数时,金属材料表面和N型ZnO等半导体表面间将形成肖特基接触,形成一个单向导通的PN结。在外接电路的辅助作用下,在纳米阵列A和具有金属特性的纳米阵列B间形成的这个PN结将使半导体纳米线表面的电荷在正半周向外电路输出,在负半周电荷不输出,从而可将空间中的各种高频交变电磁信号和电磁微波辐射能直接转换成电能以电子流的形式输出,产生足够的电能,以此驱动或控制外部纳米器件或***等负载。此外,利用此装置对交变电磁辐射源信号场的电场E的极化方向、距离、功率大小的敏感特性,还可对交变电磁信号大小和方向进行分析检测,或者将电能储存在各种电池中。
2、本发明利用ZnO等N型半导体纳米阵列的这种特性制备出了可感应吸收空间中各种高频电磁微波辐射能进行发电的纳米发电机。本发明产品结构简单,加工制作容易,体积小,工作寿命长,其核心部件就是两个相向安装的纳米阵列,这两个纳米阵列可采用化学和物理的方法直接生长在两个导电的金属基片上。本发明的纳米发电机可随意安装、固定在各种微电子产品如手机、电子表、传感器和各种微电子***上,通过感应吸收空间中的交变电磁信号,直接进行发电,可产生足够的电能支持各种微纳电子产品待机或工作,也可将转化的交变电磁信号辐射能储备起来,为微电池充电。因这种新型发电机不必通过机械外力,让半导体纳米线形成较大的机械形变,只是利用半导体的逆压电和电极化效应的共同作用,感应吸收空间中的电磁辐射能,源源不断的输出电能,其原理更加简单,工作寿命和***可靠性也比王中林研究组的正压电发电方案大大提高。例如:这种纳米发电机可直接安装在手机等用电***上,在手机待机、通话的同时就可吸收电磁辐射进行发电,并存储于电池中,同时,这种纳米发电机对各种交变电磁信号源有较好的电磁相应特性,可作为开关器件驱动各种微电子产品的运动状态和功能实现。本发明在即将到来的微纳电子器件和微机电结构时代有重要的应用前景。
附图说明
本发明共有附图2张,其中:
图1为纳米发电机结构示意图。
图2为纳米发电机发电原理示意图。
图中,1、纳米阵列A,2、纳米阵列B,3、支撑基片A,4、支撑基片B,5、外壳,6、外连线路,7、外部用电装置,8、单根纳米线A,9、正电荷,10、负电荷,11、交变电磁场,12、单根纳米线B,13、PN结,14、纳米发电机。
下面结合附图对本发明进行进一步地描述。如图1所示,一种纳米发电机包括两个纳米线端部彼此相互接触且相对放置的纳米阵列A1和纳米阵列B2、两个金属支撑基片A3和金属支撑基片B4、约束纳米阵列的外壳5和外接电路6;所述的纳米阵列A1由具有逆压电和电极化特性的半导体纳米线组成,通过化学、物理生长工艺直接生长在金属支撑基片A3上;所述的纳米阵列B2由与纳米阵列A1接触时具有肖特基接触特性的金属纳米线或为镀有特定金属膜层的半导体纳米线组成,通过化学、物理生长工艺直接生长在金属支撑基片B4上;所述的纳米阵列A1和纳米阵列B2固定在外壳5里,所述的外接电路6分别固定在金属支撑基片A3和金属支撑基片B4上,并与外部用电装置7连接。所述的半导体纳米线由ZnO或Ga2O3或SnO2等具有逆压电和电极化特性的半导体纳米阵列材料制成。
具体实施方式
本发明所述的纳米阵列B2可由与纳米阵列A1相同的半导体纳米线组成,其表面需通过镀膜工艺涂覆一层与纳米阵列A1接触时具有肖特基接触特性的金属膜层,以代替金属纳米线阵列。
本发明所述的半导体纳米线可用半导体纳米带或半导体纳米棒代替。
本发明所述的金属膜层或金属纳米线的金属材料为金或铂等能与ZnO或Ga2O3或SnO2等N型半导体纳米线形成肖特基接触特性的金属材料。
本发明所述的纳米阵列A1由具有逆压电和电极化特性的半导体纳米线组成,通过后续再加工技术安装在金属支撑基片A3上。
本发明的发电原理如图2所示,纳米发电机14在交变电磁场11的作用下,在逆压电和电极化效应的共同作用下,电磁波的极化分量一定会在每根半导体纳米线的长轴z或截面轴x或y方向产生一定程度的极化分量,在逆压电效应和电极化效应的作用下,每根纳米线表面都将产生感应极化电荷的积累,在交变电磁场11作用的某一瞬时,单根纳米线A8的上下端部表面必会产生积累的正电荷9和负电荷10,当涂敷金属膜层的单根纳米线B12与下部单根纳米线A8接触时,单根纳米线B12将与N型的单根纳米线A8之间产生肖特基势垒,彼此接触点或面上会形成一个PN结13,该PN结13的单向导电特性将使半导体表面积累的电荷在正半周向外电路输出,而在负半周,电荷不能输出,从而可将空间中的各种高频交变电磁场11和电磁微波辐射能直接转换成电能以电子流的形式输出,产生足够的电能,驱动或控制各种用电或储能单元。
采用本发明的一个发电***,包括交变电磁场11、纳米发电机14、外接线路6、外部用电装置7。在外界交变电磁场11作用下,纳米发电机14下部的每根半导体纳米线产生逆压电和电极化效应,在其上下端部表面产生正电荷9和负电荷10积累,通过上部镀有特定金属膜层的半导体纳米线或金属纳米线之间的肖特基接触,将负电荷10不断引出,进行发电,并通过外接线路6连接到外部用电装置7,使电能不断输出,并驱动外部用电装置7工作;也可通过外接线路6在后端连接一个测试模块,利用输出电流大小对交变电磁场信号进行检测;或通过外接线路6连接到储电装置模块,储存电能以备使用。
 

Claims (7)

1.一种纳米发电机,其特征在于:包括两个纳米线端部彼此相互接触且相对放置的纳米阵列A(1)和纳米阵列B(2)、两个金属支撑基片A(3)和金属支撑基片B(4)、约束纳米阵列的外壳(5)和外接电路(6);所述的纳米阵列A(1)由具有逆压电和电极化特性的半导体纳米线组成,通过化学、物理生长工艺直接生长在金属支撑基片A(3)上;所述的纳米阵列B(2)由与纳米阵列A(1)接触时具有肖特基接触特性的金属纳米线组成,通过化学、物理生长工艺直接生长在金属支撑基片B(4)上;所述的纳米阵列A(1)和纳米阵列B(2)固定在外壳(5)里,所述的外接电路(6)分别固定在金属支撑基片A(3)和金属支撑基片B(4)上,并与外部用电装置(7)连接。
2.根据权利要求1所述的纳米发电机,其特征在于:所述的纳米阵列B(2)由与纳米阵列A(1)相同的半导体纳米线组成,其表面通过镀膜工艺涂覆一层与纳米阵列A(1)接触时具有肖特基接触特性的金属膜层。
3.根据权利要求1或2所述的纳米发电机,其特征在于:所述的半导体纳米线可以用半导体纳米带或半导体纳米棒代替。
4.根据权利要求1或2所述的纳米发电机,其特征在于:所述的半导体纳米线由ZnO或Ga2O3或SnO2等具有逆压电和电极化特性的半导体纳米阵列材料制成。
5.根据权利要求1所述的纳米发电机,其特征在于:所述的金属纳米线的金属为金或铂等能与ZnO或Ga2O3或SnO2等N型半导体纳米线形成肖特基接触特性的金属材料。
6.根据权利要求2所述的纳米发电机,其特征在于:所述的金属膜层的金属为金或铂等能与ZnO或Ga2O3或SnO2等N型半导体纳米线形成肖特基接触特性的金属材料。
7.根据权利要求1所述的纳米发电机,其特征在于:所述的纳米阵列A(1)由具有逆压电和电极化特性的半导体纳米线组成,通过后续再加工技术安装在金属支撑基片A(3)上。
CN200910188057A 2009-10-22 2009-10-22 一种纳米发电机 Pending CN101710744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910188057A CN101710744A (zh) 2009-10-22 2009-10-22 一种纳米发电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910188057A CN101710744A (zh) 2009-10-22 2009-10-22 一种纳米发电机

Publications (1)

Publication Number Publication Date
CN101710744A true CN101710744A (zh) 2010-05-19

Family

ID=42403510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910188057A Pending CN101710744A (zh) 2009-10-22 2009-10-22 一种纳米发电机

Country Status (1)

Country Link
CN (1) CN101710744A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647110A (zh) * 2012-04-23 2012-08-22 兰州大学 一种磁力驱动的纳米发电机
CN103366562A (zh) * 2012-09-12 2013-10-23 国家纳米科学中心 交通监测传感器和检测方法
CN103368447A (zh) * 2012-08-13 2013-10-23 国家纳米科学中心 静电脉冲发电机和直流脉冲发电机
WO2014089891A1 (zh) * 2012-12-10 2014-06-19 北京大学 一种微纳集成发电机及其制备方法
CN105197870A (zh) * 2015-09-30 2015-12-30 西交利物浦大学 自旋极化电流驱动的亚微米/纳米马达及其制作方法
CN106253745A (zh) * 2016-08-22 2016-12-21 苏州聚冠复合材料有限公司 一种3d打印微纳可穿戴式纳米发电机
WO2017124718A1 (zh) * 2016-01-19 2017-07-27 中兴通讯股份有限公司 一种纳米发电机及其制造方法
US10193472B2 (en) 2013-01-28 2019-01-29 Peking University Single friction surface triboelectric microgenerator and method of manufacturing the same
CN112304132A (zh) * 2020-10-19 2021-02-02 丁文双 一种低阻燃气锅炉尾部烟气余热回收节能设备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647110A (zh) * 2012-04-23 2012-08-22 兰州大学 一种磁力驱动的纳米发电机
CN102647110B (zh) * 2012-04-23 2015-04-08 兰州大学 一种磁力驱动的纳米发电机
CN103368447A (zh) * 2012-08-13 2013-10-23 国家纳米科学中心 静电脉冲发电机和直流脉冲发电机
CN103366562B (zh) * 2012-09-12 2016-04-06 北京纳米能源与***研究所 交通监测传感器和检测方法
CN103366562A (zh) * 2012-09-12 2013-10-23 国家纳米科学中心 交通监测传感器和检测方法
WO2014089891A1 (zh) * 2012-12-10 2014-06-19 北京大学 一种微纳集成发电机及其制备方法
US9762151B2 (en) 2012-12-10 2017-09-12 Peking University Integrated micro/nanogenerator and method of fabricating the same
US10193472B2 (en) 2013-01-28 2019-01-29 Peking University Single friction surface triboelectric microgenerator and method of manufacturing the same
CN105197870A (zh) * 2015-09-30 2015-12-30 西交利物浦大学 自旋极化电流驱动的亚微米/纳米马达及其制作方法
CN105197870B (zh) * 2015-09-30 2017-03-22 西交利物浦大学 自旋极化电流驱动的亚微米/纳米马达及其制作方法
WO2017124718A1 (zh) * 2016-01-19 2017-07-27 中兴通讯股份有限公司 一种纳米发电机及其制造方法
CN106253745A (zh) * 2016-08-22 2016-12-21 苏州聚冠复合材料有限公司 一种3d打印微纳可穿戴式纳米发电机
CN112304132A (zh) * 2020-10-19 2021-02-02 丁文双 一种低阻燃气锅炉尾部烟气余热回收节能设备

Similar Documents

Publication Publication Date Title
CN101710744A (zh) 一种纳米发电机
CN101938230B (zh) 波浪振动压电发电与太阳能组合发电方法及其发电***
CN101621258B (zh) 基于压电晶体频率转换机构的微型发电装置
CN101783615A (zh) 基于海浪能捕获的海上仪器仪表供电装置
CN113315408B (zh) 面向限域空间的高度集成复合式振动能量转化模块
CN104836472A (zh) 利用声音能量的发电机和声音传感器
CN203537269U (zh) 多层插齿式摩擦发电机
CN103715941A (zh) 一种多悬臂梁压电换能器电路
CN107276495B (zh) 基于风能和太阳能的复合发电机和复合发电***
CN111049426A (zh) 一种压电式多方向、宽频带振动能量收集装置
Varshney et al. Comparison of techniques for designing and modeling of high power piezoelectric devices
CN205811876U (zh) 一种双层波浪形杂化纳米发电机
CN102510239A (zh) 复合式振动发电机
CN202385033U (zh) 一种单晶片悬臂式压电振动发电机
CN111396236B (zh) 一种基于双螺旋单元的不倒翁式波浪能发电装置
CN201570994U (zh) 一种海上仪器仪表供电装置
CN108400723B (zh) 一种冲击式多方向压电发电装置
CN102868233A (zh) 一种纳米发电机
Liu et al. Design of self-powered environment monitoring sensor based on TEG and TENG
Nguyen-Vinh et al. A review of Low-Power Energy Harvesting technologies in Industry 4.0
Jiang et al. Low-power design of a self-powered piezoelectric energy harvesting system
Cabading et al. Design of A Hybrid Renewable Energy System with IoT Monitoring and Battery Management
CN108270370B (zh) 一种多向宽频的压电式能量收集装置
CN208597036U (zh) 一种冲击式多方向压电发电装置
CN106253745A (zh) 一种3d打印微纳可穿戴式纳米发电机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100519