CN101689484A - 失配衬底上的单晶生长 - Google Patents

失配衬底上的单晶生长 Download PDF

Info

Publication number
CN101689484A
CN101689484A CN200880023660.4A CN200880023660A CN101689484A CN 101689484 A CN101689484 A CN 101689484A CN 200880023660 A CN200880023660 A CN 200880023660A CN 101689484 A CN101689484 A CN 101689484A
Authority
CN
China
Prior art keywords
substrate
material type
iii
growth
catalyst material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880023660.4A
Other languages
English (en)
Other versions
CN101689484B (zh
Inventor
奥拉夫·温尼克
拉尔斯·芒努斯·博里斯特伦
维贾亚拉格哈万·马达卡西拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101689484A publication Critical patent/CN101689484A/zh
Application granted granted Critical
Publication of CN101689484B publication Critical patent/CN101689484B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种将一种材料类型(如,III-V半导体)的单晶层形成到不同材料类型(如,硅)的衬底上的工艺。提供第一材料类型的衬底。将催化剂材料的至少一个不连续区域沉积到衬底上,所述不连续区域限定了衬底的晶种区域。将第二材料类型(如,III-V半导体)作为单晶纳米线在衬底与催化剂材料之间生长到衬底上,所述第二材料类型的纳米线从所述衬底开始向上延伸,其横向尺寸不超过晶种区域。在生长纳米线之后,改变生长条件以便使第二材料类型从单晶纳米线开始以平行于衬底表面的方向横向地外延生长。

Description

失配衬底上的单晶生长
技术领域
本发明涉及在不同材料的衬底上外延生长单晶材料。具体地,并非排他地,本发明涉及在IV族衬底(如,硅)上生长III-V或II-VI单晶半导体。
背景技术
希望可以将III-V材料集成到硅衬底上。与硅相比,III-V半导体可以具有较高的电特性,例如,较佳的电荷迁移率和不同的带隙。III-V半导体的缺点是,III-V半导体相对较难生长并且相对更为昂贵。因此,将III-V半导体集成到IV族衬底上提供了优点,如,便宜得多的衬底的使用、使用高度开发的硅处理技术的能力、以及将III-V和基于硅的器件集成在相同衬底上的能力。
当在硅衬底上生长III-V半导体时,由于晶格常数的较大失配使得得到的III-V层通常包含不可接受的晶格缺陷密度。此外,热膨胀系数通常是差异很大的,这使得很难在升高的温度下生长III-V层。此外,由于III-V半导体的较低对称性,经常形成反相边界。
发明内容
本发明的目的是改进在不同材料的衬底上生长单晶材料的现有技术。
根据一方面,本发明提供了一种在不同材料类型的衬底上形成一种材料类型的单晶层的方法,包括步骤:
(i)提供第一材料类型的衬底;
(ii)将催化剂材料的至少一个不连续区域沉积到该衬底上,所述不连续区域限定了所述衬底的晶种(seed)区域;
(iii)将第二材料类型的单晶纳米线生长到衬底上催化剂材料的不连续区域,所述第二材料类型的纳米线从衬底开始向上延伸,其横向尺寸实质上不超过晶种区域;以及
(iv)改变生长条件,以便使该第二材料类型从所述单晶纳米线开始以平行于衬底表面的方向横向地生长。
附图说明
现在将参考附图以示例的方式来描述本发明的实施例,附图中:
图1a至1e是在不同材料衬底上形成单晶材料层的工艺的一系列示意性横截面图;以及
图2a至2c是衬底的一系列示意性平面图,其中使用上述工艺在所述衬底上形成器件。
具体实施方式
参考图1a,在适当的衬底5的一个或更多所选晶种区域11上沉积催化剂材料10。在优选工艺中,从IV族半导体材料(如,硅或锗)中选择衬底5,然而其他衬底也是可以的。这样的衬底可以包括SiO2衬底、玻璃衬底、有机材料、箔等。可以从以下参考图1b所讨论的促进适当的半导体材料外延生长的任何材料中选择催化剂材料10。这样的催化剂的示例是金(Au)、铜(Cu)、铝(Al)、以及铟(In)。在使用硅衬底的情况下,可以从所列的镍(Ni)、钴(Co)、铟(In)以及氧化硅(SixOy)中选择催化剂,然而该列表并不是穷举的。
尽管在图1中仅示出了由催化剂材料10限定的一个晶种区域11,然而如以下将结合图2a描述的,通常可以利用衬底上催化剂材料的多个不连续区域以周期性或非周期性形式在衬底表面上限定晶种区域阵列。这些不连续区域中的每个是可以通过光刻工艺来形成的,所述光刻工艺从催化剂材料的不连续层限定所述不连续区域。备选地,每个不连续区域是可以通过纳米粒子的自组织来形成的。优选地,晶种区域11的横向尺寸(即与衬底表面平行的尺寸)为直径大约100nm或更小,然而更大的尺寸也是可以的。更优选地,晶种区域的尺寸在5到100nm的范围内。更优选地,晶种区域的直径在大约5到50nm的范围内。
如图1b所示,下一步骤是使用催化剂材料10使适当材料的单晶纳米线12从衬底5开始外延生长。衬底5包括第一材料类型(例如,已提到的IV族半导体晶体),单晶纳米线12包括第二材料类型。在优选布置中,第二材料类型是诸如InP、GaP或GaN之类的III-V半导体材料。II-VI半导体材料、III族氧化物(如,ZnO)或III-V合金也可以作为第二材料类型。
纳米线12的生长机制可以是VLS(气-液-固)机制。纳米线在催化剂材料10与衬底5表面之间的界面处生长。由于纳米线的横向尺寸非常小,正如利用催化剂材料10所限定的晶种区域而有效地确定的那样,所以单晶纳米线可以在许多不同类型的衬底上。晶格参数的任何失配都可以在纳米线的表面上释放(relax)。
衬底5可以是使单晶纳米线可以从其开始生长的任何适当的平台。因此,这里所使用的措辞“衬底”旨在包括用于纳米线的任何机械或物理支撑介质,所述支撑介质例如可以包括适当材料的顶层,所述顶层位于其他层顶部和/或直接位于机械支撑衬底顶部。可以看出,纳米线可以有效地“独立”生长,即,不被环绕、不被支撑、也不通过单独的掩模层或其他起伏结构(relief structure)来生长。
控制生长过程以获得适当的生长阶段,例如,III族或IV族终止。参考图1c,在纳米线生长到适当的深度或高度h之后,在衬底5的其余外露表面上形成(例如,生长或沉积)阻挡层14。例如,在硅衬底的情况下,可以形成二氧化硅的阻挡层14。纳米线可以根据应用而生长到任何适当的高度h。通常,在许多应用中,达到500nm的高度h将是高效的。然而,h可以在几十纳米到几微米或甚至更大的范围内变化。
参考图1d,在形成阻挡层14之后,继续开始第二材料的生长(即,与纳米线12的材料相同),使得实质上仅发生第二材料的横向生长,以形成第二材料的层15。在该横向生长过程中,利用纳米线晶体而不是利用衬底结晶学来控制晶体取向和生长方向。措辞“横向生长”指的是单晶体在实质上与衬底的表面平行或与纳米线12的纵轴正交的方向上生长。横向生长阶段可以继续进行,直到针对所需器件的后续制造形成了足够的第二材料类型区域15为止。根据要制造的器件所需的有源区域的大小,横向生长阶段将使第二材料的横向尺寸延伸到至少200nm直径以及更大。
在衬底5上存在纳米线12的阵列的情况下,横向生长可以足够宽广以使包围每个纳米线的层15覆盖并接合,从而在第一材料类型的衬底上形成第二材料类型的横向延伸层15。
在形成层15之后,可以通过选择性的蚀刻和/或适当的平面化工艺(如,化学机械抛光)来去除剩余催化剂10以及催化剂10下方层15的任何小的过度生长(即,向纳米线的任何“延伸”)。这得到图1e所示的结构。
在该得到的(例如,III-V材料的)层15上和/或中,可以形成任何适当的器件或器件组。在一个示例中,这样的器件可以是针对高频应用的基于GaN的高电子迁移率的晶体管。
进一步参考图1c至1e,注意到阻挡层14(例如,SiO2层)不是必不可少的。尽管阻挡层14在帮助防止在图1d的横向生长阶段期间晶体进一步从衬底5而不是从纳米线12开始生长方面是有用的,然而实际上可以省略阻挡层14。在这种变型中,通过改变生长条件以将生长限制成基于纳米线结晶学的生长,可以实现对层15进行生长控制,以保证仅从纳米线12而不从衬底开始横向生长。例如,这是可以通过在MOVPE(金属气相外延)工艺期间升高温度来实现的。备选地或附加地,可以利用压强变化。
实现从纳米线开始的外延横向生长的另一可能性是去除催化剂材料。在去除催化剂材料之后,自动停止VLS生长,并且实质上仅横向生长是可能的。例如可以通过化学机械抛光来去除第二材料层厚度的任何不均匀性。
根据所需的第二材料层15的特性,例如可以在生长期间或生长之后对所述第二材料层进行掺杂。例如,可以通过在生长之前或生长之后对III-V材料掺入复合中心(如,在InP中掺入Fe),形成半绝缘层15。可以通过优选地在生长期间(尽管不是穷举地)通过掺杂受主和施主来形成导电层15。导电层可以经由与衬底的纳米接触区域16电连接至衬底(图1c,1d)。在这种情况下,必须以相同的形式来对纳米线12进行掺杂。
对纳米线生长的高度控制是可能的,因此,根据纳米线单晶取向,可以以许多不同的备选结晶取向生长层15。
参考图2a至2c,现在描述所形成的结构的平面图。图2a示出了衬底或衬底5的一部分的平面图,在所述衬底上沉积或生长了催化剂材料10(如图1a所示),以限定晶种区域11的阵列20。典型地,这些晶种区域各具有最大100nm的直径。图2b示出了在图1d所示的横向生长过程之后由第二材料层15形成的有源区域21的阵列22。图2c是阵列22的有源区域21的示意性放大图,如图2c所示,可以使用有源区域21在层15中形成一个或更多个器件25。每个器件可以具有一个或跟多个接触轨道26,所述接触轨道26从所述器件开始延伸以电连接至其他器件和/或电连接至衬底5。
因为可以仅利用对生长催化剂10的晶种区域11的限定来控制对第二材料区域的严格限定,所以上述工艺提供了对某些现有技术的实质上工艺简化。例如,这种限定可以是通过光刻或电子束光刻或通过刻印技术(imprint technique)来限定的。另一优点是,可以在相同的工艺室中原位执行纳米线生长以及之后的后续横向生长。可以在包括非晶材料在内的任何衬底材料上实质上无缺陷地生长纳米线。因此,可以利用上述工艺在非晶衬底顶部生长第二材料类型(例如,III-V半导体)的单晶体(或具有可调节的、大于1微米的晶粒尺寸的多晶体)。
希望其他实施例在所附权利要求的范围之内。

Claims (15)

1、一种将一种材料类型的单晶层形成在不同材料类型的衬底上的方法,包括步骤:
(i)提供第一材料类型的衬底(5);
(ii)将催化剂材料(10)的至少一个不连续区域沉积到衬底上,所述不连续区域限定了衬底的晶种区域(11);
(iii)将第二材料类型的单晶纳米线(12)生长到衬底上催化剂材料的不连续区域处,所述第二材料类型的纳米线从衬底开始向上延伸,其横向尺寸实质上不超过晶种区域;以及
(iv)改变生长条件,使得第二材料类型从所述单晶纳米线开始在与衬底表面平行的方向上横向地外延生长。
2、根据权利要求1所述的方法,其中,所述第一材料类型是硅或锗。
3、根据权利要求1所述的方法,其中,所述第二材料类型是III-V或II-VI半导体材料或III族氧化物。
4、根据权利要求1所述的方法,其中,所述催化剂材料的不连续区域在所述衬底上延伸并且限定直径为100nm或更小的晶种区域。
5、根据权利要求4所述的方法,其中,所述纳米线宽度或直径是100nm或更小。
6、根据权利要求5所述的方法,其中,在步骤(iv)之后,所得到的第二材料层(15)的横向延伸大于200nm。
7、根据权利要求1所述的方法,还包括:在步骤(iii)之后且在步骤(iv)之前,在衬底上围绕第二材料类型的纳米线形成阻挡层(14)。
8、根据权利要求7所述的方法,其中,所述阻挡层是非晶电绝缘层。
9、根据权利要求1所述的方法,其中,在步骤(iii)期间,纳米线是独立的。
10、根据权利要求1所述的方法,还包括步骤:
(v)从第二材料类型的顶部去除催化剂材料。
11、根据权利要求1所述的方法,其中,步骤(ii)包括:将催化剂材料的多个不连续区域以阵列(20)的形式沉积到衬底上。
12、根据权利要求11所述的方法,其中,在步骤(iii)和(iv)中使用催化剂材料的每个不连续区域来在第二材料中形成有源区域(21),所述方法还包括:在每个有源区域中或上形成至少一个电子器件(25)。
13、根据权利要求11所述的方法,其中,使用光刻工艺或通过纳米粒子的自组织来形成催化剂材料的每个不连续区域。
14、根据权利要求1所述的方法,还包括步骤:对第二材料类型掺入另一元素或化合物。
15、根据权利要求1所述的方法,其中,步骤(iv)包括:去除催化剂材料以阻止纳米线进一步向上生长。
CN200880023660.4A 2007-07-10 2008-07-07 失配衬底上的单晶生长 Expired - Fee Related CN101689484B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07112157.8 2007-07-10
EP07112157 2007-07-10
PCT/IB2008/052727 WO2009007907A2 (en) 2007-07-10 2008-07-07 Single crystal growth on a mis-matched substrate

Publications (2)

Publication Number Publication Date
CN101689484A true CN101689484A (zh) 2010-03-31
CN101689484B CN101689484B (zh) 2012-02-15

Family

ID=40090134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880023660.4A Expired - Fee Related CN101689484B (zh) 2007-07-10 2008-07-07 失配衬底上的单晶生长

Country Status (4)

Country Link
US (1) US8962453B2 (zh)
EP (1) EP2168146A2 (zh)
CN (1) CN101689484B (zh)
WO (1) WO2009007907A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032465A1 (zh) * 2012-08-31 2014-03-06 南京大学 一种GaN纳米线生长方法
CN104377279A (zh) * 2014-10-09 2015-02-25 中国科学院半导体研究所 大失配体系硅基无位错异质外延方法
CN105590851A (zh) * 2016-03-18 2016-05-18 成都海威华芯科技有限公司 一种GaN HEMT器件制作方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284868A1 (en) * 2009-08-07 2011-02-16 Nxp B.V. Heterostructure
US8680510B2 (en) 2010-06-28 2014-03-25 International Business Machines Corporation Method of forming compound semiconductor
JP6130995B2 (ja) * 2012-02-20 2017-05-17 サンケン電気株式会社 エピタキシャル基板及び半導体装置
GB201321949D0 (en) 2013-12-12 2014-01-29 Ibm Semiconductor nanowire fabrication
US10103242B2 (en) 2015-08-12 2018-10-16 International Business Machines Corporation Growing groups III-V lateral nanowire channels
US9437614B1 (en) 2015-09-18 2016-09-06 International Business Machines Corporation Dual-semiconductor complementary metal-oxide-semiconductor device
US9735010B1 (en) 2016-05-27 2017-08-15 International Business Machines Corporation Fabrication of semiconductor fin structures
US10249492B2 (en) 2016-05-27 2019-04-02 International Business Machines Corporation Fabrication of compound semiconductor structures
US10304947B1 (en) 2017-11-30 2019-05-28 International Business Machines Corporation Smoothing surface roughness of III-V semiconductor fins formed from silicon mandrels by regrowth

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
EP2273552A3 (en) * 2001-03-30 2013-04-10 The Regents of the University of California Methods of fabricating nanstructures and nanowires and devices fabricated therefrom
TW561526B (en) * 2001-12-21 2003-11-11 Aixtron Ag Method for depositing III-V semiconductor layers on a non-III-V substrate
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US7378347B2 (en) * 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
EP1583139A1 (en) * 2004-04-02 2005-10-05 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Method for depositing a group III-nitride material on a silicon substrate and device therefor
WO2005079308A2 (en) * 2004-02-17 2005-09-01 New Jersey Institute Of Technology One dimensional nanostructures for vertical heterointegration on a silicon platform and method for making same
KR100646696B1 (ko) * 2004-03-10 2006-11-23 주식회사 실트론 질화물 반도체 소자 및 그 제조방법
US20060223211A1 (en) * 2004-12-02 2006-10-05 The Regents Of The University Of California Semiconductor devices based on coalesced nano-rod arrays
CN1850580A (zh) * 2005-04-22 2006-10-25 清华大学 超晶格纳米器件及其制作方法
WO2007047337A2 (en) * 2005-10-13 2007-04-26 The Regents Of The University Of California Improved probe system comprising an electric-field-aligned probe tip and method for fabricating the same
US8183587B2 (en) * 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US7566657B2 (en) * 2007-01-17 2009-07-28 Hewlett-Packard Development Company, L.P. Methods of forming through-substrate interconnects
US20080315430A1 (en) * 2007-06-22 2008-12-25 Qimonda Ag Nanowire vias

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032465A1 (zh) * 2012-08-31 2014-03-06 南京大学 一种GaN纳米线生长方法
CN104377279A (zh) * 2014-10-09 2015-02-25 中国科学院半导体研究所 大失配体系硅基无位错异质外延方法
CN105590851A (zh) * 2016-03-18 2016-05-18 成都海威华芯科技有限公司 一种GaN HEMT器件制作方法

Also Published As

Publication number Publication date
EP2168146A2 (en) 2010-03-31
WO2009007907A3 (en) 2009-03-05
US8962453B2 (en) 2015-02-24
WO2009007907A2 (en) 2009-01-15
CN101689484B (zh) 2012-02-15
US20100261339A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN101689484B (zh) 失配衬底上的单晶生长
KR101147053B1 (ko) 나노구조체 및 그 제조 방법
JP6147277B2 (ja) グラフェンのトップ及びボトム電極を備えたナノワイヤーデバイス及びそのようなデバイスの製造方法
US7960260B2 (en) Formation of nanowhiskers on a substrate of dissimilar material
US7875884B2 (en) Hetero-crystalline structure and method of making same
KR101255463B1 (ko) 나노차원으로 거친 표면을 갖는 에피택셜 기판 및 그 제조 방법
EP1609177A2 (en) Methods for nanoscale structures from optical lithography and subsequent lateral growth
JP2005532181A5 (zh)
WO2008106219A1 (en) Methods of forming nanostructures on metal-silicide crystallites, and resulting structures and devices
CN102640307A (zh) 制造半导体基底的方法和制造发光装置的方法
JP2670442B2 (ja) 結晶の形成方法
US8810009B2 (en) Method of fabricating a planar semiconductor nanowire
WO2005064687A1 (en) Semiconductor device comprising a pn-heterojunction
JP2022173200A (ja) 横方向に配向した低欠陥密度で大面積の金属窒化物アイランドのプラットフォームおよびその製造方法
KR100331687B1 (ko) 자발형성 양자점과 전류차단층의 자기정렬 성장을 위한반도체 소자 제조방법
CN104882519A (zh) 半导体多层结构及半导体元件
KR20090069911A (ko) 성장방향으로 적층된 이종구조 및 이종 도핑 구조의 나노선제조 방법
JPH0595121A (ja) 量子細線構造およびその作製方法
JPH01132118A (ja) 半導体結晶の形成方法及びその方法により得られる半導体結晶物品
JP2592832B2 (ja) 結晶の形成方法
JP2004281954A (ja) 量子ドットの作製方法
Merz et al. Nanostructure self-assembly as an emerging technology
EP0289117B1 (en) Method of forming crystals on a substrate
JP2022018623A (ja) ヘテロ構造およびその作製方法
JPH04130717A (ja) 結晶の形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120215