CN101670635A - 模制加强抗剪腹板芯部 - Google Patents

模制加强抗剪腹板芯部 Download PDF

Info

Publication number
CN101670635A
CN101670635A CN200910175963A CN200910175963A CN101670635A CN 101670635 A CN101670635 A CN 101670635A CN 200910175963 A CN200910175963 A CN 200910175963A CN 200910175963 A CN200910175963 A CN 200910175963A CN 101670635 A CN101670635 A CN 101670635A
Authority
CN
China
Prior art keywords
shear web
blade
mould
foam
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910175963A
Other languages
English (en)
Other versions
CN101670635B (zh
Inventor
D·J·万贝克
N·K·阿尔特霍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101670635A publication Critical patent/CN101670635A/zh
Application granted granted Critical
Publication of CN101670635B publication Critical patent/CN101670635B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明涉及模制加强抗剪腹板芯部,具体地,本发明涉及一种生产用于风力涡轮机叶片(2)的抗剪腹板(20)的方法,该方法包括:提供一般符合抗剪腹板(20)的至少一部分的形状的模具(22,32);以及用闭孔结构泡沫填充该模具。

Description

模制加强抗剪腹板芯部
技术领域
[0001]本文所描述的主题一般地涉及具有由主翼梁形成的特定叶片结构的流体反应表面,并且更具体地,本发明涉及具有模制抗剪腹板的风力涡轮机叶片。
背景技术
[0002]风力涡轮机是用于将风中的动能转化为机械能的机械。如果机械能直接由机械装置使用,例如用于抽水或者磨麦,则风力涡轮机可以称为风车。类似地,如果将机械能转换为电能,则该机械也可称为风力发电机或者风力发电设备。
[0003]风力涡轮机典型地根据叶片绕着旋转的垂直轴线或者水平轴线来进行分类。图1中示意性地示出了一个所谓的水平轴线风力发电机,并且其能够从General Electric Company获得。用于风力涡轮机2的该具体结构包括塔架4,塔架4支撑着包围传动系8的机舱6。叶片10布置于轮毂上以便在机舱6外在传动系8的一端形成“转子”。转动叶片10驱动连接到位于传动系8的另一端处的发电机14上的齿轮箱12,发电机14与接收来自风速计18的输入的控制***16一起布置在机舱6内。
[0004]当叶片在“转子平面”内旋转时,叶片10产生升力并捕获来自运动空气的动力,随后将该空气动力传给转子。各叶片均典型地在其“根”端处进行固定,并且然后径向地“向外延展”至自由的“末”端。在叶片的相对端从末端到根端的距离称为“翼展”。叶片的前部即“前缘”连接首先接触空气的叶片的最前端。叶片的后部即“后缘”是由前缘分开的气流在经过叶片的吸入和压力表面后重新聚合的地方。
[0005]如图2中所示,用于这种风力涡轮机2的叶片10典型地通过将各种“壳”和/或“肋状物”部分固定于一个或者多个“翼梁”构件上来制造,“翼梁”构件沿着叶片的内部沿翼展方向延伸,以承载大部分重量和叶片上的空气动力。这些翼梁典型地构造为具有腹板的I形梁,腹板称为“抗剪腹板”20,其在称为“帽”或者“翼梁帽”的两个凸缘之间延伸,这些凸缘固定于叶片的吸入和压力表面的内侧。但是,还可以使用其他抗剪腹板结构,包括但不限于“C型”,“L型”,“T型”,“X型”,“K型”和/或盒形的梁,并且抗剪腹板20还可以没有帽而使用。例如第4,295,790号美国专利公开了在风车中使用的叶片结构,该叶片结构具有金属抗剪腹板和用大约两磅/立方英尺密度的刚性聚氨酯泡沫塑料填充的子组件。
[0006]其他传统的抗剪腹板典型地包括由注入树脂复合材料覆盖的泡沫芯部。芯部典型地由多个泡沫板形成,这些泡沫板用粘合剂连接并之后进行修整以形成所需的抗剪腹板20的形状。然后抗剪腹板中这些连接好的泡沫板充当用于任一侧上的复合材料覆盖物的隔板,但是对抗剪腹板20并不提供很多附加的结构性益处。
发明内容
[0007]本文中通过以各种实施例提供生产用于风力涡轮机叶片的抗剪腹板的方法来解决与此类传统的解决方法相关的这些和其他缺点,该方法包括提供一般符合抗剪腹板的至少一部分的形状的模具;以及用闭孔结构泡沫填充该模具。还提供了包括抗剪腹板的风力涡轮机叶片,该抗剪腹板具有无接头的闭孔结构泡沫芯部。
附图说明
[0008]现在将参考如下附图(“图”)来描述该技术的各个方面,这些附图不一定按比例绘制,但是贯穿若干视图的每一幅附图,使用相同的参考标号表示相应的部分。
[0009]图1是传统风力发电机的示意性侧视图。
[0010]图2是图1中所示的叶片的示意性截面视图。
[0011]图3是用于风力涡轮机叶片的抗剪腹板的阴模的示意性截面视图。
[0012]图4是用于风力涡轮机叶片的抗剪腹板的阴模的示意性截面视图。
[0013]图5是用于风力涡轮机叶片的模制抗剪腹板的示意性截面视图。
[0014]图6是用于风力涡轮机叶片的抗剪腹板的阳模的示意性截面视图。
部件列表
2   风力涡轮机
4   塔架
6   机舱
8   传动系
10  叶片
12  齿轮箱
14  发电机
16  控制***
18  风速计
20  抗剪腹板
22  阴模
24  喷嘴
26  加强材料
28  刀具
30  结构织物
32  阳模
具体实施方式
[0015]图3示出了在形成用于风力涡轮机叶片10的抗剪腹板20中使用的阴模22的示意性截面视图。阴模22一般符合抗剪腹板的形状并且填充或以其他方式装载有液体材料,该液体材料为例如像闭孔结构泡沫的膨胀泡沫。例如,液体结构泡沫可以通过喷嘴24或者其他装置喷射到阴模22中。典型地泡沫将膨胀到模具22的边缘并从该模具的任何开口膨胀出来。但是,模具22可以设有或者不设有任何这种开口。
[0016]在喷射泡沫之前还可以以单方向或者多方向的方式将可选的加强材料26加入到模具22中,以增加抗剪腹板20的强度。例如,加强材料26可以包括散纤维,网状纤维,复合材料和/或其他材料。加强材料26还可以包括加强结构。一旦泡沫固化,则任何多余的材料可以使用如图4中所示的刀具28或者其他合适工具从模具22的任何开口处去除。
[0017]如图5中所示,由泡沫和其他结构性材料构成的模制的和/或加强的抗剪腹板随后可以用复合材料或者结构织物30或者注入树脂基体的其他材料进行缠绕或者以其他方式进行覆盖,以便给抗剪腹板20增加结构性能。在结构织物30被缠绕之前或者被缠绕之后,结构织物30也可以注入树脂基体,并且在结构织物被缠绕后,结构织物还可以被层叠到表面上或者注入树脂基体。备选地或者附加地,模具22可衬有复合材料或者结构织物30,如图3所示,在加入加强材料26和喷射泡沫之前对结构织物30进行注入,仅留下用其他复合材料来盖住固化的抗剪腹板20的任务以便形成抗剪腹板形状。在至少部分固化的泡沫上从模具20去除结构织物30后,模具中的任何结构织物30也可以被注入树脂。
[0018]除了图3-5中所示的阴模22,模制的和/或加强的抗剪腹板芯部可以使用如图6中所示的阳模32来实现。阳模32通常符合抗剪腹板芯部的形状。注入树脂的结构织物30被加载到阳模32的外侧以形成抗剪腹板20的外壳。在阳模32的表面中可提供槽,用于帮助在结构织物30中分散树脂。一旦固化并从模具上去除,则抗剪腹板外壳可以以类似于图3和图4中所示的方式用例如像闭孔结构泡沫的液体材料以及任何加强的材料26来填充。
[0019]阳模32还可以采用叠层板可应用于其上的隔板或者其他结构材料的形式。然后注入树脂的结构织物30被应用于隔板的顶部边缘或者底部边缘上,以便形成抗剪腹板20的其余外壳。一旦固化,即能够以类似于图3和图4中所示的方式用例如像闭孔结构泡沫的液体材料以及任何加强材料26来填充抗剪腹板外壳。
[0020]上述技术相对于传统的解决方式提供了各种益处。例如,通过消除在耗时而易出错的手动加工中对切割和定位多个泡沫板芯部的需要,该技术有助于给抗剪腹板20提供更严格的尺寸容差。抗剪腹板中的任何这种尺寸偏差还可能导致叶片10中其他部件偏差和/或其他结构偏差的配合不良(poor fitting)。考虑到合理的固化时间,因此比起切割板并将这些板以合适的形状粘合在一起,将泡沫喷射到模具中通常是更快的过程。由于仅需要对从模具的顶部突出的材料进行修整,因而还减少了废料。
[0021]上述技术还提供改良的结构特性,以便使得能够进一步减少叶片的外壳部分中的材料。例如,加强材料26有助于向泡沫材料增加结构特性,而该结构特性否则不会由抗剪腹板的外侧上的结构复合材料之间的简单隔板提供。由于抗剪腹板20的内部不再由多层板制成,因而该过程还提供了改良的结构整体性。此外,该技术消除了切割和粘合泡沫板以形成抗剪腹板20的手动或者自动过程,并且与另外使用传统方法可能获得的相比,该技术使得抗剪腹板可具有更大的厚度和/或更高的强度厚度比。这又减轻了整个叶片***的重量。
[0022]应当强调的是:上述的实施例并且尤其是任何“优选”的实施例仅是本文所阐述的各种实施方式的示例,以提供对该技术的各方面的清楚理解。本领域的技术人员能够改变其中的许多实施例而不实质上脱离仅由所附权利要求的适当解释所限定的保护范围。

Claims (4)

1.一种生产用于风力涡轮机叶片(2)的抗剪腹板(20)的方法,包括:
提供一般与抗剪腹板(20)的至少一部分的形状符合的模具(22,32);以及
用闭孔结构泡沫填充所述模具(22)。
2.如权利要求1所述的方法,其特征在于,所述方法还包括将加强材料(26)加入所述模具(22)。
3.如权利要求1或2所述的方法,其特征在于,所述方法还包括用结构织物(30)衬垫所述模具(22)。
4.如权利要求1、2或3所述的方法,其特征在于,所述方法还包括:
允许所述闭孔结构泡沫至少部分地在所述模具(22)中固化;
从所述模具(22)去除至少部分地固化的闭孔结构泡沫;以及
将去除的且至少部分固化的闭孔结构泡沫卷绕在用树脂基体灌注的结构织物(30)中。
CN200910175963.4A 2008-09-12 2009-09-11 模制加强抗剪腹板芯部 Expired - Fee Related CN101670635B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/209734 2008-09-12
US12/209,734 US7857595B2 (en) 2008-09-12 2008-09-12 Molded reinforced shear web cores

Publications (2)

Publication Number Publication Date
CN101670635A true CN101670635A (zh) 2010-03-17
CN101670635B CN101670635B (zh) 2016-06-29

Family

ID=41626001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910175963.4A Expired - Fee Related CN101670635B (zh) 2008-09-12 2009-09-11 模制加强抗剪腹板芯部

Country Status (3)

Country Link
US (1) US7857595B2 (zh)
EP (1) EP2163759B1 (zh)
CN (1) CN101670635B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934564A (zh) * 2010-09-16 2011-01-05 三一电气有限责任公司 剪切肋阳模制作方法、剪切肋阳模、阴模及叶片
CN103687707A (zh) * 2011-07-21 2014-03-26 三菱重工业株式会社 纤维强化树脂和轻量化芯的复合材料、制造该复合材料的方法以及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677538B2 (en) * 2012-02-09 2017-06-13 General Electric Company Wind turbine rotor blade assembly with root extension panel and method of assembly
US9597821B2 (en) 2012-09-27 2017-03-21 General Electric Company Frame assembly, mold, and method for forming rotor blade
CN104015247B (zh) * 2014-05-30 2016-07-06 西安交通大学 整体式空心涡轮叶片陶瓷铸型型芯烧结蠕变控制的方法
US10690111B2 (en) 2016-12-02 2020-06-23 General Electric Company Wind turbine rotor blade
US10828843B2 (en) 2017-03-16 2020-11-10 General Electric Company Shear webs for wind turbine rotor blades and methods for manufacturing same
CN111037807A (zh) * 2019-11-28 2020-04-21 上海华宜风电模具有限公司 一种风电叶片腹板模具可调节试活动挡边的制作方法
CN112776312A (zh) * 2020-12-29 2021-05-11 江苏华曼复合材料科技有限公司 汽车防撞梁及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116262A1 (en) * 2001-11-13 2003-06-26 Bonus Energy A/S Method for manufacturing windmill blades
CN1687586A (zh) * 2005-04-01 2005-10-26 同济大学 复合材料风力机叶片及其制备方法
WO2008007140A2 (en) * 2006-07-12 2008-01-17 Airbus Uk Limited Method of manufacturing composite part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill
GB2105633B (en) * 1981-08-28 1985-07-31 Dowty Rotol Ltd Foam-containing structures
EP1754886B1 (en) * 2005-08-17 2012-10-10 General Electric Company Rotor blade for a wind energy turbine
EP1880833A1 (en) * 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116262A1 (en) * 2001-11-13 2003-06-26 Bonus Energy A/S Method for manufacturing windmill blades
CN1687586A (zh) * 2005-04-01 2005-10-26 同济大学 复合材料风力机叶片及其制备方法
WO2008007140A2 (en) * 2006-07-12 2008-01-17 Airbus Uk Limited Method of manufacturing composite part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934564A (zh) * 2010-09-16 2011-01-05 三一电气有限责任公司 剪切肋阳模制作方法、剪切肋阳模、阴模及叶片
CN103687707A (zh) * 2011-07-21 2014-03-26 三菱重工业株式会社 纤维强化树脂和轻量化芯的复合材料、制造该复合材料的方法以及装置

Also Published As

Publication number Publication date
CN101670635B (zh) 2016-06-29
EP2163759A2 (en) 2010-03-17
US20100068498A1 (en) 2010-03-18
EP2163759A3 (en) 2016-07-27
EP2163759B1 (en) 2018-02-28
US7857595B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
CN101670635A (zh) 模制加强抗剪腹板芯部
CN106662070B (zh) 用于风力涡轮机叶片的叶尖***
US10273935B2 (en) Rotor blades having structural skin insert and methods of making same
CN106368894B (zh) 用于风力涡轮的转子叶片根部组件
US10690111B2 (en) Wind turbine rotor blade
CN106368893B (zh) 用于风力涡轮的转子叶片根部组件
US8075275B2 (en) Wind turbine spars with jointed shear webs
US8250761B2 (en) Methods of manufacturing rotor blades for a wind turbine
EP3066338B1 (en) Modular wind turbine rotor blade
EP2617555B1 (en) Wind turbine rotor blade with trailing edge comprising rovings
CN102052236A (zh) 风力涡轮机叶片
CN102049864A (zh) 风力涡轮机叶片和其它结构的制造方法
CN109098929A (zh) 具有混合式翼梁帽的风力涡轮叶片及制造的相关联方法
US20130209264A1 (en) Wind turbine rotor blade assembly with root extension panel and method of assembly
US20120090789A1 (en) Methods of manufacturing rotor blade tooling structures for wind turbines
EP2186626A2 (en) Method of making wind turbine blade
CN113905879A (zh) 用于制造风力涡轮机叶片的方法和风力涡轮机叶片
CN201165932Y (zh) 大型风轮叶片双梁式结构
EP3032094B1 (en) Spar cap for a wind turbine rotor blade
US20220018327A1 (en) Manufacturing of segmented wind turbine blade
US20120090790A1 (en) Methods of manufacturing tooling structures
CN114651124A (zh) 制造风力涡轮机叶片的方法和***
Damiano et al. Structural design of a multi-megawatt wind turbine blade with ONE SHOT BLADE® Technology
CN115485127A (zh) 风力涡轮机叶片
CN112955649A (zh) 用于风力涡轮机叶片的进入装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160629

Termination date: 20180911

CF01 Termination of patent right due to non-payment of annual fee